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Algebra. — Representations of siq {3) at the roots of unity. Nota(*) di NICOLETTA 

CANTARINI, presentata dal Corrisp. C. De Concini. 

ABSTRACT. — In this paper we study the irreducible finite dimensional representations of the quantized 
enveloping algebra V.q{g) associated to g = s/(3), at the roots of unity. It is known that these representa­
tions are parametrized, up to isomorphisms, by the conjugacy classes of the group G = SL{3). We get a 
complete classification of the representations corresponding to the submaximal unipotent conjugacy class 
and therefore a proof of the De Concini-Kac conjecture about the dimension of the 1i^(g)-modules at the 
roots of 1 in the case of g = 5/(3). 

KEY WORDS: Enveloping algebra; Representation; Cartan matrix. 

RIASSUNTO. — Rappresentazioni di slq{3) alle radici dell'unità. Vengono studiate le rappresentazioni irri­
ducibili, finito-dimensionali dell'algebra inviluppante quantizzata V.q(g) associata a g = sl{3), alle radici del­
l'unità. È noto che tali rappresentazioni sono parametrizzate, a meno di isomorfismi, dalle classi di coniugio 
del gruppo G = SL{3). Si ottiene una classificazione completa delle rappresentazioni corrispondenti alla 
classe di coniugio unipotente sottomassimale e quindi una prova, nel caso g = sl(3), della congettura di De 
Concini, Kac sulla dimensione degli ll^(g)-moduli alle radici dell'unità. 

1. INTRODUCTION 

In the papers [1,3] the quantized enveloping algebra Viq{g) introduced by Drin-

feld [5,6] and Jimbo [8], has been studied in the case q = e, E being an ódd, primitive 

root of unity. 

In particular it has been shown that the irreducible finite dimensional representa­

tions of 1i£ (g) are parametrized, up to equivalence, by the conjugacy classes of the cor­

responding complex Lie group G with trivial center (see Section 2 for the definitions 

and Section 3 for the main results). 

In this paper we will study the subregular representations of the quantum group 

sle(3), i.e. the irreducible representations corresponding to the unipotent conjugacy 

class of SL{3) of dimension 4. 

The main result of this paper (see Theorem 4.8) consists in proving that any sl£(3)-

subregular module can be induced by an irreducible sl£ (2)-module in such a way that a 

suitable condition is satisfied (nice representation). 

Hence we shall start from the construction of an induced module and study its irre-

ducibility using a direct method (Propositions 4.4, 4.6, 4.7). In this way we shall be 

able to write a basis for any subregular module and to compute its dimension 

explicitly. 

(*) Pervenuta all'Accademia I 'll luglio 1996. 
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2. NOTATIONS 

2.1. Let (aty), ij — 1, . . . , « , be a symmetric Cartan matrix and g the corresponding 
Lie algebra with Cartan subalgebra h and Chevalley generators £/,/• (/'•= 1, . . . ,«).• 

Let Q be the root system associated to Uz> ), R the root lattice W the Weyl group 
and A = {aly ..., an} the set of simple roots. Then Q = Q + U Q ~ where Q + is the 
set of positive roots and Q ~ is the set of negative roots. 

Following Drinfeld [5,6] and Jimbo [8] we consider the quantum group Viq (g) as­
sociated to the matrix {a^) i.e. the associative algebra over C{q) generated by Eiy FiyKiy 

K~l (i — 1, . . . ,«) with the following relations: 

(2.1) KtK; — KjK / - Ki + j , -*V-*V ~ -*V J^-i ~ = 1, 

(2.2) KiEjKr' = q'*Ej , K.FjK,'1 = q -"F; , 

(2.3) Eft - FjE{ = ôi}(K, - K~')/(q - q"x), 

1 - dij 

(2.4) 2 (-If 
s = 0 

1 - a,j 

(2.5) E ( - i r 
* = 0 

Here 
Ì - d^ 

s 
is the Gaussi 

1 - d^ 

s 

1 - dij 

s 

an bine 

E}-^-sEjEsi = 0 i f / '* / , 

F}-a>J-sFjF* = 0 if ' / * / . 

>mial coefficient 
1 - dij 

s 
with d = 1. 

d 

2.2. Recall that the Braid group Bw associated to (aty), with canonical generators 
Ti, acts on V.q(g) by automorphisms defined in [10] by: 

T;Kj ~ Ks.(a) 

T!Ei= -FM, T{Ej= 2 (-lY-a»q-sE}-'*-s)EjEP i f / * / , 

TtFt= -KrlEty TjFj= 2 (-iy-^qsFi]FjF^-s) i f / * / , 
s = 0 

where for each a e N we have £/<> = Ef/WW, Fja) = Ff/[a]l, [ail = [a]...[lì and 
[ai = {qa-q-a)/(q-q-lV 

Let w0 be the longest element in W so that w0 (Q
 + ) = Q " . Chosen a reduced ex­

pression for w0: w0 = s^Sj ...siN with N = | Q + | , we can define a convex total ordering 
o f < 2 + : 

& ,K>) > . . . N . 

We introduce the corresponding root vectors [10]: 

(2.6) E ^ T , - . . . ^ . , ^ , ^ . = ^ . . . 2 ^ . , J=1,...,N; 

then we let 

Ek = Ek
s\...ElN

N, Fh = wEk 
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fork = (ki, ....., I N ) e Z+ , where co is the conjugate-linear anti automorphism of V.q(g), 
as an algebra over C, defined by: 

oj(Et ) = Ft , o>(^ ) = Et , œiKj )=Kt~\ œ(q) = q "1 . 

It is known that oo commutes with the action of the Braid group. 

THEOREMZIJ;? , 10]. U) Theset{FkKT1...^Er:ik,r^ZN
+9(mu...9mJI)^Z('}p 

a, basis of V,q{g) over C(q). 

(b) For i <j one has: 

where Q ë C [ ^ ^ _ 1 ] and ck ^ 0 only when k = (kx, ..., kN) is such that ks = 0 for s ^ i 
and s^j. 

Now, let / be an odd integer greater than 1 and e a primitive /-th root of 1. We de­
note by Hg ^ Vie{g) the algebra over C obtained by specializing q to e. More precisely, 
let & = C[q> q ~1] and denote by V,Q the d subalgebra of Viq (g) generated by Et-, F{, i<Q, 
K'1 and {Ki-Krl)/{q-q-1) with / = 1, ..., n. Then 1le = l l a / ( ^ - p) UQ. 

Denote by Z£ the center of l l e . It is known [1] that El
a, Fl

a (a e Q + ), X/ {/ = 
= 1, ..., n ) lie in Ze. Let Z0 be the subalgebra of Ze generated by these elements and de­
note by Z0~ , ZQ , Z0

+ the subalgebras of Z0 generated by Fl
a, Ky and El

a respectively, 
with a e Q+

 } j = 1, . . . , « . Then 

Z0 - Z0" <S> Z0° ® Z0
+ . 

LEMMA 2.2 [1]. T^e algebra CUE is a free Z0-module on the basis {FkKil ...K™nEr: 
k = (ku ...,kN), r= (ru , . . , r N ) e Z i W / ê Z , 0 ^ k{ < /, 0 ^ r, < /, 0 ^ mt < / } . 

3. BASIC CONSTRUCTION AND MAIN RESULTS 

Let G be the connected complex Lie group with Lie algebra g and trivial center. Let 
T be the maximal torus of G corresponding to the Cartan subalgebra h of g, U_ and 
U+ the maximal unipotent subgroups of G corresponding to Q ~ and Q + respectively, 
JB_ = TU_ and B+ = TU+ Borei subgroups. 

In this section we will recall the correspondence between the equivalence classes of 
the irreducible finite-dimensional representations of the quantized enveloping algebra 
V^eig) and the conjugacy classes of the group G, and we will collect the main results 
concerning this correspondence. 

3.1. DEFINITION 3.1. If A is an associative algebra by Spec A we denote the set of the 
equivalence classes of the irreducible, finite dimensional representations of A. 
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REMARK. Using Schur's lemma one can consider the canonical map 

X: Spec VL£ —> Spec Z£ , 

where o is an irreducible representation of 1ie on a vector space V such that 

a(z)(v) = ka{z)v V z e Z e , Vi> e V . •• 

PROPOSITION 3.2 [4]. 

1) The map X: Spec 1i£ —» Spec Z£ is surjective\ 

2) the points of SpecZ£ parametrize the semisimple lh-dimensional representations 

ofUE; 

3) if X E SpecZ£ , X~l (X) is the set of the irreducible components of the representa­

tion parametrized by X. 

COROLLARY 3.3. Any finite dimensional irreducible 'Mf module has dimension less than 

or equal to lN. 

Consider now the following sequence of canonical maps [3]: 

(3.7) cp: Spec U£ —> SpecZ£ -H> SpecZ0 —» G . 

Here r is induced by the inclusion Z0 c Z£ ; it is finite with fibers of order less than 

or equal to ln which are completely described in [1,2]. The map Jt is constructed as fol­

lows: define 

' + Jt : SpecZ0 —> U__ and Jt+ : SpecZ0
+ —> U4 

respectively by the elements exp ( ^ N / ^ N ) . . . exp (y^fp,) of U_ (Z0~ ) and 

exp (T 0 (3^ N )T 0 ( ^ N ) ) . . . e x p ( r o ( ^ 1 ) r o ( / 8 l ) ) o f U + (Z0
+ ), where T0 = TH...TlN,ya = 

= (£ i/2(«, a) _ £ -i/2(a, a))/^/ ( a E Q + ), and / a are root vectors in g defined by formulas 

analogous to (2.6), through the action of Bw on g introduced by Tits [11]: 

Ti = (exp ad/-)(exp adet )(exp ad / • ) . 

We shall identify Spec ZQ with T through the isomorphism R^ IR given by multi­

plication by /. Now consider the map 

Jt: Spec.Z0 = SpecZ0~ X T X SpecZ0
+ —» G , 

Jt(a, t-,b) = Jt~ (a)t2Jt+(b); 

the image of TT is the big cell (U_ TU+) of the group G. 

THEOREM 3.4 [3]. There exists a canonical infinite dimensional group G of automor­

phisms of y.E such that: 

a) G stabilizes Z0 and therefore acts on SpecZ 0 : 

(gA)(z) =Mg~1z), / l e S p e c Z o , z e. Z0, geG; 

b) X is an equivariant map with respect to the G-action; 

c) the set F of fixed points of G in SpecZ0 is (jt)~l(l); 



REPRESENTATIONS OF slq(3) AT THE ROOTS OF UNITY 2 0 5 

d) if 0 is the conjugacy class of a non central element of G then TI ~l (G) is a single 

G-orbit and ( Spec Z0 ) — F is a union of these G-orbits. 

The above theorem allows us to parametrize the equivalence classes of the irre­

ducible VLq (g)-modules by the conjugacy classes of the group G. The following conjec­

ture states the existence of a linking between the geometry of these conjugacy classes 

and the structure of the corresponding representations in a more precise sense: 

CONJECTURE [3]. If o e Spec Vie is an irreducible representation of VE on a vector space 

V such that cp(o) belongs to a conjugacy class O in G then d i m V is divisible by 
7dimO/2 

We recall that each conjugacy class in G has got even dimension less than or equal 

to 2N. The above conjecture was proved in [4] in the maximal case: 

THEOREM 3.5. Any representation a e Spec VL£such that cp{o) lies in a regular conjugacy 

class of G has maximal dimension (= lN). 

From now on we consider the quantized enveloping algebra Vq{g) associated to 

g — sl(n). Then W = Sn and G = SL(n). We will denote the Borei subgroups of G of up­

per and lower triangular matrices by B+ and B_ respectively, while U + and U_ will be 

the corresponding unipotent subgroups and T the maximal torus of diagonal 

matrices. 

DEFINITION 3.6. We say that a eVE is unipotent if cp{o) is a unipotent element in 

SL{n). 

Take a non unipotent element a in Spec VE and write m = q){o) = msmu where ms 

and mu are the semisimple and unipotent part of m respectively (ms ^ 1 ) . Define T' = 

= center (centralizerG (ms)) and put h' '= Lie ( V ). Then h' will be a proper subalgebra of 

the Cartan subalgebra h of g. Let Q ' : = {aeQ\a vanishes on h'}, then Q' = ZA ' D Q 

where ZA ' is a sublattice of R spanned by a proper subset A' o£A. We shall denote byg' 

the Lie algebra whose Chevalley generators are those of g corresponding to az G Ar and 

by Vi' the subalgebra of Ve generated by Eiy Fï with a^s A' and K; withy = 1, . . . , « . 

Put Vi= V! U+ where U+ is the subalgebra of VLe generated by Et•, Kt tot i = 1, . . . , « . 

Then the following theorem holds: 

THEOREM 3.7 [2]. If a e Spec VLe is a non unipotent representation of slE (n) on a vector 

space V there exists a unique irreducible Ve{g')-module V such that: 

1) V is an irreducible V-module; 

2) V = sle (n) <8> V; in particular dim V = V dim V where It = \Q/Q'\. 
ti 

The above theorem reduces the study of the irreducible representations ofslE (n) to 
the study of its unipotent representations, since it states, in particular, that any slE(n)-

module which is not unipotent is induced by a slE (r)-unipotent module, with 

r < n. 
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We recall that the number of conjugacy classes of the unipotent elements in SL(n) is 
finite and that each class is parametrized by the Jordan decomposition of its elements, 
i.e. by a partition of n. Moreover the following theorem holds: 

THEOREM 3.8 [7]. Let 0 be a conjugacy class in SL{n) parametrized by the partition {hi) 
of n. Then dim 0 = n2 — 2 h i9 where (h {) is the dual partition. 

4. Ue(sl{3))\ THE SUBREGULAR CASE 

In this section we will consider the case g = sl( 3 ) and study the subregular represen­
tations of the quantum group V£(sl(3)) i.e. the irreducible representations which lie 
over the conjugacy class 0, parametrized by 

/ i i »\ 
0 1 0 , 

\0 0 1/ 
through the correspondence (3.7). According to what stated in 3 this completes the 
proof of the recalled conjecture in the case of sle(3). Indeed there are 3 conjugacy 
classes of unipotent elements in SL(3): 

/ l 0. 0\ / l 1 o\ 
0 1 0 , 0 1 0 , 

\0 0 1/ \0 0 1/ 

In the first case (dim© = 0) the conjecture is empty and in the last case (the maxi­
mal case) it is proved by Theorem 3.5. 

Let us fix a reduced expression for w0, say w0 = s2s1s2. Then the following relations 
can be proved by induction on r: 

(4.8) ExF-h = FhE, - I Ï e2kjF[i1F2K1-
1 ; 

(4.9) E2F[2 = F[2E2 + e\'^e-AF'ulFlK2 . 

We recall that, with our choice of the reduced expression of w0, 

FxFl2 = e-1Fl2Fl , F2Fl2 = eF12F2 . 

Let us choose the representative element 

lì 0 0\ 
m = \l 1 0 

\ l 0 1/ 

of the class O, then, using the definition of cpy one sees that any representation in 
<p ~l (m) is such that E[ = E[2 = El

2 = 0, K[ = Kl
2 = 1, Fl

2 = 0, F[ = 1 = F[2, where the 
elements of slE{3) are identified with their images through the representation. 

According to [1], we consider the irreducible (J + 1)-dimensional representation V 
(0 ^y ^ / — 1 ) of sle (2) with a basis consisting of the vectors v,F2v, ...,FJ

2v, where v 

0 

,0 

1 
1 
0 

0 
1 
1 
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is a non zero vector such that E2v = 0, K2v = eJv, FJ
2

 + lv = 0. Let U be the subalgebra 
of UE with generators E2,F2,K2,ElyKiy F{, F[2 and define an action of Ì1 on Vby the 
relations: 

p[ = l , F[2 = 1, Ei V = 0 , KxF
r
2v = et + rFr

2v Vr = 0 , ... J 

where / is a fixed integer such that 0 ^ / ^ / - l . V i s then a left It-module, and we can 
consider the induced representation Ind(V) := sl£(3) ® V. 

ii 

DEFINITION 4.1. We say that the above defined representation Ind( V) is a representation 
of type (ij) of sle(3). 

REMARK. A representation of type (/,/) has dimension ( / + 1 ) I2. Indeed, by defini­
tion, a basis of Ind(V) consists of the vectors 

(4.10) {F[F[2F
s
2v: 0 ̂  r, * ^ / - 1, 0 ̂  s ^j} . 

n 

LEMMA 4.2. Given xe lnd(V) , x= ^ akFiFf2F2vy the following relations 
hold: 

(4.11) Ex{x) = - Ì ake^-<^^F?Ft
l
k
2-

1Fs
2
k + 1v + 

k = l l - £ 2 

n M -. P2rk\(p2-2rk-tk+sk + i _ ptk~sk-ï\ 
i y n

 u b ) { t _ I prk -1 Ftk Fsk . 

+ 2J ak _ r1 rl2t2 v, 
* = i (e - £ M(l - £2) 

n (PJ + 2 _ -j + 2sk \( <i _ p -2sk \ 

(4.12) E2(x) =1 ak
 [£ / J U ° } FÏFtFÏ-'v + 

k = \ (e2 - l)(e - e~l) 

+ È ak^^e2-'*-*+>y[k + 1F*2-
1Fs

2
kv. 

k=l 1 - £2 

PROOF. By using relation (4.8) we have: 

E1M=Ell t atF?F&F?v) = Ï atE1F?F&F}v = 

\k=l ) k=l 

I lrk~l \ lrk~l \ \ 

, - 1 \s=0 
= 2 

k=i 
F?E! + F?" 

•k-l \ (rk-l \ 

S r i , - 2 e* Kf1 

y = 0 / \ * = 0 / F i2F2v = 

= Ì a^E.Ff^v + 
k = i 

^ * - i ( l - £ _ 2 ^ ) / ( l - £ " 2 ) £ ^ + ^ + / - ( l - £ 2 r M / ( l - £ 2 ) £ ^ _ ^ ~ z 

+ 2, **iY 
* = i e - £ i 

•F£F?I> = S akF\\- E e2w)Fè"1F2Kr1^ + 
£ = 1 \ m = 0 / 

« (1 - £ 2 r 0 / ( l - £
2 ) £

2 - 2 ^ - ^ + ^ + / - (1 - e2rk)/(ì - e2)etk~Sk-1 

+ Z ak ; • —• 
k = i e - e L 
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n 1 2tu 

k = i 

+ 2 ak 

1 - E" 

1 _ £ 2rk \ / £ 2 - 2rk - tk + sk + i _ £tk - sk -

* = i (e-e-'Xl-e2) 

We compute E2(x) in a similar way. • 

F?~lF?2F?v. 

Given as!E(3 )-module V, we shall say that x e V i s a weight vector if it is a common 
eigenvector for the K/s for i = 1, 2. 

(4.13) V -nr + k-l-nt-k + l-nk-l 

x = ZJ akF1 Fi2 F2 \ 

LEMMA 4.3. Each weight vector x in Ind(Vr) such that E2(x) = 0 has the form 

t + l 

2 
k = l 

with t,reN, O^t^J, O^r^l - 1 and ak e C - {0}. 
PROOF. Let us take x e Ind( V), then we can write x as a linear combination of the 

n 

vectors in the basis (4.10): x - 2 ^FiF^F^v. 
k.= i 

If « = 1, relation (4.12) shows that E2 00 = 0 if and only if ^ = ^ = 0. In this case 
x = F[lv spans the representation Ind(V) since Fx is invertible. 

Suppose now n > 1. We rewrite (4.12) in the following way: 

E2(x) =A+B = E a*i4*+ 2 £*B* 

with ^ = F[kF%Fs
2
kv, Bk = F[k + lFt&XFs

1
kv\ the vectors Ak are then linearly indepen­

dent as well as the vectors B^, moreover A^ & B^ for the same k. Now, if B^ = A^2 for 
some ki ^ k2 , this means that 

(4.14) 

'% = % + 1 

tk2 = ' * ! - ! 

^2 = ^ + 1 

so that Ak 7* Bkl. In the same way, by induction, we get that if B^ = Akl, B^2 = 
= Akò, ..., Bkn_l — Akn, thenk iy ...,kn must be different from each other and A^ is dif­
ferent from B^, Bkl, ..., Bkn. Therefore, E2 (x) = 0 if and only if there exists an order­
ing ki, ...,k„ of the indeces such that 

(4.15) 

Bkl - Akl 

Bk2 ~ Ak3 

Bu . — AL 
KH - l K; 
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<**3 + h 2 = o 
(4.16) 

and a^ = 0, /3^ = 0 />. skl = 0, ^ = 0. Notice that system (4.15) is equivalent to the 
following: 

(rkb = rkl+h - 1 

(4.17) hkb = tkl-b + 1 

[sh = A - 1 

with 2 ^ h ^ «. Particularly ^ = ^ + « - 1 = n - 1 = ^ , so that: 1 ̂  ^ = « - 1 ^ 
^y . Now we can write the relation a^ + /3^_ 1 = 0 explicitly: 

(e~ J+ 2 e-j
 + 2skh)(\ - £ - 2 % 

* * A 
• ^ • 1 " " c 2 ^ " 1 c 2 - ^ - i - ^ - i + > = 0,-

(e2- Die-e'1) ~°'L 1 - el 

We point out that, as in our hypothesis the coefficients of the previous equation are 
different from zero when 2 ^ h ^ n, system (4.16) has got a solution (akl, ..., ak) with 
a^. 5* 0 for eachy = 1, . . . , « , uniquely determined up to a scalar factor. Finally, if a^ — 0 
for one j then x = 0. • 

REMARK. If £ = 0 in (4.13) E1 (x) = 0 if and only if r = 0 or r = i + 1. These are the 
only cases in which a vector F[F[2F2v is annihilated by both Ex and E2 . Notice that, 
since F[= 1, the set {F[F[2F

S
2(F{ + lv): 0 ^ r, ^ / - 1, 0 ^ s ^j} is a basis of 

Ind(V). 

From now on we will suppose / > 0 in (4.13). 

PROPOSITION 4.4. Let x be of type (4.13), x ^ 0, such that Ex{x) = E2{x) = 0. 
Then 

(4.18) 2 + / +j -t = 0(mod/). 

t+ l 

t+ l 

£ = 1 
PROOF. Take x= 2 ^F 1

r + *-1F{2"A + 1 F | - 1 i ; as in Lemma 4.3. Then 

•Ei(*) 
k=l 1 - £2 

t+ 1 

+ E ak 
k = i 

( 1 _ e 2 ( r + A - l ) ) ( e 2 - 2 r - / + , - _ e 

12 x 2 

; - 2£ + 2 

Fk
0V + 

0 
F[ + & - 2 7 7 / - & + 1 vk-\A 

(e-8-1)(l-e2) 

Since the first summand does not contain the vector F[ ~ lF[2v, if E1 (x) = 0, we must 
have: 

(A) r = 0 
or 

(B) 1 - r - / + / = 0(mod/). 



{£j + 2 _ £ - j + 2k-2){1_£-2k + 2) 

(ez - l)(e -e L) 
(l _ £2(r + k- 1) \/£2-2r-t + i _ t - 2k + 2-

-1«B 

0 
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Now, as 
t+1 ( ai + 2 _ e -J + 2k - 2 w -i _ - 2 * + 2 \ 

17 („\ _ V „ Af _ A C 1 cf + £ - l cz-é + l jjk-2„ , 
- C 2 U ) - Z ^ — — — i r" ^1 .̂ 12 ^2 ^ + 

* = i (e2 - l ) ( e - £ M 
/ + ! 1 _ o 2 ( / - £ + 1) 

+ E ^ 2 — E*-t-k+jV\ + kl?tûk¥\-xv, 
k=l 1 - £ 2 

Ei (x) = E2 (x) = 0 if and only if the following system has got a non trivial solution for 
each k = 2, . . . , / + 1: 

' , . 1 _ p 2 ( ; - £ + 2) 
4 - / - £ + ; i fc _ Q 

1 - e 2 

i _ _ 2 ( / - * + 2) 

-ak^e-k + 2->- e- = 0 . 
(e-e-l)(l-e2) 1-e2 

Particularly, for k = 2 this is equivalent to require that 

{ej + 2 - e-j + 2){l - e~2) - e2-t+J + l{l - e2r + 2){e-2r + t-t + 2 - e~i + t-2) = 0. 

We distinguish the following two different cases: 

(A): r = 0=> 

0 = (J -e-n(e2 - 1) - e2~t + l+Hl- e2)(ei + 2-' -e~i + t-2) = 

= (e2- lM - e~' + e4-2****' - &')<> 

oet-x + x+j = e-j<>2 - t + i +j = O(modl), 

(B): 1 - r + / - t = 0 (mod/) => 

0 = (ej - e~j){e2 - I) - e2-t + i+J{I - e2r + 2){el-r - e~r~l) = 

= (ej -£-J){e2 - 1) - e1+J(l - e2r + 2){e - e'1) = 

= (e2- l){ej - £~j - ej + e2r + 2+J)<s>E2r + 2+j = E-j<*r+ 1 + / = 0 . 

The above relation, together with (B), is equivalent to (4.18). • 

DEFINITION 4.5. We say that a sl£(3)-module is nice if it is of type (i,j) with 2 + / + 
+ j ^ / or i = I — 1. 

PROPOSITION 4.6. A nice representation is irreducible. 

PROOF. Let us consider a representation of type (i,j) generated by a vector v ^ 0. 
Proposition 4.4 shows that if 

2+ /+y^/(mod/) 
for any / such that 1 ̂  / ^ / , the representation Ind ( V) contains no weight vector x 5* 
^ av,/3F{+ 1v, with a, /? e C, such thati^ (x) = 0 = £2 (x). Now, since E{ = E{2 = El

2 = 
= 0, the algebra generated by E1, E2 is nilpotent, therefore if W c Ind( V) is a subrepre-
sentation of Ind( V), there exists a weight vector w eW such that Ei(w) = 0 = E2 (w). 
This forces w to be a multiple scalar of # or of F{+1t> and therefore W = 
= ihd(V). 
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Finally it is easy to verify that 2 + / +j ^t for any t such that 1 ^ t ^j if and only if 

2 + / + / * = / or / = / - 1. • 

PROPOSITION A.l.IfV is a sle{3 )-module of type (ij) and is not nice there exists a nice 

submodule W of V such that the quotient V/W is a nice representation. 

PROOF. Let V be a representation of sle (3) of type ( / , / ) with 2 + / +j ^ / + 1, / ^ 

^ / - 1. Take x = Ff+ z + y _ 'F} ' + 1 v, then x is a weight vector killed by both Ex and E2 

which spans a proper subrepresentation <P of V, with basis {F[F[2F2x: 0 ^ r,t ^ / - 1, 

O ^ s ^ / — / — 2 } . ^ is irreducible, indeed it is the representation of type ( [ / — / — 

— 2], I — i — 2), generated by F{ + x x , which can be easily seen to be nice. (By [/ — j — 2] 

we mean the integer ^ e [ 0 , / — 1] such that k = / — / — 2 (mod/ ) ) . Finally the quo­

tient y / 0 is the representation of type {I — t — 2, i + j + 1 — I) generated by F[+ lv 

and this is nice too. • 

THEOREM 4.8. Every suhregular representation of UE{sl(3)) is a nice representa­

tion. 

PROOF. Let us take a subregular representation W of \iE (y/(3)). As the algebra gen­

erated by Ei and E2 is nilpotent, the set 

JB := {w G W: E1 (w) = 0 = E 2 (a ; )} 

is nontrivial; moreover Kx and K2 act diagonally on B. Take then u eB\{0} such that 

K ^ = exu, K2u — eyu: u spans W since W i s irreducible. Consider the subspace V of 

W generated by the set {Fr
2u: 0 ^ r ^ / — l } ; V is stable under the action of F2, E2, 

K2, K j . In particular y defines a representation of the subalgebra VL of 1XC (J/( 3 )) gener­

ated by E2,F2yK2, K2K2. Let V be an irreducible "U-submodule of V. Vf is then an ir­

reducible representation of sl£{2), since K2K2 is central in VL. We then see that V is 

stable under Kx as Kt = XK2
{1~ 1 ) / 2 with 2 e C . 

Define I n d ( V ) as the representation induced by V on slE{3) in the natural way. 

Then W is a quotient of Ind(V' ) since the set {F[F[2v\ v GV , 0 ^ r, t ^ I - 1} is 

stable under the action of Ea,Fa, K; for any a e Q + , / = 1 ,2 . Now, if Ind ( V ) is nice, 

W = Ind(V ' ) . Otherwise, by Proposition 4.7, Ind( V ) contains a proper nice subrepre­

sentation <P such that Ind(V')/<Pis nice. Write W = I n d ( V ' ) / T where T is a subrepre­

sentation of Ind(V ' ) . Then, if m . $ . * { 0 } , TD& so that W = I n d ( V ' ) / T c 

dnd(V') /<2>, but since Ind(V')/<P is irreducible, W = Ind(V')/<Z>. 

On the contrary, if T fi 0 = {0} then WD<P/T^& SO that W = 0 . • 

COROLLARY 4.9. TÂ£ dimension of any subregular representation of UE(sl(3)) is divisi­
ble by I2. 
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