Nicoletta Cantarini

Representations of $sl_q(3)$ at the roots of unity

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1996_9_7_4_201_0>
Algebra. — Representations of \(\text{sl}_q(3) \) at the roots of unity. Nota (*) di Nicoletta Cantarini, presentata dal Corrisp. C. De Concini.

Abstract. — In this paper we study the irreducible finite dimensional representations of the quantized enveloping algebra \(\mathcal{U}_q(g) \) associated to \(g = \text{sl}(3) \), at the roots of unity. It is known that these representations are parametrized, up to isomorphisms, by the conjugacy classes of the group \(G = \text{SL}(3) \). We get a complete classification of the representations corresponding to the submaximal unipotent conjugacy class and therefore a proof of the De Concini-Kac conjecture about the dimension of the \(\mathcal{U}_q(g) \)-modules at the roots of 1 in the case of \(g = \text{sl}(3) \).

Key words: Enveloping algebra; Representation; Cartan matrix.

1. Introduction

In the papers [1, 3] the quantized enveloping algebra \(\mathcal{U}_q(g) \) introduced by Drinfeld [5, 6] and Jimbo [8], has been studied in the case \(q = \epsilon, \epsilon \) being an odd, primitive root of unity.

In particular it has been shown that the irreducible finite dimensional representations of \(\mathcal{U}_q(g) \) are parametrized, up to equivalence, by the conjugacy classes of the corresponding complex Lie group \(G \) with trivial center (see Section 2 for the definitions and Section 3 for the main results).

In this paper we will study the subregular representations of the quantum group \(\text{sl}_\epsilon(3) \), i.e. the irreducible representations corresponding to the unipotent conjugacy class of \(\text{SL}(3) \) of dimension 4.

The main result of this paper (see Theorem 4.8) consists in proving that any \(\text{sl}_\epsilon(3) \)-subregular module can be induced by an irreducible \(\text{sl}_\epsilon(2) \)-module in such a way that a suitable condition is satisfied (nice representation).

Hence we shall start from the construction of an induced module and study its irreducibility using a direct method (Propositions 4.4, 4.6, 4.7). In this way we shall be able to write a basis for any subregular module and to compute its dimension explicitly.

(*) Pervenuta all’Accademia l’11 luglio 1996.
2. Notations

2.1. Let \((a_{ij})\), \(i, j = 1, \ldots, n\), be a symmetric Cartan matrix and \(g\) the corresponding Lie algebra with Cartan subalgebra \(h\) and Chevalley generators \(e_i, f_i\) \((i = 1, \ldots, n)\).

Let \(Q\) be the root system associated to \((a_{ij})\), \(R\) the root lattice \(\mathcal{W}\) the Weyl group and \(\Delta = \{\alpha_1, \ldots, \alpha_n\}\) the set of simple roots. Then \(Q = Q^+ \cup Q^-\) where \(Q^+\) is the set of positive roots and \(Q^-\) is the set of negative roots.

Following Drinfeld [5, 6] and Jimbo [8] we consider the quantum group \(\mathcal{U}_q(g)\) associated to the matrix \((a_{ij})\) i.e. the associative algebra over \(C(q)\) generated by \(E_i, F_i, K_i, K_i^{-1} \((i = 1, \ldots, n)\)\) with the following relations:

\[
\begin{align*}
(2.1) & \quad K_i K_j = K_j K_i = K_{i+j}, \quad K_i K_i^{-1} = K_i^{-1} K_i = 1, \\
(2.2) & \quad K_i E_j K_i^{-1} = q^{a_{ij}} E_j, \quad K_i F_j K_i^{-1} = q^{-a_{ij}} F_j, \\
(2.3) & \quad E_i F_j - F_j E_i = \delta_{ij} (K_i - K_i^{-1})/(q - q^{-1}), \\
(2.4) & \quad \sum_{s=0}^{1-a_{ij}} (-1)^s \left[\frac{1-a_{ij}}{s} \right] E_i^{1-a_{ij}-s} E_j E_i^s = 0 \quad \text{if} \ i \neq j, \\
(2.5) & \quad \sum_{s=0}^{1-a_{ij}} (-1)^s \left[\frac{1-a_{ij}}{s} \right] F_i^{1-a_{ij}-s} F_j F_i^s = 0 \quad \text{if} \ i \neq j.
\end{align*}
\]

Here \(\left[\frac{1-a_{ij}}{s} \right]\) is the Gaussian binomial coefficient \(\left[\frac{1-a_{ij}}{s} \right]_d\) with \(d = 1\).

2.2. Recall that the Braid group \(B_{\mathcal{W}}\) associated to \((a_{ij})\), with canonical generators \(T_i\), acts on \(\mathcal{U}_q(g)\) by automorphisms defined in [10] by:

\[
\begin{align*}
T_i K_j & = K_{\sigma_i(a_j)} K_j, \\
T_i E_j & = -F_j K_i, \quad T_i E_j = \sum_{s=0}^{-a_{ij}} (-1)^s q^{-s} E_i^{(-a_{ij}-s)} E_j E_i^s \quad \text{if} \ i \neq j, \\
T_i F_j & = -K_i^{-1} E_i, \quad T_i F_j = \sum_{s=0}^{a_{ij}} (-1)^s q^{s} F_i^{(s)} F_j F_i^{(-a_{ij}-s)} \quad \text{if} \ i \neq j,
\end{align*}
\]

where for each \(a \in N\) we have \(E_i^{(a)} = E_i^a / [a]!, \quad F_i^{(a)} = F_i^a / [a]!, \quad [a]! = [a] \cdots [1]\) and \([a] = (q^a - q^{-a})/(q - q^{-1})\).

Let \(\omega_0\) be the longest element in \(\mathcal{W}\) so that \(\omega_0(Q^+) = Q^-\). Chosen a reduced expression for \(\omega_0\): \(\omega_0 = s_{i_1} s_{i_2} \cdots s_{i_N}\) with \(N = |Q^+|\), we can define a convex total ordering of \(Q^+\):

\[
\beta_j = s_{i_1} \cdots s_{i_{j-1}} (\alpha_{i_j}) \quad j = 1, \ldots, N.
\]

We introduce the corresponding root vectors [10]:

\[
E_{\beta_j} = T_{i_1} \cdots T_{i_{j-1}} E_{i_j}, \quad F_{\beta_j} = T_{i_1}^{-1} \cdots T_{i_{j-1}}^{-1} F_{i_j}, \quad j = 1, \ldots, N;
\]

then we let

\[
E^k = E_{\beta_1}^k \cdots E_{\beta_N}^k, \quad F^k = \omega E^k.
\]
for \(k = (k_1, \ldots, k_N) \in \mathbb{Z}^N_+ \), where \(\omega \) is the conjugate-linear anti automorphism of \(\mathcal{U}_q(g) \), as an algebra over \(\mathbb{C} \), defined by:

\[
\omega(E_i) = F_i, \quad \omega(F_i) = E_i, \quad \omega(K_i) = K_i^{-1}, \quad \omega(q) = q^{-1}.
\]

It is known that \(\omega \) commutes with the action of the Braid group.

Theorem 2.1 [9, 10]. (a) The set \(\{ F^{K_i}K_j^{m_j} E^{r_i} : k, r \in \mathbb{Z}^N_+, (m_1, \ldots, m_n) \in \mathbb{Z}^n \} \) is a basis of \(\mathcal{U}_q(g) \) over \(\mathbb{C}(q) \).

(b) For \(i < j \) one has:

\[
E^{(j-1)/2} F_i E^{(j-1)/2} F_j = \sum_{k \in \mathbb{Z}_+^N} c_k E^k
\]

where \(c_k \in \mathbb{C}(q, q^{-1}) \) and \(c_k \neq 0 \) only when \(k = (k_1, \ldots, k_N) \) is such that \(k_s = 0 \) for \(s \leq i \) and \(s \geq j \).

Now, let \(l \) be an odd integer greater than 1 and \(\varepsilon \) a primitive \(l \)-th root of 1. We denote by \(\mathcal{U}_\varepsilon \equiv \mathcal{U}_q(g) \) the algebra over \(\mathbb{C} \) obtained by specializing \(q \) to \(\varepsilon \). More precisely, let \(\mathcal{A} = \mathbb{C}[q, q^{-1}] \) and denote by \(\mathcal{A}_q \) the \(\mathcal{A} \) subalgebra of \(\mathcal{U}_q(g) \) generated by \(E_i, F_i, K_i, K_i^{-1} \) and \((K_i - K_j^{-1})/(q - q^{-1}) \) with \(i = 1, \ldots, n \). Then \(\mathcal{U}_\varepsilon = \mathcal{A}_q / \varepsilon \mathcal{A}_q \).

Denote by \(Z_\varepsilon \) the center of \(\mathcal{U}_\varepsilon \). It is known [1] that \(E^l_{\alpha}, F^l_{\alpha} (\alpha \in \mathbb{Q}^+) \), \(K^l_i \) \((i = 1, \ldots, n) \) lie in \(Z_\varepsilon \). Let \(Z_0 \) be the subalgebra of \(Z_\varepsilon \) generated by these elements and denote by \(Z_0^- \), \(Z_0^0 \), \(Z_0^+ \) the subalgebras of \(Z_0 \) generated by \(F^l_{\alpha}, K^l_i \) and \(E^l_{\alpha} \) respectively, with \(\alpha \in \mathbb{Q}^+ \), \(j = 1, \ldots, n \). Then

\[
Z_0 = Z_0^- \otimes Z_0^0 \otimes Z_0^+.
\]

Lemma 2.2 [1]. The algebra \(\mathcal{U}_\varepsilon \) is a free \(Z_0 \)-module on the basis \(\{ F^{K_i}K_j^{m_j} E^{r_i} : k = (k_1, \ldots, k_N), r = (r_1, \ldots, r_N) \in \mathbb{Z}^N_+, m_i \in \mathbb{Z}, 0 \leq k_i < l, 0 \leq r_i < l, 0 \leq m_i < l \} \).

3. Basic construction and main results

Let \(G \) be the connected complex Lie group with Lie algebra \(g \) and trivial center. Let \(T \) be the maximal torus of \(G \) corresponding to the Cartan subalgebra \(b \) of \(g \), \(U_- \) and \(U_+ \) the maximal unipotent subgroups of \(G \) corresponding to \(Q^- \) and \(Q^+ \) respectively, \(B_- = TU_- \) and \(B_+ = TU_+ \) Borel subgroups.

In this section we will recall the correspondence between the equivalence classes of the irreducible finite-dimensional representations of the quantized enveloping algebra \(\mathcal{U}_\varepsilon(g) \) and the conjugacy classes of the group \(G \), and we will collect the main results concerning this correspondence.

3.1. Definition 3.1

If \(A \) is an associative algebra by \(\text{Spec} A \) we denote the set of the equivalence classes of the irreducible, finite dimensional representations of \(A \).
Remark. Using Schur's lemma one can consider the canonical map

\[X: \text{Spec } \mathcal{U}_e \to \text{Spec } Z_e, \]

\[\sigma \mapsto \lambda_\sigma, \]

where \(\sigma \) is an irreducible representation of \(\mathcal{U}_e \) on a vector space \(V \) such that

\[\sigma(z)(v) = \lambda_\sigma(z)v \quad \forall z \in Z_e, \forall v \in V. \]

Proposition 3.2 [4].

1) The map \(X: \text{Spec } \mathcal{U}_e \to \text{Spec } Z_e \) is surjective;

2) the points of \(\text{Spec } Z_e \) parametrize the semisimple \(l^N \)-dimensional representations of \(\mathcal{U}_e \);

3) if \(\lambda \in \text{Spec } Z_e \), \(X^{-1}(\lambda) \) is the set of the irreducible components of the representation parametrized by \(\lambda \).

Corollary 3.3. Any finite dimensional irreducible \(\mathcal{U}_e \)-module has dimension less than or equal to \(l^N \).

Consider now the following sequence of canonical maps [3]:

\[\varphi: \text{Spec } \mathcal{U}_e \to \text{Spec } Z_e \to Z_0 \to G. \]

Here \(\tau \) is induced by the inclusion \(Z_0 \subset Z_e \); it is finite with fibers of order less than or equal to \(l^n \) which are completely described in [1, 2]. The map \(\tau \) is constructed as follows: define

\[\pi^-: \text{Spec } Z_0^- \to U_- \quad \text{and} \quad \pi^+: \text{Spec } Z_0^+ \to U_+ \]

respectively by the elements \(\exp(y_{\beta_n}f_{\beta_n}) \cdots \exp(y_{\beta_1}f_{\beta_1}) \) of \(U_-(Z_0^-) \) and

\[\exp(T_0(y_{\beta_n})T_0(f_{\beta_n}) \cdots \exp(T_0(y_{\beta_1})T_0(f_{\beta_1})) \) of \(U_+(Z_0^+) \), where \(T_0 = T_i \cdots T_{i_n}, y_\alpha = (e^{1/2(a,a)} - e^{-1/2(a,a)})\beta_\alpha \) (\(\alpha \in Q_+ \)), and \(f_\alpha \) are root vectors in \(g \) defined by formulas analogous to (2.6), through the action of \(B_{\omega} \) on \(g \) introduced by Tits [11]:

\[T_i = (\exp ad f_i)(\exp ad e_i)(\exp ad f_i). \]

We shall identify \(\text{Spec } Z_0^0 \) with \(T \) through the isomorphism \(R \to lR \) given by multiplication by \(l \). Now consider the map

\[\pi: \text{Spec } Z_0 = \text{Spec } Z_0^- \times T \times \text{Spec } Z_0^+ \to G, \]

\[\pi(a, t, b) = \pi^-(a) t^2 \pi^+(b); \]

the image of \(\pi \) is the big cell \((U_-TU_+) \) of the group \(G \).

Theorem 3.4 [3]. There exists a canonical infinite dimensional group \(\tilde{G} \) of automorphisms of \(\mathcal{U}_e \) such that:

a) \(\tilde{G} \) stabilizes \(Z_0 \) and therefore acts on \(\text{Spec } Z_0 \):

\[(\tilde{g}\lambda)(z) = \lambda(\tilde{g}^{-1}z), \quad \lambda \in \text{Spec } Z_0, \quad z \in Z_0, \quad \tilde{g} \in \tilde{G}; \]

b) \(X \) is an equivariant map with respect to the \(\tilde{G} \)-action;

c) the set \(F \) of fixed points of \(\tilde{G} \) in \(\text{Spec } Z_0 \) is \((\pi)^{-1}(1) \);
d) if \(\mathcal{O} \) is the conjugacy class of a non central element of \(G \) then \(\pi^{-1}(\mathcal{O}) \) is a single \(\bar{G} \)-orbit and \((\text{Spec} \, \mathcal{O}_0) - \mathcal{F} \) is a union of these \(\bar{G} \)-orbits.

The above theorem allows us to parametrize the equivalence classes of the irreducible \(\mathcal{U}_q(g) \)-modules by the conjugacy classes of the group \(G \). The following conjecture states the existence of a linking between the geometry of these conjugacy classes and the structure of the corresponding representations in a more precise sense:

Conjecture [3]. If \(\sigma \in \text{Spec} \, \mathcal{U}_e \) is an irreducible representation of \(\mathcal{U}_e \) on a vector space \(V \) such that \(\varphi(\sigma) \) belongs to a conjugacy class \(\mathcal{O} \) in \(G \) then \(\dim V \) is divisible by \(\frac{1}{2} \dim \mathcal{O} / 2 \).

We recall that each conjugacy class in \(G \) has got even dimension less than or equal to \(2N \). The above conjecture was proved in [4] in the maximal case:

Theorem 3.5. Any representation \(\sigma \in \text{Spec} \, \mathcal{U}_e \) such that \(\varphi(\sigma) \) lies in a regular conjugacy class of \(G \) has maximal dimension \((= l^N) \).

From now on we consider the quantized enveloping algebra \(\mathcal{U}_q(g) \) associated to \(g = \mathfrak{sl}(n) \). Then \(\mathfrak{W} = S_n \) and \(G = SL(n) \). We will denote the Borel subgroups of \(G \) of upper and lower triangular matrices by \(B_+ \) and \(B_- \) respectively, while \(U_+ \) and \(U_- \) will be the corresponding unipotent subgroups and \(T \) the maximal torus of diagonal matrices.

Definition 3.6. We say that \(\sigma \in \mathcal{U}_e \) is unipotent if \(\varphi(\sigma) \) is a unipotent element in \(SL(n) \).

Take a non unipotent element \(\sigma \) in \(\text{Spec} \, \mathcal{U}_e \) and write \(m = \varphi(\sigma) = m_s m_u \) where \(m_s \) and \(m_u \) are the semisimple and unipotent part of \(m \) respectively \((m_s \neq 1) \). Define \(T' = \text{center} (\text{centralizer}_G(m_s)) \) and put \(b' = \text{Lie} (T') \). Then \(b' \) will be a proper subalgebra of the Cartan subalgebra \(b \) of \(g \). Let \(Q' = \{ \alpha \in Q | \alpha \text{ vanishes on } b' \} \), then \(Q' = Z A' \cap Q \) where \(Z A' \) is a sublattice of \(R \) spanned by a proper subset \(A' \) of \(A \). We shall denote by \(g' \) the Lie algebra whose Chevalley generators are those of \(g \) corresponding to \(\alpha_i \in A' \) and by \(' \mathcal{U} \) the subalgebra of \(\mathcal{U}_e \) generated by \(E_i, F_i \) with \(\alpha_i \in A' \) and \(K_j \) with \(j = 1, \ldots, n \). Put \(' \mathcal{U} = ' \mathcal{U} \uplus ' \mathcal{U}^+ \) where \(' \mathcal{U}^+ \) is the subalgebra of \(\mathcal{U}_e \) generated by \(E_i, K_i \) for \(i = 1, \ldots, n \). Then the following theorem holds:

Theorem 3.7 [2]. If \(\sigma \in \text{Spec} \, \mathcal{U}_e \) is a non unipotent representation of \(\mathfrak{sl}_e(n) \) on a vector space \(V \) there exists a unique irreducible \(\mathcal{U}_e(g') \)-module \(V' \) such that:

1) \(V' \) is an irreducible \(' \mathcal{U} \)-module;
2) \(V = \mathfrak{sl}_e(n) \otimes_{' \mathcal{U}} V' \); in particular \(\dim V = l' \dim V' \) where \(2t = |Q/Q'| \).

The above theorem reduces the study of the irreducible representations of \(\mathfrak{sl}_e(n) \) to the study of its unipotent representations, since it states, in particular, that any \(\mathfrak{sl}_e(n) \)-module which is not unipotent is induced by a \(\mathfrak{sl}_e(r) \)-unipotent module, with \(r < n \).
We recall that the number of conjugacy classes of the unipotent elements in $SL(n)$ is finite and that each class is parametrized by the Jordan decomposition of its elements, i.e. by a partition of n. Moreover the following theorem holds:

Theorem 3.8 [7]. Let \mathcal{O} be a conjugacy class in $SL(n)$ parametrized by the partition (h_i) of n. Then $\dim \mathcal{O} = n^2 - \sum h_i$, where (h_i) is the dual partition.

4. $U_e(sl(3))$: the subregular case

In this section we will consider the case $g = sl(3)$ and study the subregular representations of the quantum group $U_e(sl(3))$ i.e. the irreducible representations which lie over the conjugacy class \mathcal{O}, parametrized by

$$
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix},
$$

through the correspondence (3.7). According to what stated in 3 this completes the proof of the recalled conjecture in the case of $sl_e(3)$. Indeed there are 3 conjugacy classes of unipotent elements in $SL(3)$:

$$
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}.
$$

In the first case ($\dim \mathcal{O} = 0$) the conjecture is empty and in the last case (the maximal case) it is proved by Theorem 3.5.

Let us fix a reduced expression for w_0, say $w_0 = s_2 s_1 s_2$. Then the following relations can be proved by induction on r:

$$
E_1 F_{12} = F_{12} E_1 - \left(\sum_{k=0}^{r-1} \varepsilon^{2k} \right) F_{12}^{-1} F_2 K_1^{-1} ;
$$

(4.8)

$$
E_2 F_{12} = F_{12} E_2 + \varepsilon \left(\sum_{k=0}^{r-1} \varepsilon^{-2k} \right) F_{12}^{-1} F_1 K_2.
$$

(4.9)

We recall that, with our choice of the reduced expression of w_0,

$$
F_1 F_{12} = \varepsilon^{-1} F_{12} F_1, \quad F_2 F_{12} = \varepsilon F_{12} F_2.
$$

Let us choose the representative element

$$
m = \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}
$$

of the class \mathcal{O}, then, using the definition of q, one sees that any representation in $q^{-1}(m)$ is such that $E_1^l = E_{12}^l = E_2^l = 0, K_1^l = K_2^l = 1, F_1^l = 0, F_2^l = 1 = F_{12}^l$, where the elements of $sl_e(3)$ are identified with their images through the representation.

According to [1], we consider the irreducible $(j + 1)$-dimensional representation V ($0 \leq j \leq l - 1$) of $sl_e(2)$ with a basis consisting of the vectors $v, F_2 v, \ldots, F_{12}^j v$, where v
is a non zero vector such that \(E_2 v = 0, K_2 v = e^i v, F_2^{i+1} v = 0 \). Let \(\tilde{U} \) be the subalgebra of \(\mathcal{U}_q \) with generators \(E_2, F_2, K_2, E_1, K_1, F_1^i, F_1^{12} \) and define an action of \(\tilde{U} \) on \(V \) by the relations:

\[
F_1^i = 1, \quad F_1^{12} = 1, \quad E_1 V = 0, \quad K_1 F_1^i v = e^i F_1^i v \quad \forall r = 0, \ldots, j
\]

where \(i \) is a fixed integer such that \(0 \leq i \leq l - 1 \). \(V \) is then a left \(\tilde{U} \)-module, and we can consider the induced representation \(\text{Ind}(V) := \text{sl}_q(3) \otimes \tilde{U} \).

Definition 4.1. We say that the above defined representation \(\text{Ind}(V) \) is a representation of type \((i, j)\) of \(\text{sl}_q(3) \).

Remark. A representation of type \((i, j)\) has dimension \((j + 1)l^2\). Indeed, by definition, a basis of \(\text{Ind}(V) \) consists of the vectors

\[
\{ F_1^i F_1^{12} F_2^s v : 0 \leq r, t \leq l - 1, 0 \leq s \leq j \}.
\]

Lemma 4.2. Given \(x \in \text{Ind}(V) \), \(x = \sum a_k F_1^r F_1^{12} F_2^s v \), the following relations hold:

\[
E_1(x) = -\sum_{k=1}^n a_k e^{-sk-i} \frac{1-e^{2sk}}{1-e^2} F_1^r F_1^{12} F_2^s v + \sum_{k=1}^n a_k \frac{(1-e^{2sk})(e^{2-2sk-t_s+s_k+i}-e^{sk-s_k-i})}{(e-e^{-1})(1-e^2)} F_1^r F_1^{12} F_2^s v;
\]

\[
E_2(x) = \sum_{k=1}^n a_k \frac{(e^{j+2}-e^{-j+2sk})(1-e^{-2sk})}{(e^2-1)(e-e^{-1})} F_1^r F_1^{12} F_2^{s+1} v + \sum_{k=1}^n a_k \frac{1-e^{2sk}}{1-e^2} e^{2-2sk+j} F_1^r F_1^{12} F_2^{s+1} v.
\]

Proof. By using relation (4.8) we have:

\[
E_1(x) = E_1 \left(\sum_{k=1}^n a_k F_1^r F_1^{12} F_2^s v \right) = \sum_{k=1}^n a_k E_1 F_1^r F_1^{12} F_2^s v =
\]

\[
= \sum_{k=1}^n a_k \left(F_1^r E_1 + F_1^{r-1} \left(\sum_{s=0}^{r_k-1} e^{-2s} \right) K_1 - \sum_{s=0}^{r_k-1} e^{2s} \right) K_1^{-1} F_1^{12} F_2^s v =
\]

\[
= \sum_{k=1}^n a_k F_1^r E_1 F_1^{12} F_2^s v + \sum_{k=1}^n a_k F_1^{r-1} \left(1-e^{-2sk} \right) \left(1-e^{-2} \right) e^{-t_s+s_k+i} - \left(1-e^{2sk} \right) \left(1-e^{-2} \right) e^{t_s-s_k-i} \frac{e-e^{-1}}{e-e^{-1}}.
\]

\[
\cdot F_1^{12} F_2^s v = \sum_{k=1}^n a_k F_1^r \left(- \sum_{m=0}^{t_s-1} e^{2m} \right) F_1^{12-1} F_2 K_1^{-1} F_2^s v +
\]

\[
+ \sum_{k=1}^n a_k \frac{1-e^{2sk}}{1-e^2} e^{2-2sk-t_s+s_k+i} - \left(1-e^{2sk} \right) \left(1-e^{-2} \right) e^{t_s-s_k-i} \frac{e-e^{-1}}{e-e^{-1}}.
\]
\[F_{1}^{-1} F_{12} F_{2}^{-1} v = - \sum_{k=1}^{n} a_{k} \frac{1 - e^{2\lambda_{k}}}{1 - e^{2}} F_{1}^{-1} F_{12}^{k} F_{2}^{-1}^{k+1} v + \]
\[+ \sum_{k=1}^{n} a_{k} \frac{(1 - e^{2\lambda_{k}})(e^{2 - 2\lambda_{k} - i_{k} + s_{k} + i - e^{i_{k} - s_{k} - i})}{(e - e^{-1})(1 - e^{2})} F_{1}^{-1} F_{12}^{k} F_{2}^{k} v. \]

We compute \(E_{2}(x) \) in a similar way.

Given a \(sl_{3}(\mathbb{C}) \)-module \(V \), we shall say that \(x \in V \) is a weight vector if it is a common eigenvector for the \(K_{i}'s \) for \(i = 1, 2 \).

Lemma 4.3. Each weight vector \(x \) in \(\text{Ind}(V) \) such that \(E_{2}(x) = 0 \) has the form

\[x = \sum_{k=1}^{t+1} a_{k} F_{1}^{r} F_{12}^{k} F_{2}^{k} v. \]

with \(t, r \in \mathbb{N}, 0 \leq t \leq j, 0 \leq r \leq l - 1 \) and \(a_{k} \in \mathbb{C} - \{0\} \).

Proof. Let us take \(x \in \text{Ind}(V) \), then we can write \(x \) as a linear combination of the vectors in the basis (4.10): \(x = \sum_{k=1}^{n} a_{k} F_{1}^{r} F_{12}^{k} F_{2}^{k} v \).

If \(n = 1 \), relation (4.12) shows that \(E_{2}(x) = 0 \) if and only if \(s_{1} = t_{1} = 0 \). In this case \(x = F_{1}^{t_{1}} v \) spans the representation \(\text{Ind}(V) \) since \(F_{1} \) is invertible.

Suppose now \(n > 1 \). We rewrite (4.12) in the following way:

\[E_{2}(x) = A + B = \sum_{k=1}^{n} \alpha_{k} A_{k} + \sum_{k=1}^{n} \beta_{k} B_{k} \]

with \(A_{k} = F_{1}^{r_{k}} F_{12}^{k} F_{2}^{k} v, B_{k} = F_{1}^{r_{k} + 1} F_{12}^{k} F_{2}^{k} v \); the vectors \(A_{k} \) are then linearly independent as well as the vectors \(B_{k} \), moreover \(A_{k} \neq B_{k} \) for the same \(k \). Now, if \(B_{k_{1}} = A_{k_{2}} \) for some \(k_{1} \neq k_{2} \), this means that

\[\begin{cases} r_{k_{2}} = r_{k_{1}} + 1 \\ t_{k_{2}} = t_{k_{1}} - 1 \\ s_{k_{2}} = s_{k_{1}} + 1 \end{cases} \]

so that \(A_{k_{1}} \neq B_{k_{2}} \). In the same way, by induction, we get that if \(B_{k_{1}} = A_{k_{2}}, B_{k_{2}} = = A_{k_{1}}, \ldots, B_{k_{n-1}} = A_{k_{n}}, \) then \(k_{1}, \ldots, k_{n} \) must be different from each other and \(A_{k_{1}} \) is different from \(B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{n}} \). Therefore, \(E_{2}(x) = 0 \) if and only if there exists an ordering \(k_{1}, \ldots, k_{n} \) of the indeces such that

\[\begin{cases} B_{k_{1}} = A_{k_{2}} \\ B_{k_{2}} = A_{k_{3}} \\ \vdots \\ B_{k_{n-1}} = A_{k_{n}} \end{cases} \]
and \(\alpha_{k_1} = 0, \beta_{k_n} = 0 \) i.e. \(s_{k_1} = 0, t_{k_n} = 0 \). Notice that system (4.15) is equivalent to the following:

\[
\begin{cases}
\alpha_{k_2} + \beta_{k_1} = 0 \\
\alpha_{k_1} + \beta_{k_2} = 0 \\
\vdots \\
\alpha_{k_n} + \beta_{k_{n-1}} = 0
\end{cases}
\]

and \(\alpha_{k_1} = 0, \beta_{k_n} = 0 \) i.e. \(s_{k_1} = 0, t_{k_n} = 0 \). Notice that system (4.15) is equivalent to the following:

\[
\begin{cases}
r_{k_2} = r_{k_1} + h - 1 \\
t_{k_n} = t_{k_1} - b + 1 \\
s_{k_2} = b - 1
\end{cases}
\]

with \(2 \leq b \leq n \). Particularly \(t_{k_1} = t_{k_1} + n - 1 = n - 1 = s_{k_2} \), so that: \(1 \leq t_{k_1} = n - 1 \leq \leq j \). Now we can write the relation \(\alpha_{k_2} + \beta_{k_1} = 0 \) explicitly:

\[
a_{k_2} \frac{(e^{j+2} - e^{-j+2t_{k_2}})(1 - e^{-2t_{k_2}})}{(e^2 - 1)(e - e^{-1})} + a_{k_2} \frac{1 - e^{2t_{k_2}}}{1 - e^2} e^{-t_{k_2} - 2t_{k_2} - j} = 0.
\]

We point out that, as in our hypothesis the coefficients of the previous equation are different from zero when \(2 \leq b \leq n \), system (4.16) has got a solution \((a_{k_1}, \ldots, a_{k_n})\) with \(a_{k} \neq 0 \) for each \(j = 1, \ldots, n \), uniquely determined up to a scalar factor. Finally, if \(a_{k_j} = 0 \) for one \(j \) then \(x \equiv 0 \).

Remark. If \(t = 0 \) in (4.13) \(E_1(x) = 0 \) if and only if \(r = 0 \) or \(r = i + 1 \). These are the only cases in which a vector \(F_1^1 F_1^i F_2^j v \) is annihilated by both \(E_1 \) and \(E_2 \). Notice that, since \(F_1^1 = 1 \), the set \(\{ F_1^1 F_1^i F_2^j (F_1^{i+1} v): 0 \leq r, t \leq l - 1, 0 \leq s \leq j \} \) is a basis of \(\text{Ind}(V) \).

From now on we will suppose \(t > 0 \) in (4.13).

Proposition 4.4. Let \(x \) be of type (4.13), \(x \neq 0 \), such that \(E_1(x) = E_2(x) = 0 \). Then

\[
2 + i + j - t \equiv 0(\text{mod } l).
\]

Proof. Take \(x = \sum_{k=1}^{t+1} a_k F_1^{r+k-1} F_1^{i-k+1} F_2^{k-1} v \) as in Lemma 4.3. Then

\[
E_1(x) = - \sum_{k=1}^{t+1} a_k e^{-k+1-i} \frac{1 - e^{2(t-k-1)}}{1 - e^2} F_1^{r+k-1} F_1^{i-k+1} F_2^k v + \\
+ \sum_{k=1}^{t+1} a_k \frac{(1 - e^{2(r+k-1)}) (e^{2r-t+i} - e^{t-2k+1})}{(e - e^{-1})(1 - e^2)} F_1^{r+k-2} F_1^{i-k+1} F_2^{k-1} v.
\]

Since the first summand does not contain the vector \(F_1^{i-1} F_1^i v \), if \(E_1(x) = 0 \), we must have:

(A) \(r = 0 \)

or

(B) \(1 - r - t + i \equiv 0(\text{mod } l) \).
Now, as
$$E_2(x) = \sum_{k=1}^{t+1} \frac{a_k}{(e^2 - 1)(e - e^{-1})} \left(e^{i+2} - e^{-j+2k-2} \right) (1 - e^{-2k+2}) F_{12}^{-k+1} F_{2}^{-2k+2} v +$$
$$+ \sum_{k=1}^{t+1} a_k \frac{1 - e^{2(t-k+1)}}{1 - e^2} \left(e^{3-j-k+j} F_{12}^{-k} F_{2}^{-k-1} v ,
$$
$$E_1(x) = E_2(x) = 0 \text{ if and only if the following system has got a non trivial solution for each } k = 2, \ldots, t+1:
$$
$$\begin{cases}
\frac{(e^{i+2} - e^{-j+2k-2})(1 - e^{-2k+2})}{(e^2 - 1)(e - e^{-1})} + a_{k-1} e^{4-t-k+j} \frac{1 - e^{2(t-k+2)}}{1 - e^2} = 0,
\frac{(1 - e^{2(r+k-1)})(e^{2-2r-t+i} - e^{t-2k+2-i})}{(e - e^{-1})(1 - e^2)} - a_{k-1} e^{-k+2-i} \frac{1 - e^{2(t-k+2)}}{1 - e^2} = 0.
\end{cases}
$$
Particularly, for $k = 2$ this is equivalent to require that
$$(e^{i+2} - e^{-j+2})(1 - e^{-2}) - e^{2-i+j-i}(1 - e^{2r+2})(e^{-2r+i-t+2} - e^{-i+t+2}) = 0.$$ We distinguish the following two different cases:

(A): $r = 0 \Rightarrow$
$$0 = (e^{i} - e^{-j})(e^2 - 1) - e^{2-t+i+j}(1 - e^2)(e^{i+2-t} - e^{-i+t+2}) =$$
$$= (e^2 - 1)(e^i - e^{-j} + e^{4-2t+2i+j} - e^i) \iff \iff e^{4-2t+2i+j} = e^{-j} \iff 2 - t + i + j \equiv 0 \text{ (mod } l),$$

(B): $1 - r + i - t \equiv 0 \text{ (mod } l) \Rightarrow$
$$0 = (e^{i} - e^{-j})(e^2 - 1) - e^{2-t+i+j}(1 - e^{2r+2})(e^{1-r} - e^{-r-1}) =$$
$$= (e^2 - 1)(e^i - e^{-j})(e^2 - 1) - e^{1+j}(1 - e^{2r+2})(e - e^{-1}) =$$
$$= (e^2 - 1)(e^i - e^{-j} - e^{2r+2+j}) \iff e^{2r+2+j} = e^{-j} \iff r + 1 + j \equiv 0.$$ The above relation, together with (B), is equivalent to (4.18).

Definition 4.5. We say that a sl_3(3)-module is nice if it is of type (i,j) with $2 + i + j \equiv l$ or $i = l - 1$.

Proposition 4.6. A nice representation is irreducible.

Proof. Let us consider a representation of type (i,j) generated by a vector $v \neq 0$. Proposition 4.4 shows that if
$$2 + i + j \equiv t \text{ (mod } l)$$
for any t such that $1 \leq t \leq j$, the representation $\text{Ind}(V)$ contains no weight vector $x \neq \alpha v, \beta F_{12}^{i+1} v$, with $\alpha, \beta \in \mathbb{C}$, such that $E_1(x) = 0 = E_2(x)$. Now, since $E_1^l = E_{12}^l = E_2^l = 0$, the algebra generated by E_1, E_2 is nilpotent, therefore if $W \subset \text{Ind}(V)$ is a subrepresentation of $\text{Ind}(V)$, there exists a weight vector $w \in W$ such that $E_1(w) = 0 = E_2(w)$. This forces w to be a multiple scalar of v or of $F_{12}^{i+1} v$ and therefore $W = \text{Ind}(V)$.

N. CANTARINI

210
Finally it is easy to verify that $2 + i + j \neq t$ for any t such that $1 \leq t \leq j$ if and only if $2 + i + j \leq l$ or $i = l - 1$.

Proposition 4.7. If V is a $\mathfrak{sl}_q(3)$-module of type (i, j) and is not nice there exists a nice submodule W of V such that the quotient V/W is a nice representation.

Proof. Let V be a representation of $\mathfrak{sl}_q(3)$ of type (i, j) with $2 + i + j \geq l + 1$, $i \neq l - 1$. Take $\bar{x} = F_2^{l-i-j-1}F_1^{i+1}v$, then \bar{x} is a weight vector killed by both E_1 and E_2 which spans a proper subrepresentation Φ of V, with basis $\{F_iF_i'F_2^r\bar{x}: 0 \leq r, t \leq l - 1, 0 \leq s \leq l - i - 2\}$. Φ is irreducible, indeed it is the representation of type $([l - j - 2], l - i - 2)$, generated by $F_1^{i+1}\bar{x}$, which can be easily seen to be nice. (By $[l - j - 2]$ we mean the integer $k \in [0, l - 1]$ such that $k \equiv l - j - 2 \pmod{l}$). Finally the quotient V/Φ is the representation of type $(l - i - 2, i + j + 1 - l)$ generated by $F_1^{i+1}v$ and this is nice too.

Theorem 4.8. Every subregular representation of $U_q(\mathfrak{sl}(3))$ is a nice representation.

Proof. Let us take a subregular representation W of $\mathfrak{u}_q(\mathfrak{sl}(3))$. As the algebra generated by E_1 and E_2 is nilpotent, the set

\[B := \{ w \in W: E_1(w) = 0 = E_2(w) \} \]

is nontrivial; moreover K_1 and K_2 act diagonally on B. Take then $u \in B \setminus \{0\}$ such that $K_1u = e^u u$, $K_2u = e^u u$: u spans W since W is irreducible. Consider the subspace V of W generated by the set $\{F_2^r u: 0 \leq r \leq l - 1\}$; V is stable under the action of F_2, E_2, K_1, K_2. In particular V defines a representation of the subalgebra $\tilde{\mathfrak{u}}$ of $\mathfrak{u}_q(\mathfrak{sl}(3))$ generated by E_2, F_2, K_2, K_1. Let V' be an irreducible $\tilde{\mathfrak{u}}$-submodule of V. V' is then an irreducible representation of $\mathfrak{sl}_q(2)$, since $K_2^2K_1$ is central in $\tilde{\mathfrak{u}}$. We then see that V' is stable under K_1 as $K_1 = \lambda K_2^{j-1}/2$ with $\lambda \in \mathbb{C}$.

Define $\text{Ind}(V')$ as the representation induced by V' on $\mathfrak{sl}_q(3)$ in the natural way. Then W is a quotient of $\text{Ind}(V')$ since the set $\{F_iF_i'F_2^r\tilde{v}: \tilde{v} \in V', 0 \leq r, t \leq l - 1\}$ is stable under the action of E_2, F_2, K_j for any $a \in \mathbb{Q}^+$, $j = 1, 2$. Now, if $\text{Ind}(V')$ is nice, $W = \text{Ind}(V')$. Otherwise, by Proposition 4.7, $\text{Ind}(V')$ contains a proper nice subrepresentation Φ such that $\text{Ind}(V')/\Phi$ is nice. Write $W = \text{Ind}(V')/T$ where T is a subrepresentation of $\text{Ind}(V')$. Then, if $T \cap \Phi \neq \{0\}$, $T \supset \Phi$ so that $W = \text{Ind}(V')/T \subset \text{Ind}(V')/\Phi$, but since $\text{Ind}(V')/\Phi$ is irreducible, $W = \text{Ind}(V')/\Phi$.

On the contrary, if $T \cap \Phi = \{0\}$ then $W = \Phi$ so that $W = \Phi$.

Corollary 4.9. The dimension of any subregular representation of $U_q(\mathfrak{sl}(3))$ is divisible by l^2.

Acknowledgements

I would like to express my gratitude to Professor Corrado De Concini for the patient interest with which he followed this paper.
REFERENCES

