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Some results on elliptic and parabolic equations 
in Hilbert spaces 

Memoria (*) di GIUSEPPE DA PRATO 

ABSTRACT. — We consider elliptic and parabolic equations with infinitely many variables. We prove 
some results of existence, uniqueness and regularity of solutions. 

KEY WORDS: Elliptic and parabolic equations in Hilbert spaces; Ornstein-Uhlenbeck semigroup; 
Schauder estimates. 

RIASSUNTO. — Equazioni ellittiche e paraboliche negli spazi di Hilbert. In questo lavoro si considerano 
equazioni ellittiche e paraboliche con un numero finito di variabili. Si provano risultati di esistenza, unicità 
e regolarità delle soluzioni. 

1. INTRODUCTION 

Let H be a separable Hilbert space (norm | • | , inner product ( •, • )). We denote by 
£{H) the Banach algebra (norm || • ||) of all linear bounded operators from H into H, by 
£i(H) (norm H ' H ^ H ) ) the s e t of all trace-class operators and by £2(H) (norm 
II * ll«e2(H)) t n e s e t of all Hilbert-Schmidt operators in H. 

We are given a linear closed operatore: D(A) cH<-»H and a symmetric bounded 
operator Q e £(H). We assume 

HYPOTHESIS 1.1. (/') A is the infinitesimal generator of an analytic semigroup etA in H, 
such that 

(l.i) lkMNi> fzo. 
(ii) There exists v > 0 such that 

(1.2) (lfv)I^Q^vI. 

(Hi) For any t > 0, etA e £2 (H) and 
t 

(1.3) hr[esAQesA*]ds< + oo . 
o 

If Hypothesis 1.1 holds then for arbitrary t ^ 0, the linear operator Qt defined 
as 

(1.4) Qtx=^esAQesA*xdt, x e H , 
o 

is well defined and trace-class. 

(*) Presentata nella seduta del 9 marzo 1996. 
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The following result is proved in [8]. 

PROPOSITION 1.1. Under Hypothesis 1.1 one has 

(1.5) esA(H)cQ}/2(H), 0<s**t. 

Moreover setting 

(1.6) At = Qt~
1/2etA, t>0, 

one has 

(1.7) \\At\\^v/\ft\ t>0. 

REMARK 1.2. Since 

we have that Ate £2(H) so that 

(1.8) y(t) :=Tr [AtAf] < + oo , V/> 0 . 

The main object of this paper is the Ornstein-Uhlenbeck transition semigroup Pt, t ^ 0 
defined on Cy (H), the Banach space of all uniformly continuous and bounded map­
pings from H into R, endowed with the norm ||ç?||0 = sup \cp(x) | . We set for 
t>0(1) xeH 

(1.9) PMx)=\<pMX(e*x,Qt)(dy)=lv(e*x+y)9l(0& cpzCh{H). 
H H 

It is useful to note that, setting 

(1.10) • Gtcp(x) = f(p(x+y)3l(0yQt)(dy), cpsCb(H), 
H 

we have 

(1.11) Ptcp{x) = {Gtcp){etAx), cp<=Cb{H)y t&O, xsH. 

Pt, / ^ 0 is not a strongly continuous semigroup on Q (H), however it is weakly contin­
uous, see [4]. In particular we have 

(1.12) lim Ptcp(x) = cp(x), V p e Q ( H ) , V X E H , 

the convergence being uniform on the compact subsets of H. 
In this paper we first study some regularity properties of the semigroup Pt, t ^ 0. 

Then we introduce its infinitesimal generator 9K and characterize the corresponding in­
terpolation spaces. Finally we apply the obtained results to the study of the elliptic 
equation 

(1.13) Aç?- ( l /2)Tr[D2ç>] -(Ax,D<p)=g, xeH, 

(1) For any m e H and any S G £I(H) symmetric nonnegative, we denote by N(m, S) the Gaussian 
measure with mean m and covariance operator S. 
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where X > 0 and g: H*->R is a suitable function, and to the initial value problem 

'du(t, x)/dt = ( 1/2)Tr [D2u(t, x)] + (Ax, Du(t, x)) + F(t, x), 

(1.14) « / e ] 0 , T ] , X E H , 

#(0,x) = q>(x), 

where F: [0, T] X H*->R and Ç9: H »-» lì are given functions fulfilling suitable assump­
tions. We also study problems (1.13) and (1.14) in spaces Cjj {H) of Holder continuos 
functions. In this case we will prove, following [3], Schauder estimates and we will 
characterize, under suitable hypotheses the domain of the infinitesimal generator Dil of 
Pt,t&0. 

Let us introduce our main notation. The following subspaces of Q ( H ) will be 
needed. 

• Cy (H) is the Banach space of all functions cp e Cy (H) which are Fréchet dif-
ferentiable on H, with a bounded uniformly continuous derivative Dcp, with the 
norm 

IMIi = IMIo + Wi, 
where 

[cp\ = sup \Dcp{x)\ . 

If cp E C 1(H) and x e H we shall identify Dcp{x) with the element h of H such 
that 

Dcp(x)y = (h,y), Mye.H. 

• C^ (H) is the Banach space of all functions cp s C/ (H) which are twice Fréchet 
differentiable on H, with a bounded uniformly continuous second derivative D2 cp with 
the norm 

IMI2 = IMIi + W2, 
where 

l>]2 = sup |D2Ç?(*)| . 

licp EiCy{H) and x e H w e shall identify D2 cp(x) with the linear bounded operator 
Te£(H) such that 

Dç?(x)(y,z) = (Ty,z), Vj, z e H . 

• Qf (H), « E N is the Banach space of all functions cp e Q (H) which are n 
times Fréchet differentiable on H, with bounded uniformly continuous derivatives of 
any order less or equal to «, with the norm 

n 

h\\n = IMIo+ 2 tç?V," 

where 

[cp\= sup jï>*ç>(*)| , £ = 1 , . . . , « . 
x e H 
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We set 
oo 

C?(H) = H Q(H). 
n = 1 

• Cy (H), a e]0, 1[, is the Banach space of all a-Hòlder continuous and bound­
ed functions cp E Cb (H) with the norm 

IMIa = libilo + Wa > 
where 

r -. \<pM -<p(y)\ ^ , 
[<p]a = sup _ < + oo . 

ï . j e J i ^ ^ j j ^ 3M 
• Cl + a(H), a e ] 0 , 1[, is the set of all functions (peCl(H) such that 

r n , \D<p(x)-D<p(y)\ 
[D(p]a = sup _ < + oo . 

Q1 + a ( H ) is a Banach space with the norm 

IMIi+« = IMIi + [D<p]a. 

• Q 2 + a (H) , a e ] 0 , 1[, is the set of all functions cpeC£(H) such that 

[Dz<p]a = sup . _ < + oo . 
x,y eH, x & y \X J \ 

C£ + a(H) is a Banach space with the norm 

\\<P\\2 + a = \\<p\\2 + lD2<pla. 

We will also need some notations and results on Interpolation Theory. 
Let first recall the definition of interpolation space, see.[20]. Let X, || • \\x and Y, 

|| • Il y be Banach spaces such that Y c X and 

IbllxMMIr, tyel-
for some constant c > 0. 

Let a e]0, 1], We denote by (X, Y)a> <* the real interpolation space consisting of all 
points x e X such that 

IHI(x, Y)a . = sup / -aK{ty x, X, Y)< + oo , 

where 

K(t9 x, X, 7) = inf{|Wlx + # l l r -x = a + bya eX,b eY} 

(X, Y)a> a, is a Banach space with norm || • ||(x, y)a „ • 
It is easy to see that x belongs to (X, Y)pt x if and only if for any t e [0, 1] there 

exists at e X, bte Y and a constant C > 0 independent of ty such that ||#, ||x ^ Ct& and 
l l ^ l l y ^ C ^ - 1 . 

We also recall the following interpolation result, see [2]: 

PROPOSITION 1.3. For all 0e]O, 1[ we have 

(Q(H),Cl(H))e,»=C?(H). 
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2. REGULARITY PROPERTIES OF Pn t ^ 0 

We first recall a result proved in [8]. 

THEOREM 2.1. For all t > 0 and for all cp e Q (H), Ptcp e Q00 (H). I« particular, for 
any hyk e H, ^^ ##tœ 

(2.1) ( D P ^ ( x ) , Â ) = j ( y l ^ , Ô r 1 / 2 J > ^ ^ + y ) ^ ( 0 , Q , ) W y ) 

and 

(2.2) (D2Pt(p(x)h,k) = 

= J(yl A Qr1 / 23>><^, Q r 1 / 2 ? M ^ * + y) M(0, Q,)(«*y) - (Ath, Atk)PtcpM . 
H 

REMARK 2.2. By (2.1) and (2.2) the following estimates can be proved easily with 
the help of (1.7) 

(2.3) \DPMX)\<*-1/2\\<P\\O, * e H , 

(2.4) \p2PMx)\\^(y/2v2/t)\\q>\\0, xeH. 

We will also need an estimate for the third derivative of Ptcpy that can be proved in a 
similar way 

(2.5) | |D3P,^)||^2V6v3/-3/2 |M|o, XEH. 
By Proposition 1.3 we easily obtain the following corollaries. 

COROLLARY 2.3. For all t > 0, a e ] 0 , 1[, we have 

(2.6) l|DP,?>ll«^0*-«/2|Mlo, 9>eQ(H) . 

COROLLARY 2.4. For #// / > 0, 6 e]0, 1[, a &]8} 1[ we have 

(2.7) M a ^ - V ^ ^ I M L <peQe(H). 

2.1. EXISTENCE OF Tr [D2?,^.*;)] 

We show here that the linear operator D2Ptcp{x) is trace-class for all t > 0 and 
x e H . 

PROPOSITION 2.5. L# ç ? e Q ( H ) , £ > 0 J W x e H . T&w D2Ptcp{x) e ^ ( H ) 

(2.8) Tr[D2P, <?(*)] = 

Moreover the following estimate holds 

(2.9) | |D2P^(x)| |A ( H) ^ 2Tr[AtA*]|Mlo . 
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PROOF. Since At e £2 (H) (see Remark 1.2) it is enough to show that the linear op­
erator SttX defined as 

(St,xh,k)= j{Ath,Qt-
1/2y){Atk,Qr1/2y)<P(e'Ax +y)3Z(Q,Qt)(dy), h,keH, 

H 

is trace-class for any / > 0 and x EH. For this is enough to show, compare N. Dunford 
and J. T. Schwartz [10, Lemma 14 (a), p. 1098], that there exists a constant C > 0 such 
that 

(2.10) | T r [ N ^ J | ^ C | | N | | , 

for any symmetric positive operator N e £(H) of finite rank. To this purpose let {ej} be 
a complete orthonormal system in H. Then we have 

(2.11) Tt[NSt>xl=2 f ( / l ^ - , Q r 1 / 2 y > ^ , N * ^ , Q / -
1 / 2 ) ' > -

J = 1H 

'<p(etAx+y)Sfl(0, Qt)(dy) = j \Nll2Af Qr1/2y\2<p(etAx + y)3Z(0, Qt)(dy). 
H 

It follows, 

(2.12) |Tr[N5,,x]| < \\q>lTr[AtAtN] $ |MUM|TrMMJ • 
So (2.10) is fulfilled and we have proved that D2Piç>(x) is trace-class for any/ > 0 and 
xeH. Moreover (2.8) and (2.9) follow setting N = 1 respectively in (2.11) and in 
(2.12). • 

REMARK 2.6. We want to describe in next example the behaviour of y(t) = 
= Tr[AtAf ] near t - 0, in order to know whether it is integrable or not. 

Assume that A is a negative self-adjoint operator, that Q = I, and that there exists a 
complete orthonormal system {e/,} in H such that 

Aek = -AkCk, àk Î +oo , 

with 
oo 1 

•2 f < + « . 
k = i ^k 

Then Hypothesis 1.1 is obviously fulfilled and we have 
Qt=(e2tA-l)/(2A). 

It follows 

A, A* = 2Ae2lA /(e2tA - 1), t>Q, 

so that 

(2.13) At = 2 2 Xke-2'^/{\-e-2t^) = (2/t)F(Xk), 

where 

(2.14) F(ê) = &-?7(l--'~2*)> £ > 0 -
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Let Ci > 0, C2 > 0 be such that 

C ^ - 3 ^ F ( £ ) ^ C 2 ^ , ! > 0 . 

So the behaviour of y{t) near 0 is determined by 

For 

whe 

instance 

re a > 0, 

if 

, we have that 

2 e-*». 

Xk = k1 + a 

y(t) behaves at 0 
+ 00 

as 

(l/t) j e-'*1 + adx, 
0 

and so as /~ 1 - 1 / / o t . In particular if X^ = k2 we have y{t) — t~3^2. 

2.2. ADDITIONAL REGULARITY RESULT WHEN cp e Cy (H). 

PROPOSITION 2.7. Let cp E Cy (H), t > 0 and x e H. Then we have 

(2.15) (D2PtcpMh,k)= j(Atk,Qf-
1/2y)(D(p(etAx+y),etAh)Sfl(0,Qt)(dy). 

H 

Moreover D2Ptcp{x) e «Ĵ  (H) and 

(2.16) Tt[D2PMx)l = \(A?çy1/2y,e**Dv(t*x + 
H 

Finally the following estimates hold 

(2.17) \\D2Ptcp(x)\\^(v/^t)\\cp\\ly 

(2.18) |Tr[D2P/Ç>(*)J| ^ {Tr[AtA*l}1/2\\<p\\i. 

PROOF. Let t > 0, x e H. Since 

(DPt(p(x),h) = | ( D ç ) ( ^ x + ^ ) , ^ ^ ) ^ l ( 0 , Q, )(<*?), 
H 

(2.15) follows easily by differentiating (2.1). Moreover (2.16) is an immediate conse­
quence of (2.15), recalling that, by Proposition 2.5, D2Ptcp{x) is trace-class. 

We prove now (2.17). By (2.15), using Holder's estimate, it follows 

\(D2PtcpMh,k)\2 =s IMI? \h\2 = \ \{Atk,Qr1/2y)\2x(0,Qt)(dy) = 
H 

= \\iPfl\b\2\Aìk\2^{l/t)\\<pf1\b\2\k\2, 
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and (2.17) is proved. We prove finally (2.18). We have, using again Holder's 
estimate 

\Tt\D2PtcpM']\2^\W\\elAAtQ;'l2y\23l{(ò,Qt){dy) = 
H 

= IMI? Tr[Ate
tA*etAA? ] = | |çf Tr [AtA* ] . 

The proof is complete. • 

In a similar way we prove the following result. 

PROPOSITION 2.8. Let cp e Cy (H), t > 0 and x e H. Then for all h,kj e H we 
have 

(2.19) &?t<p{m,k,l) = \(Ath,Q7"l2y){Atk,Q.7ll2y)-
H 

•(Dcpie^x + y),elAj)Sl(0>Qt)(dy) - (Ath,Atk){DPt(pM,l). 

Moreover the following estimate holds 

(2.20) | |D3P^(x) | | ^ (\/2 v2/^) 

By interpolation we obtain the following results. 

COROLLARY 2.9. Let 6 e]0, 1[, cp e Cy{H), t > 0 and x eH. Then we have 

(2.2D \\D2ptçM\\^2{l-e)f2v2-dtei2-l\\cp\\dy 

and 

(2.22) | T r [ D 2 ? ^ ( x ) ] | ^2x-°{Tt\AtAnY~mh\i-

COROLLARY 2.10. Let 6 E ] 0 , 1[, cp e C/(H), / > 0 and x s H. Then we have 

(2.23) | |D 2 P ( <p | | a ^2 ( 1 - a - e ) / 2 v 2 + a - e / ( e - a ) / 2 - 1 | M | e . 

REMARK 2.11. Assume that 

Then by (2.22) we have 

|Tr[D2P,<p(x)]| ^2'-eC'-el2r"2 + ie"h\\e. 

Thus |Tr[D2P,ç9(x)]| is integrable near 0 provided 6 > 2 / 3 . 

2.3. KOLMOGOROV EQUATION 

We want to show here that if cp E Cy(H) then for t > 0 the function u(t,x) = 
= Ptcp{x) is a solution to the Kolmogorov equation 

(2.24) ut{t,x) = (l/2.)Tr[D2«(*,*)] + (Ax, Du(t,x))9 t>0, xeD(A). 



SOME RESULTS O N ELLIPTIC AND PARABOLIC EQUATIONS IN HILBERT SPACES 1 8 9 

If Du(t,x)eD(A*) we can write (2.24) as 

(2.25) ut(t,x) = (l/2)Tr[D2u(t>x)] + (x, A* Du(t, x)), t>0,xsH. 

PROPOSITION 2.12. Let cp E.Cy (H), t > 0 and x e D{A). Then u(t, x) = Ptcp{x) is a 
solution to the Kolmogorov equation (2.25). 

PROOF. Let u(t, x) = Pt(p(x), t > 0, x e H. Then the term Tr[D2u(t, x)] is well de­
fined by Proposition 2.5. Moreover also the term (x, A * Du(t, x)) is well defined, since, 
by (2.1) we have 

(2.26). {x,A*Du(t,x)) = l(Qt-
1/2e("2)AAe{t'2iA,Qrl/2y)<p(etAx+y)3l(0,Qt)(dy). 

H 

By (2.26) we have 

(2.27) | (x, A * Du(t, *)> | «S K(t)\\ç\\0 \x\ , 

where 

(2.28) K2(t) = \\Qt-
1/2e^2)AAe^2U\\. 

It remains to show that u(t, x) is differentiable in t and that (2.25) holds. To this aim let 
us introduce the space of all exponential functions 8(H). We denote by 8(H) the linear 
subspace of Cy (H) spanned by all £A, h e H: 

Çh(x)=eï{h>x), xsH. 

Since, as easily checked 

(2.29) PtÇb(x) =****,*>-(i/sKQ/M), xeH> 

then the proposition holds when cp e 8(H). 
Let now {<pn} be a sequence in 8(H) such that 

(/) lim wn(x) = cp(x)y Vx1 e H , 
n —> oo 

(«) libilo ̂  2Mo, 
and set «„ (f, x) = P,ç>„ (x), / ^ 0, x e H. We fix now t > 0. By (2.3)-(2.5) it follows 
that the sequence of functions {un (t, • )} has all derivatives of order less than 3, bound­
ed. This implies that 

lim un (*,•) = u(t, •), in Q2 (H), 

uniformly in t on compact subsets of ]0, + oo [, Moreover by (2.9) it follows that the se­
quence in Cy(H) defined by {Tt[D2un(ty •)]} is bounded, so that 

lim Tr[D2un(t,-)i=Tr[D2u(t,-)l, i n Q ( H ) , 
n —» oo 

uniformly in t on compact subsets of ]0, + oo[. Finally from (2.27) it follows that 

lim (x,A*Du„(t,x)) = (x,A*Du(t,x)), xeH, 

uniformly in / on compact subsets of ]0, + oo [ and in x on bounded subsets of H. This 
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implies that for any x eH 

lim — un(tyx)=—u(t,x), 
«-»00 at at 

for all x eH uniformly in t on compact subsets of ]0, + o°[ and the conclusion 
follows. • 

3. T H E INFINITESIMAL GENERATOR 

We proceed here as in [4], by introducing the Laplace transform of Pt) t ^ 0. For 
any A > 0 we set 

+ 00 

(3.1) F(X)cp(x)= [e-
kPtcpWdt, xeH,cpeCb(H). 

o 
Note that the above integral is convergent for any fixed x eH and not in Q (H) in gen­
eral. In [4] is shown that F(A) maps Cb (H) into itself and that it is one-to-one. So there 
exists a unique closed operator 3\L in Cb(H): 

3IIC:DOli)cCb(H)^Cb(H)9 

such that the resolvent set Q(3HI). of 3HI contains ]0, 4- «>[ and 
+ 00 

(3.2) R(X93M)<p(x) = [ e~kPtcp{x)dty VA > 0. 
o 

Dìl is called the infinitesimal generator of the semigroup Pn t ^ 0. 
Let A > 0, g e Cb (H) and set cp = R(A, 9il)g. Then cp is called a generalized solution 

to the equation 

(3.3) A<p- ( l /2 )Tr [D 2 <p]- ( ,4x ,Dç)>=g. 

It is also useful to introduce the concept of strict solution. To this purpose we have to in­
troduce a suitable restriction 3ïl0 of 3ÎL 

By definition the domain D(3Jl0) of ^ o Is t n e s e t of all functions <p eCb(H) such 
that 

(/') ç? e Cl (H) and D 2 cp{x) e £x (H) for all x e H. 

(ii) Dcp(x) eD(Â*) and the mapping 

H**R, x>-*A*D<p(x), 

belongs to Cb(H). 

Then we define the operator 3il0 by setting 

(3.4) 9K0cp = (l/2)Tr[D2<p] + (xyA*Dcp), VcpeD(31l0). 

REMARK 3.1. In the paper [5], it is proved that the operator 3ÌI is the closure of 3Î£0 

with respect to the ^-convergence. A sequence { f J c Q (H) is said to be ^-conver­
gent to cp eCb (H) if 

(/) sup \\cpn\\0 < + °°. 
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(//) For any compact subset K in H, we have 

lim sup I (p(x) - cpn (x) | = 0 . 
n-*œ x<=K 

From the regularity results of the semigroup Pt, t ^ 0, obtained in the previous sec­
tion, one gets the following regularity results for the resolvent of 3TL 

PROPOSITION 3.2. Let X > 0, g e Cy (H), and set cp = R(l, 3\i)g. Then the following 
statements hold 

(i) cp e Cy (H) and 

(3.5) \D(p(x)\^r(l/2)'X-^2\\g\\0y x e H , 

where F denotes the gamma Euler function. 

(ii) For any a e ] 0 , 1[, we have cp&CyJra(H) and 

(3.6) [D(pla^2^2r((l-a)/2)'X{a-^2\\g\\0> 

(Hi) If geCy (H) for some 6 e]0, 1[, then cp eCy (H), and 

(3.7) \\D2cp(x)\\^2{1-^2r(0/2)X-^2\\g\\0> xeH. 

(iv) If g G Cy (H) for some 6 e]0, 1[, and if in addition y{t)l~ e^2 is integrahle near 
0, then cp eD(9il0) and so it is a strict solution to equation (3.3). 

REMARK 3.3. If 

for some constant C > 0. Then condition (iv) is fulfilled provided g e Cy (H) with 
<9>2/3 , see Remark 2.11. 

3.1. INTERPOLATION SPACES DM(6, oo ) 

The semigroup Pt91 ^ 0 is not strongly continuous in Cy (H), even when H is finite-
dimensional, see [4,7]. The following proposition, proved in [6], gives a characteriza­
tion of the maximal subspace y of Cy(H) where Pn t^Q is strongly continuous. 

PROPOSITION 3.4. Let cpsCy(H). Then the following statements are equivalent 

(i) X\mPtcp = cp in Cy(H). 

(ii) lim cp(etAx) = cp(x) in Cy(H). 

We shall set 

y = {cp G Cy(H): lim (p(etAx) = cp(x) in Q ( H ) } , 

and for any 0e]O, 1[ 

y = {cp eCy(H): 3C > 0, \cp(etAx) - ç>(*)| ^ Q* , Vx e H } . 

We want now to characterize the interpolation spaces (Cy(H),D(DK))e>00 that we shall 
denote by 1)^(0, oo ). We need some preliminary result. 
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PROPOSITION 3.5. Let cpe.Cy{H) and 0e]O, 1[. Then the following statements 
hold. 

(i) If cp e D^idy oo ) then we have 

(3.8) sup Xe \\dilR(X, 3(11) <p\\0 < + oo . 

(it) If cp e Q ( H ) *»</ fulfills (3.8) flfe» <p e D^iO, oo ). 

PROOF. (/) Let cp e D^ (6, oo ). Then by the definition of interpolation space given 
in § 1, for any / E [0, 1] there exist at E Cb (H), '/}, E D(3ìl), such that q> = at + f}t 

and 

lu II < Cfe WWR Il < r > 0 _ 1 

for some C > 0. Now for any X > 0 we have 

3RJR(A, 3TC) ç> = 3K£(A, 3îl)a 1/A + R(A, 311) 3ÎÎ^81/A . 

It follows 

||5R:R(A, a t ) <p||o ^ C\\DKR(X, 3TC)||A ~° + C||R(A, Wl)\\Xl ~ 6^ 3A ~e , 

and the statement is proved. 

(//) Assume that cp fulfills (3.8). Define 

Q = sup xe\\wLR{Xy 5R:)ç?||O, 

and set 

at = -3ILR(( 1//), 3TC)<p-Pt = (l/t)R((l/t), 3fil)cp . 

Then we have at + /?, = cp and 

Ikllo^QA Hftllo /̂1"*, * >o, 
so that cp GDM(09 » ). • 

LEMMA 3.6. Létf 0 e]0, l /2[ , T > 0, ç> E Cyd{H). Then there exists CT > 0 j#cA 
/ t o 

(3.9) | G ^ ( x ) - ? > ( * ) | ^ CT[Tr(Q,)]9[ç.]2f l , ' * e [ 0 , T ] . 

PROOF. We have 

|G,ç>(*) - tp(x)\ € J |ç>(* +y ) - ?»(x)|3C(0, QJ(dPy) < 

^Lfljbl'^lO.QJW^^DeL^etTrlQjr, 

for some constant Dd. 
Now the conclusion follows. • 

LEMMA 3.7. Let 9 e ] l / 2 , 1[, T > 0, ç> e Ce9 (H). Then there exists C l j T > 0 wci 

(3.10) \GM^)-^)\^Cl>T[Tx{Qtm^2e, te[0yTl. 
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PROOF. We have 

Gt<pM ~ <PM = JM* + y) - <p(x)i51(0, Qt)(dy) = 
H 

1 

= IJ(D(p(x + Çy)-D<p(x)9y)3l(0,Qt)(dy)dÇ. 
0 H 

It follows 
1 

|G,ç>(*) - <p(x)\ * [tphejj \y\2BS2e-lX(0, Qt)(dy)dÇ, 
0 H 

and the conclusion follows as in the previous lemma. • 

PROPOSITION 3.8. If cp e 0 ^ ( 0 , oo ), 0e]O, 1[, there exists Cj > 0 such that 

(3.11) \\Pt<p-<p\\o<CTte
9 te[0,T]. 

PROOF. Let ç eD^iO, oo ). Then for any / > 0 there exists at e Ch(H), f}t e D(3K) 
such that q> = at + j3t, 

(3.i2) IKHo^c^, Htfi&Ho^a'-1, 
for some constant C > 0. Since 

Ptcp-cp = (Ptat - *,) + (PA - *,) = (P/*, - *,) + JP,3TC£U)<fr, 
o 

using (3.12), we find that (3.11) holds. • 

We can now prove the result 

THEOREM 3.9. For all 0e]O, l / 2 [ U ] l / 2 , 1[ a*? W 

(3.13) D3R(d>x>)cCie(H)nye. 

PROOF. We only consider the case 0 e]0, l /2[ , since the case 6 e ] l / 2 , 1[ can be 
treated in an analogous way. 

STEP 1. If cp sD^id, oo ) then there exists Cx > 0 such that for all A ^ 1 we 
have 

(3.14) \\XDR{X,yH)cpl^Clk
ll2~e\\cp\\Dx(e^). 

We first note that, since 

4r UR(A, 3TC)] = R(A, 3K) - A(R(A, Ml))2, 
a/, 

we have 
A 

AR(A,^)ç> = R(l,3R:)ç>+ [RU, 3ìl)(l - J R ( J , 3M))<pds = 

= R( 1, STC) ç> + [ R(s, UÏC) DRR(s, 911) cpds . 
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By Proposition 3.2 (/') it follows 
x 

DXXR(X, 9tl)<p = DxR(ly3(1l)<p+ \DX [R(S, DÏC) 3flCR(s, DZ) (pi ds . 
l 

Moreover, taking into account (3.5) and (3.8), we find 

| | R ( A , ^ ) ç ) | | 1 ^ a - 1 / 2 | M | 0 , V A > 0 , 

we get 

x 

||H(A, Micpl ^ C|M|o + cls-1/2-e[<plDgKiet «)ds = 
l 

= C|Mlo + C / ( l / 2 - d)(Xl'2-e- l)[<plDxie, » , , 

for some C > 0. 

STEP 2. Dx(d, oo)cQ2»(H). 

Let x j e H such that |x — ? | $ 1, and let X ^ 1. Then we have by (3.8) and 

(3.14), 

\cp{x) -<p(y)\ =£ \<p(x) - XR(X, 3K)<p(x)\ + \XR(X, M)cp{x) - XR(X, 9K)<p(y)\ + 

+ \XR(X, 3K)<p{y) - <p(y)\ < 2[<p]Dx{eiœ)X-e + \\D(3ïlR(X, 3K)ç>)||o \x-y\^ 

^ licph^e,^-8 + C|Mk<*, o,)U
1/2-6+ D\x-y\. 

Choosing X = |x — 3; I ~2 we have 

M * ) - <piy)\ ̂  2[cp]D3riie> œ) \x-y\2e + C|Mk(*, . ) ( |x - y |2* + I* ~ j \ ) , 

and the conclusion follows easily. 

STEP 3. 0 ^ ( 0 , *>)CYe. 
Let Ç) e D^id, oo ). Then we have 

(3.15) Me / B x) » ç>(*)| ^ \<p(e*x) - Gtcp(etBx)\ + |P,ç>(*) - <p(x)\ . 

Since <p e Cf {H) by (3.9) we find 

(3.16) \<p(e*x)-GMe*x)\^Ctel<pi26, te[0,T\. 

Moreover from (3.11) it follows 

(3.17) | |P , ç? -<Hlo^C T ^ , / e [ 0 , T ] . 

Substituting (3.16) and (3.17) into (3.15) we get finally 

\ç(e*x)-q>(x)\^(C + CT)telq>-\2e, 

and the proof of the theorem is complete. • 

4. MAXIMAL REGULARITY RESULTS FOR ELLIPTIC EQUATIONS 

The following result is proved in [3]. We give a sketch of the proof for the reader 
convenience. 
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PROPOSITION 4.1. Assume that 6 e]0, 1[, g € CyiH), and X > 0. Then the function 
cp = R(A, 3K)g belongs to Q2 + e (H). 

PROOF. The proof is based on a general interpolation argument due to A. Lunardi 
see [16], in particular on the following inclusion result 

(4.1) (Q«(H),Q2 + a(H))1_ (a_, ) /2,QOcQ2 + 0(H), 

for any a E]# , 1[. Consequently, in order to prove the theorem it will be enough to 
show that for some ae]# , 1[, we have 

(4.2) <P€(Q a(H),Cr a(H)) 1_ ( a_ e ) / 2 ) 0 0 . 

To prove (4.2) we set 

ç(x) = a(t,x) + b(ty x), 

where 

a(t,x) = Ìe~hPsg(x)dsy 

o 
and 

+ 00 

b(t,x)= J e'hPsg(x)ds. 
t 

Then from (2.7) it follows that 

U', t)\\a ^ C(a, 6) je~hs~la~e)l2ds\g\\d = 
0 

= C{a>e)tl-(a-e)l2\e'hao'{a-e)l2do\\g\\e^ 9^lH /1"(a"9,/2IUIIf l, 
J "*"" l - ( a - 0 ) / 2 

and from (2.8) that 

\it,(;t)l + a$C(a,d) ) e-hs-^-^-'ds\\g\\e = 
t 

= C{a,d)t-(a~e)l2 [ e-too-^-'M-'doWgWetk 9^1^ t{6-a)l2\\g\\e . 
J OL — 0 

1 

This implies (4.2). • 

By Proposition 4.1 and 3.2 (w) we find the result. 

THEOREM 4.2. Assume that 6 e]0, 1[, g e Cy(H), X > 0, and in addition that 
l 

(4.3) \lTi(AtA;)Y-el2dt< + « . 
o 

T/fe/z, setting ç = R(X, 9Kl)g, the following statements hold. 
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(/) (pt=C£ + e (H) and D2 cp{x) e £x (H) for any xeH. 

(«) Tr[D 2 <p(-) ]eQ(H) . 

(/'//) x —> (x, A* Dcp) G Cy (H). 

Moreover 

(4.4) Xcp{x) - (l/2)Tr[D2<p(x)] - (x,A*D(p) = g(x), 

for ail x e H. 

REMARK 4.3. Let us consider the restriction Pf, t ^ 0 of the semigroup Pt, / ^ 0 to 
C°(H), 6 e]0, 1[. We can still define the infinitesimal generator 3R? of Pn I** 0 to 
Cy (H) by the Laplace, transform setting 

(4.5) R(A,3K*)ç>(*)= f e~kP?cp{x)dt. 
o 

It is easy to check that 3R? is the part of 3ÏC in Cy{H): 

D(3file) = {cpe D(3Z) H C/(H): 3ïl<p e Cg (H)} . 

Theorem 4.2 enable us to characterize, under suitable assumptions, the domain of M6. 
We have 

D » 9 ) = { ^ q ^ ( H ) : 0 ' , D ^ f Q ( H ) } . 

If H is finite-dimensional this characterization of D(91le) was obtained in £71 
Under the hypotheses of Theorem 4.2 we can give the following definition of 

Dim6) 
(4.6) D(9Ke) = {<peCi + e(H):D2(p(x)e£1(H)y W e H , 

Tr [D2 p(x)] e Q (H), (A-, D<p) E Q (H)} . 

5. MAXIMAL REGULARITY RESULTS FOR PARABOLIC EQUATIONS 

We are here concerned with the initial value problem 

'du{t9 x)/dt = ( 1/2) Tr [D2u(t, *)] + (Ax, Du(t, x)) + F(t, x), 

(5.1) < / e ] 0 , T ] , x e H , 

[«(0,x) = <p(x), 

where F e C ( [ 0 , T]; Q ( H ) ) a n d p e C ^ H ) . 
Following S. Cerrai and F. Gozzi [5], we call the function u\ [0, T] X Hi->R de­

fined as 

(5.2) «(*,*) = ?,?>(*) + \Pt^sF{sr){x)ds = ul{t\x) +u2(t,x)y 

o 
the #z//i solution to (5.1). Several properties of the mild solution u are described in the 
quoted paper [5]. Here we will discuss only some new maximal regularity results for ux 

and u2. Concerning ux we have the following proposition. 
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P R O P O S I T I O N 5.1. The following statements are equivalent 

(i) ^ E C 0 ( [ O J ] ; Q ( H ) ) . 

(it) (peD^O, oo). 

P R O O F . (/)=>(//). It is enough to show that 

(5.3) sup ùe\\91iR(91l,ù)(p\\o< +oo . 
X > 0 

In fact, by Proposition 3.5, if (5.3) holds, we have cp e D3K(6Ì oo ), and by Theorem, 3.9 
this implies (it). By hypothesis (/) there exists K > 0 such that 

(5.4) \Pt(pM ~ cp{x) \^Ktd , f e [ 0 , T ] . 

It follows 

+ °° Kr(f) 4-1 ì 
| 3 K R U , 3it)<p(x)| =£KA f e-ktedt^ , 

0 

and (5.3) holds. 

(//)=>(/). Let t > s ^ 0. Then by Proposition 3.8, we have 

\Pt<p(x) ~ Ps<p(*)\ ^ \P,-s<P(x) ~ <P(x)\ < CT \t -s\e, 

and (/) is proved. • 

W e conclude this section, by studying the regularity of u2. 

T H E O R E M 5.2. Let F e C([G, Ti; Q ( H ) ) , and assume that, for some 6 e ] 0 , 1[, we 
have F(t, • ) e C/ (H) tf/zi / t ó 

(5.5) sup | |F(*,-) | |*< + «> • 
/ e [0,71 

TA«i » E C ( [ 0 , T ] ; Q ( H ) ) , *(•/, O e Q 2 + 0 ( H ) **</ 

(5.6) sup h(t>-)\\2 + e< + 0 0 • 
* e [0,T] 

P R O O F . W e fix / > 0. Arguing as in the proof of Proposition 4.1 it is enough to 
prove that 

(5.7) «(/, • ) e (Q (H), CI+ a (H)\ _ (a _ fl)/2> . , 

for some a e ] 0 , 1[. To this purpose we set 
T 

a(t,T,x)= ÏPsu(t-s,-)(x)dsy r e [ 0 , / ] , 
o 

b(t,r,x)= [psu(t-s,-)Wds, r e [ 0 , / ] . 
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Then by (2.7) we have 
T 

ds ^ \a{t, T, - )\\a ^ C(a, 6) sup \\u(s, • )\\e \ — 
*e[0 ,T] J s{a çv~ d)/2 

0 J 

1 - ( a - 6 0 / 2 H [ O J ] 

Moreover by (2.8) we have 

t 

||*(f, T, OlUa ^ C(a, 0) sup \\u(sr)\\e \ , * „ • , ^ 
. e [0,7] TJ j ( a - © ) / 2 + l 

2C(a, 0) 

C{a'$) sup IK^OLr1"^-^2. 

sup | |«U,-) |Ur- ( a - d ) / 2 . 
(a - #) /2 ie[o,r] 

This implies (5.7). • ' 
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