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Some results on elliptic and parabolic equations
in Hilbert spaces

Memoria (*) di GiuseppE Da Prato

AsstrACT. — We consider elliptic and parabolic equations with infinitely many variables. We prove
some results of existence, uniqueness and regularity of solutions.

Key worps: Elliptic and parabolic equations in Hilbert spaces; Ornstein-Uhlenbeck semigroup;
Schauder estimates.

Ruassunto. — Equazioni ellittiche e paraboliche negli spazi di Hilbert. In questo lavoro si considerano
equazioni ellittiche e paraboliche con un numero finito di variabili. Si provano risultati di esistenza, unicita
e regolarita delle soluzioni.

1. INTRODUCTION

Let H be a separable Hilbert space (norm | - |, inner product (-, +)). We denote by
£(H) the Banach algebra (norm || - ||) of all linear bounded operators from H into H, by
£ (H) (norm ||+ ||, ¢n) the set of all trace-class operators and by £,(H) (norm
| *|le,cen) the set of all Hilbert-Schmidt operators in H.

We are given a linear closed operator A: D(A) c H— H and a symmetric bounded
operator Q € £(H). We assume

HypotuEsts 1.1. (7) A s the infinitesimal generator of an analytic semigroup e in H,
such that

(1.1) le#]<1, ¢=0.

(1) There exists v > 0 such that
(1.2) (1/v)IsQ <.

(i7) For any t > 0, et € £,(H) and

t
(1.3) fTr [e Qe 1ds < + o0 .
0
If Hypothesis 1.1 holds then for arbitrary # = 0, the linear operator Q, defined
as
t
(1.4) Q.x = JE‘A Qe"xdt, xeH,
0

is well defined and trace-class.

(*) Presentata nella seduta del 9 marzo 1996.
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The following result is proved in [8].

Prorosrrion 1.1. Under Hypothesis 1.1 one bas

(1.5) eA(H)cQY?*(H), 0<s<t.

Moreover setting

(1.6) A,=Q.; Y%A >0,
one has
(1.7) Al <sv/Ve, >0,

Remark 1.2. Since
A, - Q[ 2eWDA DA 45
we have that A1, e £,(H) so that
(1.8) y()i=Tr[A,AF]< +, V:>0.

The main object of this paper is the Ornstein-Ublenbeck transition semigroup P,, t = 0
defined on C,(H), the Banach space of all uniformly continuous and bounded map-
pings from H into R, endowed with the norm |¢|, = sup|@(x)|. We set for
>0 (1) xeH

(1.9) P,px) = f(p(x) Nex, Q,)dy) = j(p(e’Ax +9)30,Q,)Xdy), @eC,(H).
H H

It is useful to note that, setting

(1.10) L Gplx) = I(p(x +9)3U0,Q,)dy), @eCy(H),
H

we have

(1.11) Pox) = (G,p)e?x), @eCy,(H), t=0, xeH.

P,, t = 0 is not a strongly continuous semigroup on C, (H), however it is weakly contin-
uous, see [4]. In particular we have

(1.12) Iim0 Pox)=9@k), VepeC,(H), VxeH,
t—

the convergence being uniform on the compact subsets of H.

In this paper we first study some regularity properties of the semigroup P,, # = 0.
Then we introduce its infinitesimal generator I and characterize the corresponding in-
terpolation spaces. Finally we apply the obtained results to the study of the elliptic
equation

(1.13) ig - (1/2)Tr[D?@) — {Ax, Dg) =g, xeH,

(*) For any m € H and any S € £, (H) symmetric nonnegative, we denote by N(», §) the Gaussian
measure with mean » and covariance operator S.
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where 4 > 0 and g: H—R is a suitable function, and to the initial value problem
du(t,x)/dt = (1/2) Tr[D?u(t, x)] + (Ax, Du(t, x)) + F(¢,x),

(1.14) tel0, T], xeH
#(0,x) = @(x),

b

where F: [0, T]1 X H— R and ¢: H~ R are given functions fulfilling suitable assump-
tions. We also study problems (1.13) and (1.14) in spaces C¢ (H) of Hélder continuos
functions. In this case we will prove, following [3], Schauder estimates and we will
characterize, under suitable hypotheses the domain of the infinitesimal generator I of
P, t+=0.

Let us introduce our main notation. The following subspaces of C,(H) will be
needed.

® Cj (H) is the Banach space of all functions ¢ € C, (H) which are Fréchet dif-
ferentiable on H, with a bounded uniformly continuous derivative -D¢, with the
norm

el = llello + [0y,
where

[@]; = sup |De(x)]| .
xeH

If p e C}(H) and x € H we shall identify Dg(x) with the element b of H such
that

Dg(x)y =(b,y), VyeH.

® C7(H) is the Banach space of all functions ¢ € C} (H) which are twice Fréchet
differentiable on H, with a bounded uniformly continuous second derivative D? ¢ with
the norm

lolz = llgl + (o1,
where

[pl, = sug |D2g(x)] .

If ¢ € CZ (H) and x € H we shall identify D? g(x) with the linear bounded operator
T e £(H) such that :

Do(x)(y,z) =(Ty,z), Wy, zeH.

® C/(H), n e N is the Banach space of all furicfcions @ € C, (H) which are #
times Fréchet differentiable on H, with bounded uniformly continuous derivatives of
any order less or equal to #, with the norm

el =l + $ 1o,
where

[pl, = sup |Dfepx)|, k=1,..,n.
xeH
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We set

¢ ) = N ).

® C/(H), a €]0, 1[, is the Banach space of all a-Holder continuous and bound-
ed functions @ € C,(H) with the norm

lella = lelo + (@,
where

[0l.= sup |p(x) — @(y)| <t
* x,yeH,x#y |x—J7|a »
® C!/**(H), aelo, 1[, is the set of all functions ¢ € C}(H) such that

D -D
[Dgpl, = sup Do) ZJ(J’)I < 4+ oo,
x,yeH,x#y lx_yl

C;*%(H) is a Banach space with the norm

lelly + o = llglls + (D@1, .
® CZ**(H), ael0, 1[, is the set of all functions ¢ € C?(H) such that

D? — D?
[Dz(p]a= sup H q)(x) a(p(y)” <
xyeH x=y lx = y]
CZ**(H) is a Banach space with the norm

lollz + o = llgl, + (D@1, .
We will also need some notations and results on Interpolation Theory.
Let first recall the definition of interpolation space, see [20]. Let X, ||« ||x and Y,
|- |ly be Banach spaces such that Y c X and

bl < clblly,  VyeY

+ o

for some constant ¢ > 0.
Let a €]0, 1]. We denote by (X, Y),, . the real interpolation space consisting of all
points x € X such that

”x”(xyy)a . sup t'aK(t,x,X, Y) < 4+ ® ,
’ t>0

where
K(t,x,X,Y) = inf{|lally + £|ply: x =a + b,a e X,b e Y}
(X, Y),, » is a Banach space with norm |- ||x Ve o -

It is easy to see that x belongs to (X, Y)4 o if and only if for any # € [0, 1] there
exists 2, € X, b, € Y and a constant C > 0 independent of #, such that ||¢,||x < C¢? and
|6,y < Ce# 1.

We also recall the following interpolation result, see [2]:

Proposition 1.3. For all 0 €10, 1[ we have

(Cy(H), Cy (H))g, » = CJ (H).
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2. ReGuLARrITY PROPERTIES OF P,, £+ = 0

We first recall a result proved in [8].

Tueorem 2.1. For all t > 0 and for all ¢ € C,(H), P, € Cy;° (H). In particular, for
any b,k e H, we have

2.1) (DP,g(x), b) = j(A,b, O V2y) plex + ) (0, Q,)(dy)
H

and

(2.2) (D’P,gx)h, k) =

= [(4b, Q7 V29)(A .k, Q7 /29) plex +9) 30, Q)ldy) = (ALb, AK)Prglx).
H

Remark 2.2. By (2.1) and (2.2) the following estimates can be proved easily with
the help of (1.7)

(2.3) |DP,g(x)| < vt~ ?||g|l,, xeH,

(2.4) ID2P, o)l < (V2v2/t)llglle, xeH.

We will also need an estimate for the third derivative of P, @, that can be proved in a
similar way

(25) ID*PgpC)l< 2V6v’ e~ glly,  xeH.
By Proposition 1.3 we easily obtain the following corollaries.
CoroLLARY 2.3. For all t > 0, a €]0, 1[, we have

(2.6) PP, gll. < ve:=*2llglo, @ e Cy(H).

CoroLLARY 2.4. For all t >0, 0 €]0, 1[, a €16, 1[ we have
(2.7) 1P glle < ve= 00~ 2|lgly, @eCf(H).

2.1. Exastence oF Tr [D?P,¢(x)]

We show here that the linear operator D?P,@(x) is trace-class for all > 0 and
xeH. ,

ProrosiTioN 2.5. Let ¢ e C,(H), t >0 and x e H. Then D?P,qp(x) € £, (H)
and

(28) Tr[D?P,o(x)] =

= [ 142Q 72y [P gletx +3) (0, Q,)dy) = Tr[4, 47 1P, i)
H
Moreover the following estimate holds

(2.9) ID?P, )|y < 2Te LA, AF lleo -
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Proor. Since A, € £, (H) (see Remark 1.2) it is enough to show that the linear op-
erator S, , defined as

(St,xb) k) = J(At/?, Qt—l/zyx/ltk) Q[l/zy)(p(e,‘Ax + y)3l(0, Q;)(dy) s b; keH ,

H

is trace-class for any # > 0 and x € H. For this is enough to show, compare N. Dunford
and J. T. Schwartz [10, Lemma 14 (), p. 1098], that there exists a constant C > 0 such
that

(2.10) | Tx [NS,,..1] < C|INI,

for any symmetric positive operator N e £(H) of finite rank. To this purpose let {¢;} be
a complete orthonormal system in H. Then we have

211 TrINS, 1= 3 [(4ie, Q7 VHNAN e, Q)
J
H

gletx +9) (0, Q)ldy) = [ INV2AF Q25| plex +3) 70, Q)dy).
H

It follows,
(212) |Te (NS, 3| < llgllo Tr 47 A4, N1 < Jlgllo INI T L4 4,1

So (2.10) is fulfilled and we have proved that D?P, ¢(x) is trace-class for any # > 0 and
x € H. Moreover (2.8) and (2.9) follow setting N = I respectively in (2.11) and in
(212). =

Remark 2.6. We want to describe in next example the behaviour of y(¢) =
=Tr[A,A}] near ¢ =0, in order to know whether it is integrable or not.
Assume that A is a negative self-adjoint operator, that Q = I, and that there exists a
complete orthonormal system {e;} in H such that
Ae/e=—l/eek, AkT‘i‘w,
with
S Lot
F=1 A
Then Hypothesis 1.1 is obviously fulfilled and we have

Q,=(e* - 1)/(24).

It follows
A AF =24e¥4 (e - 1), >0,
so that
(2.13) A,=2 kZ Age M [(1 — e 2) = (2/t)F(A,),
=1
where

(2.14) Fg)=& %/(1—-¢"%), E&>0.
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Let C; >0, C,> 0 be such that
Cle_ngF(E)SCQe‘E, E>O
So the behaviour of y(#) near 0 is determined by
i e e
k=1
For instance if
A/e — k1+a ,

where a > 0, we have that y(#) behaves at 0 as

+ o

(1/2) OJ e™™ dx,

1

and so as 1Y% In particular if 1, = &2 we have y(z) =432,

2.2. ADDITIONAL REGULARITY RESULT WHEN @ € Cj} (H).

ProrosttioN 2.7. Let ¢ € C}(H), ¢t > 0 and x € H. Then we have

(2.15) (D?P,@(x)h, k) = J(A,k, Q; 2yNDep(ex + y), e h) (0, Q,)(dy) .

H
Moreover D?P,¢(x) € £ (H) and

(2.16) Tr[D?P,p(x)] = j(/l;" Q, Y2y, e Dop(e™x + )y 91(0, Q,)(dy) .
J :

Finally the following estimates hold

(2.17) ID2P, gl < (v/ VD) oy,
and
(2.18) |Te[D?P,p(x)]| < {Tr[A,41}V%|g], .

Proor. Let ¢+ > 0, x € H. Since

(DP, (x), b) = J(D(p(e‘Ax +9),e4BY (0, 0,)(dy),
H

(2.15) follows easily by differentiating (2.1). Moreover (2.16) is an immediate conse-
quence of (2.15), recalling that, by Proposition 2.5, D?P,@(x) is trace-class.
We prove now (2.17). By (2.15), using Hoélder’s estimate, it follows

(D?P,ptx) b, B <l 1512 = [ 1¢4,, Q7 /29) (73000, Q,)(dby) =
H

= llolt 1517 |4.&17 < (1/0) Il |5]* |%]2,
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and (2.17) is proved. We prove finally (2.18). We have, using again Holder’s
estimate

T [D?*P, g(x)]|? < ||¢>l|%f le A7 Q7 2y |?9(0, Q,)(dy) =
H
= llolf Tela,e e AF ] = |lgff Tr (4,451
The proof is complete. ™

In a similar way we prove the following result.

ProrosiTion 2.8. Let ¢ e CL(H), t> 0 and x € H. Then for all b, k,le H we
have

(2.19) D’P,p(x)(h, k1) = f(/ltb, Q2 y) Ak, Q7 2y)-
H

“(Dglex +y), /) 30, Q,)dy) = {A,h, A,k)(DP,(x),[).

Moreover the following estimate holds

(2.20) D> P, ()| < (V2v2/8) [l -

By interpolation we obtain the following results.

Cororrary 2.9. Let 0 €10, 1[, o e C/(H), t > 0 and x € H. Then we have

(2.21) ID2P,g(x)|| < 21 =022 =040/ 1 |lgp]| ,
and
(2.22) |Tr [D2P, g(x)1| < 2"~ {Tr[A, A1} ~%||g]s .

Cororrary 2.10. Ler 6 €10, 1[, o e CZ(H), t > 0 and x € H. Then we have
223 ID*B gl < 2000/ 0=00 =02 g,

Remark 2.11. Assume that
y(t) S Ct /2,
Then by (2.22) we have
| T [D?P, @(x)]| < 2 70CH =22/ jgg
Thus |Tr[D?P,¢(x)]| is integrable near 0 provided 6 > 2/3.

2.3. KOLMOGOROV EQUATION

We want to show here that if ¢ € C,(H) then for # > 0 the function «(¢,x) =
= P,¢(x) is a solution to the Kolmogorov equation

(2.24) u,(t,x) = (1/2)Tr[D?u(t,x)] + (Ax, Du(t,x)), t>0, xeD(A).
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If Du(t,x) e D(A*) we can write (2.24) as
(225)  u,(t,x) =(1/2)Tr[D?ult,x)] + {x, A*Du(t,x)), t>0,xeH.

PropositioN 2.12. Let ¢ € C, (H), ¢t > 0 and x € D(A). Then u(t,x) = P,@(x) is a
solution to the Kolmogorov equation (2.25).

Proor. Let #(¢, x) = P,@(x), t > 0, x € H. Then the term Tr[D?u(¢, x)] is well de-
fined by Proposition 2.5. Moreover also the term {x, A* Du(¢, x)) is well defined, since,
by (2.1) we have

(2.26). (x,A*Du(t, x))= J(Q:l/ 2eW/DA fo /DA O 7129 (e x +y) R0, Q,)(dy).
H

By (2.26) we have

2.27) |(x, A* Du(z, ))| < KO)llgllo 1],
where
(2.28) : K2(¢) = “Qt—l/ze(t/z)AAe(t/z)A “ ‘

It remains to show that #(z, x) is differentiable in # and that (2.25) holds. To this aim let
us introduce the space of all exponential functions §(H). We denote by &§(H) the linear
subspace of C,(H) spanned by all §,, h e H:

Ey(x)=e®  xeH.
Since, as easily checked
(2.29) P,C,(x) =ei(e”‘x,b)—(1/2)(Q,b,b)’ xeH,

then the proposition holds when ¢ e §(H).
Let now {¢,} be a sequence in §(H) such that

(7) ”li_{n‘m @, x)=g@x), VxeH,

@) llpullo < 2liglo,

and set u,(¢,x) = P,¢,(x), t 2 0, x e H. We fix now # > 0. By (2.3)-(2.5) it follows
that the sequence of functions {#, (¢, -)} has all derivatives of order less than 3, bound-

ed. This implies that
nli_r)nm u,(t,*) =ult,"), in C;(H),

uniformly in # on compact subsets of 10, + ®[. Moreover by (2.9) it follows that the se-
quence in C,(H) defined by {Tr[D?u, (¢, -)1} is bounded, so that

lim Tr(D%,(t,)] =Tr [D?a(z,)], in C,(H),
uniformly in # on compact subsets of 10, + o [. Finally from (2.27) it follows that
”Ii)mm (x, A*Du,(t,x)) = (x, A*Du(t,x)), xeH,

uniformly in # on compact subsets of J0, + ®[ and in x on bounded subsets of H. This
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implies that for any x e H

”lir}}w -j;u,, (¢,x) = %u(t,x),
for all x € H uniformly in # on compact subsets of 10, + [ and the conclusion
follows. u

3. THE INFINITESIMAL GENERATOR

We proceed here as in [4], by introducing the Laplace transform of P,, ¢ = 0. For

any 4 > 0 we set

+ oo
(3.1) F(A) plx) = j e™Po(x)dt, xeH, geC,(H).

0
Note that the above integral is convergent for any fixed x € H and not in C, (H) in gen-
eral. In [4] is shown that F(A1) maps C, (H) into itself and that it is one-to-one. So there
exists a unique closed operator I in C,(H):

I D) c G, (H) = Cy (H),
such that the resolvent set @(1) of M contains ]0, + o[ and
+ ©
(3.2) R(4, M) g(x) = j e P o(x)dt, VYA>0.
0
M is called the infinitesimal generator of the semigroup P,, ¢ = 0.
Let A > 0,ge C,(H) and set ¢ = R(A, 9M)g. Then ¢ is called a generalized solution
to the equation
(3.3) Ap —(1/2)Tr[D*@] — (Ax, Dg) =¢.
It is also useful to introduce the concept of strict solution. To this purpose we have to in-
troduce a suitable restriction 9, of IN.
By definition the domain D(91T,) of IN is the set of all functions ¢ € C, (H) such
that
() ¢ e C2(H) and D?@(x) e £ (H) for all xe H.
(¢27) De(x) e D(A*) and the mapping
H—R, x—A*Dgp(x),
belongs to C,(H).
Then we define the operator I, by setting

(3.4) Mo = (1/2)Tr[D2¢]l + {x, A*Dg), V¢ eD(N,).

RemMaRk 3.1. In the paper [5], it is proved that the operator I is the closure of I,
with respect to the X-convergence. A sequence {@,} c C, (H) is said to be X-conver-
gent to ¢ € C, (H) if

(@) sup [@,llo < + .
neN
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() For any compact subset K in H, we have
,,li_,n%o sug lopx) — @,(x)| =0.

From the regularity results of the semigroup P,, # = 0, obtained in the previous sec-
tion, one gets the following regularity results for the resolvent of JIt.

Prorosrmion 3.2. Let A > 0, g € C, (H), and set ¢ = R(4, M) g. Then the following
statements bold

() ¢ e C}(H) and
(3.5) |Dp(x)| < [(1/2)-27 2| ¢glly, xeH,

where I denotes the gamma Euler function.
(i) For any a €10, 1[, we have @ € C} *“(H) and

(3.6) [Dgl, < 2¢2I((1 - a)/2)-2“~ V2| g,
(i) If ge CS(H) for some 6 e]d, 1[, then @ € CZ(H), and
(3.7) [D?2g(x)|| < 2 =9721(6/2)A~%2|gll,, xeH.

() If g e Cf (H) for some 0 €10, 11, and if in addition y(¢)* ~ /% is integrable near
0, then @ € D(Iy) and so it is a strict solution to equation (3.3).

Remark 3.3. If

y(t) < Ct 732,

for some constant C > 0. Then condition (iv) is fulfilled provided g e Cf (H) with
0 >2/3, see Remark 2.11.

3.1. INTERPOLATION SPACES Dg (68, )

The semigroup P,, ¢ = 0 is not strongly continuous in C,, (H), even when H is finite-
dimensional, see [4,7]. The following proposition, proved in [6], gives a characteriza-
tion of the maximal subspace Y of C,(H) where P,, ¢t = 0 is strongly continuous.

Prorosrrion 3.4. Let @ € C,(H). Then the following statements are equivalent
() lli_r)r})Pttp =@ in C,(H).
(#) tli_l)rz]¢(e’Ax) = @(x) in Cy(H).
We shall set
Y ={p e G, (H): lim g(e™x) = glx) in C,(H)},
and for any 0 €10, 1[

Y={peCy(H):AC >0, |p(e”x) — p(x)| < Ct?,VYxe H}.

We want now to characterize the interpolation spaces (C, (H), D(910))y. « that we shall
denote by Dy (6, ©). We need some preliminary result.
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ProrosrmionN 3.5. Let ¢ e C,(H) and 0 €l0, 1[. Then the following statements
hold.

() If p e Dy (0, ) then we have
(3.8) sup A0||MR(A, M) ¢ll, < + oo .
A>0

(@) If ¢ € C,(H) and fulfills (3.8) then ¢ € Dy (6, ®).

Proor. (/) Let ¢ € Dy (0, ® ). Then by the definition of interpolation space given
in § 1, for any # € [0, 1] there exist a, € C, (H), B, D(IN), such that ¢ = a, + B,
and

o lly < Ce%, o,y < 271,
for some C > 0. Now for any A > 0 we have
IMR(A, M) @ = MR(A, M)ay/; + R(A, M) MP; .
It follows
[omR(A, 1) @l < C||MR(A, M)A =% + C|R(A, M)A~ < 317°,

and the statement is proved.

() Assume that ¢ fulfills (3.8). Define

Cy = sup A°[IIR(A, ) ¢lo,

and set
a,= —IR((1/1), M) @B, = (1/)R((1/2), M) p .
Then we have a, + 8, = ¢ and
la o< Cit?, B dost' =%, >0,
so that g € Dy (6, ©). W

. Lemma 3.6. Let 0€10, 1/2[, T >0, @ € C?°(H). Then there exists Cr > 0 such
that

(3.9) |G, @(x) — @(x)| < Cr[Tr(Q,)1°[gly, tel0,T].
Proor. We have

|Gpl) = )| < [ e +) = @) 300, Q)(dy) <
H

< [gkao [ 917900, Q)(dy) < Dyl [Tr (QT’,
H
for some constant Dy.
Now the conclusion follows.” ™

Lemma 3.7. Ler 0 €11/2, 1[, T > 0, ¢ € C° (H). Then there exists C, 1 > 0 such
that

(3.10) G, g(x) - ¢(x)| < Cy +[Tr Q)P [@lsg,  £e[0,T1.
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Proor. We have

Grplx) ~ @) = [ Lol +3) = @l (0, Q,)(dy) =

H
1

= [ [(Dgtx + &) = Do), 5)52(0, Q, )y dé
It follows "
1

|Gog() = g | < Lo [ [ 1917082~ 00, Q,)(db) dE,
0H
and the conclusion follows as in the previous lemma. B

Prorosrrion 3.8. If ¢ € Dy (0, ), 0 €10, 1[, there exists Ct > 0 such that
(3.11) IP,o — @llo< Crt?, tel0,TI.

Proor. Let ¢ € Dy (6, ). Then for any ¢ > 0 there exists a, € C, (H), 8, € D(I)
such that ¢ = a, + 8,,

(3.12) loello < G2, flomp.flo < Ce2 1,

for some constant C > 0. Since
¢

P,(P —@Q= (Ptat_at) + (Ptbt_bt) = (P;d;“d,) + JPSST(b(t)ds,

0
using (3.12), we find that (3.11) holds. =

We can now prove the result
Tueorem 3.9. For all 6 €10, 1/2[U11/2, 1[ we have
(3.13) Dy (8, ©)c C2(H) N Yy .

Proor. We only consider the case 6 €10, 1/2[, since the case 6 €11/2, 1[ can be
treated in an analogous way.

Ster 1. If @ € Dy (0, ®) then there exists C; > 0 such that for all 1 =1 we
have

(3.14) IADR(4, 910) @lly < C1 212~ |l@llp, 6, =) -

We first note that, since

j7 [AR(A, 90] = R(A, 9) — A(R(A, 9M))2,

we have
A

AR(A, M) @ = R(1, M) @ + jR(:, IM)(1 — sR(s, M) pds =

1

A
=R(1, M) ¢ + jR(s, M) IMR(s, M) @ds .
1
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By Proposition 3.2 (7) it follows
i
D,AR(A, M) ¢ = D,R(1, M) ¢ + JDX [R(s, ) MR(s, M) plds .
1
Moreover, taking into account (3.5) and (3.8), we find

IR(2, o) glly < C2="2lglly, VA >0,
we get

A
IR, ) gl < Cllplo + C [s7/27 LgTn, o, = ds =
1

= C”‘P”o + C/( 1/2 - 9)('11/24) - 1)[(P]Dm(e, @)
for some C > 0.

SteP 2. Dy (0, ©) c CZ9(H).
Let x,y € H such that |x —y| <1, and let 4 = 1. Then we have by (3.8) and
(3.14),

lp(x) = @(y)| < |@(x) — AR(A, M) @(x)| + |AR(4, IN) @(x) — AR(4, ) @(y)| +
+|AR(4, M) @(y) — ()| < 2[@Ip, (6, =)4 ~° + [[DOMRA, 7))o | — y| <
< 2[@lpy(0, =14 % + Cll@llpyie, ) (A2~ + 1)|x = y] .
Choosing 4 = |x —y| ~? we have
lo(x) = @) < 2@l 6, =) Ix = 912 + Cllglly 6, =) (Ix =31 + |x = ]),
and the conclusion follows easily.
SteP 3. Dy (0, ) CY,.
Let @ € Dy (6, ). Then we have

(3.15) [p(ex) — @(x)| < |@le®x) — G,@(ex)| + |P,p(x) — @(x)] .
Since @ € C2? (H) by (3.9) we find

(3.16) |p(eBx) — G,p(eBx)| < Ctolple, tel0,T].
Moreover from (3.11) it follows
(3.17) IP.¢ — ¢llo < Crt?, tel0,T].

Substituting (3.16) and (3.17) into (3.15) we get finally

lp(e®x) — @x)| < (C+ Cr)t’[@ly,
and the proof of the theorem is complete. B

4., MAXIMAL REGULARITY RESULTS FOR ELLIPTIC EQUATIONS

The following result is proved in [3]. We give a sketch of the proof for the reader
convenience.
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ProposiTiON 4.1. Assume that 0 €10, 1[, g € C/ (H), and A > 0. Then the function
@ =R(4, M) g belongs to CZ*°(H).

Proor. The proof is based on a general interpolation argument due to A. Lunardi
see [16], in particular on the following inclusion result

(4.1) (Cs(H), Cbz+a(H))1—(a-e)/2,ooCC1;2+9(H),

for any a €16, 1[. Consequently, in order to prove the theorem it will be enough to
show that for some a €160, 1[, we have
(4.2) Qe (le(H), Cbz+a(H))lv(a—9)/2,oc .
To prove (4.2) we set
| @(x) = alt,x) + b(t, %),
where
t
a(t,x) = Je P glx)ds,
0
and
+ oo
b, x) = J e *Pg(x)ds.
t
Then from (2.7) it follows that
-, )l < Cla, ) [~~~ 2 ds]|g], =
0
1

= Cla, )¢ (@~ 02 [ ¢ =76 =(=0/2 g | g, <
0

Bl pesany),,
1-(a—=8)/2 '
and from (2.8) that

+ oo

b, )l < Clat, 8) [ &R 0= 1 g gy =

t
+
= Cla, )¢~ =92 [ M0« 912 1 g g, <
1

Cla, 0)
a—6

£ gllg.
This implies (4.2). W

By Proposition 4.1 and 3.2 (&v) we find the result.
THEOREM 4.2. Assume that 0 €10, 1[, ge C/(H), A > 0, and in addition that

1
(4.3) j[Tr(A,A;*)]l—"/de < 4o,
0

Then, setting @ = R(A, M) g, the following statements hold.
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() o e C2Y9(H) and D*@(x) € £, (H) for any x € H.
(@) Tr[D*@(-)1 e C,(H).
(ii7) x = (x, A* D) € C, (H).
Moreover

(4.4) Ap(x) — (1/2)Tr [D? @(x)] — {x, A* Do) = g(x),
for all x e H.

Remark 4.3. Let us consider the restriction P?, # = 0 of the semigroup P,, # = 0 to
Cf(H), 6 €10, 1[. We can still define the infinitesimal generator 9%° of P,, £ = 0 to
C?(H) by the Laplace, transform setting
+ o

(4.5) R(A, 9°) plx) = j e #PP plx)dt .
0

It is easy to check that 9% is the part of I in Cf(H):

D(®) = {p e D(M) N Cf (H): Mg e Cf (H)}.

Theorem 4.2 enable us to characterize, under suitable assumptions, the domain of M°.
We have

D(n®) = {p e C;*°(H):(A-, Dp) e C, (H)} .
If H is finite-dimensional this characterization of D(91?) was obtained in [7].

Under the hypotheses of Theorem 4.2 we can give the following definition of
D(an?)

(4.6) D) ={peC;*?(H):D*¢(x)e £, (H), VxeH,
Tr[D?¢(x)] € C,(H),{A+,Dp}e C,(H)}.

5. MAXIMAL REGULARITY RESULTS FOR PARABOLIC EQUATIONS
We are here concerned with the initial value problem
du(t,x)/dt = (1/2) Tr [D?u(t, x)] + (Ax, Du(t, x)) + F(t, x),
(5.1) telo, T1, xeH,
u(0,x) = @(x),
where F e C([0, T]; C,(H)) and ¢ € C,(H).

Following S. Cerrai and F. Gozzi [5], we call the function #: [0, T] X H+= R de-
fined as

(5.2) u(t,x) = P,p(x) + jPHF(s, V) ds = uy (£, %) + u, (£, %),
0

the mzild solution to (5.1). Several properties of the mild solution # are described in the
quoted paper [5]. Here we will discuss only some new maximal regularity results for #;
and #,. Concerning #; we have the following proposition.
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ProrosrrioN 5.1. The following statements are equivalent
(7) u,eC?([0, T1; C,(H)).
(i#) @ e Dy (6, ®).

Proor. (7)=>(i). It is enough to show that
(5.3) sup A MR, A) @llg < + 0 .
In fact, by Proposition 3.5, if (5.3) holds, we have ¢ € Dy (0, ® ), and by Theorem 3.9
this implies (¢z). By hypothesis (7) there exists K > 0 such that
(5.4) |P,plx) — @(x)| < Kt?, tel0,T].
It follows

+
Kre+1)
|MR(A, M) p(x)| < KA j e Mildr s ——5—

0

b

and (5.3) holds.
(z1)=> (7). Let ¢t > 5 = 0. Then by Proposition 3.8, we have
|P,@(x) = Pyp(x)| < |P,_,p(x) — @(x)| < Cr |t —5s]?,
and (7) is proved. MW
We conclude this section, by studying the regularity of #,.

Tueorem 5.2. Let F e C([0, T1; C,(H)), and assume that, for some 0 €10, 1[, we
have F(t,+) e CZ(H) and that

(5.5) sup ||F(z,*)lo < + .
te[0,T]
Then u e C([0, T1; C,(H)), ult, ) e C2*°(H) and
(5.6) sup |z, hia< + .
tefo, T]

Proor. We fix # > 0. Arguing as in the proof of Proposition 4.1 it is enough to
prove that

(5.7) u(t,*) e (C£(H), C£+*(H)); - (4 —6)/2, ® >

for some a €10, 1[. To this purpose we set

a(t, ‘L',x)=J'qu(t—:,°)(x)ds, tel0,¢],
0

bit, T,x) = Iqu(t —5,)x)ds, 71el0,f].

T
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Then by (2.7) we have

latz, 7, e < Cla, 8) sup  Juls, o J T’d‘SBT" <
se[0,T] . ; gla=6)/2

Cla, 0)
S ——— sup |luGs, )|gzrt - 9/2,
1-(a—0)/2 ss[OPT] ” lo

Moreover by (2.8) we have

t

it 7, Moo < Cla, 6) sup s, s | —

— <
se[0,T] ; s(a—@)/2+1

2C(a, 0)
S ——— (s, gz (@~ 7/2.
(a—8)/2 ;:[%PT] s, -l

This implies (5.7). ™
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