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Equazioni a derivate parziali. — The parabolic mixed Cauchy-Dirichlet problem in 
spaces of functions which are holder continuous with respect to space variables. Nota di DA­
VIDE GUIDETTI, presentata ('*) dal Corrisp. G. Da Prato. 

ABSTRACT. — We give a new proof; based on analytic semigroup methods, of a maximal regularity result 
concerning the classical Cauchy-Dirichlet's boundary value problem for second order parabolic equations. 
More specifically, we find necessary and sufficient conditions on the data in order to have a strict solution u 
which is bounded with values in C* + &(Q) (0 < 6 < 1), with dtu bounded with values in Ce{Q). 

KEY WORDS: Parabolic equations; Cauchy-Dirichlet problem; Maximal regularity; Analytic semi­
groups. 

RIASSUNTO. — Il problema misto di Cauchy-Dirichlet per equazioni paraboliche in spazi di funzioni hôlderia-
ne. Si dà una nuova dimostrazione, basata su metodi di semigruppi analitici, di un risultato di regolarità 
massimale per il classico problema al contorno di Cauchy-Dirichlet per equazioni paraboliche del secondo 
ordine. Più specificamente, si trovano condizioni necessarie e sufficienti sui dati per avere una soluzione 
stretta u che sia limitata a valori in C2 + e(Q) con dtu limitata a valori in Cd(Q). 

INTRODUCTION 

Let Ci = d(x9 dx) be a second order strongly elliptic operator in a domain Q of Rn 

with conveniently smooth boundary; consider the linear parabolic operator L : = dt — d 
and the corresponding mixed Cauchy-Dirichlet problem in the cylinder Q := [0, T] X 
XQ 

(1) 

Lu(t,x) ~f(t,x),(t, x) E Q , 

u(t9x') = ^ x ' ) , ( ^ ' ) 6 r , 

u(0,x) = u0(x),x e Q , 

where we have indicated with dQ the topological boundary of Q and with Tthe product 
[0, T] X dQ. We are interested in the existence and uniqueness of strict solutions of 
(1), that is, of solutions which are continuous in Q together with their first derivate with 
respect to t and their first and second order derivatives with respect to x. Connected 
with this, there are well known theorems of optimal regularity, giving necessary and suf­
ficient conditions (under suitable assumptions on Q and the regularity of the coeffi­
cients of d ) on the data/, g andu0 in order to have a solution u whose first derivative 
with respect to t and first and second derivatives with respect to x are holder-continu­
ous with respect to the parabolic distance in Q (see [10,8]). But also the problem with 
a datum /with is holder continuous with respect to the space variables only has been 
considered. In this framework results of interior optimal regularity have been for 
example given in [4,5] (in [5] a problem in Rn without boundary conditions is consid­
ered); the Cauchy-Dirichlet problem was treated by Sinestrari and von Wahl [9], who 

(*) Nella seduta dell'11 maggio 1996. 
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considered the case g = 0 and assumed the boundary of Q of class C2 + e for a certain 
0 > 0, / e C(Q) suchjhat for every / e [0, T ] /U , •) e C a(f l ) uniformly i n / (that 
is, / e B ( [ 0 , T ] ; C * ( f l ) ) , % e fl 1F2^(,Q), with y0«o = 0, ( ^ e C W and 

1 ^p < 00 

7o(Û^o + / ( 0 , •)) = 0, where we have indicated with y0 the trace operator on dQ; 
they showed the existence of a solution u with many properties of regularity (among 
them the interior optimal regularity) but did not obtain (of course even assuming u0 e 
eC2 + e(Q)) the expected results that the first derivative with respect to t and the deriva­
tives of order less or equal to two with respect to x belong to i3([0, T] ; Ce(Q)); in 
fact [9] contains a counterexample due to Wiegner showing that, for example, the as-
sumptions/e C(Q) flB([0, T]; Ce(Q)), y 0 / ( 0 , •) = 0,uQ = Oandg = Oare not suf­
ficient to guarantee that the solution has the desired regularity. There is in fact some­
thing lacking; such lacking condition was given for the first time by M. Lopez Morales 
in [6] and, in case g = 0, is the #/2-holder regularity with respect to t of the trace 
yo/. 

The aim of this Note is to give an alternative proof of the main result of [6], which 
was obtained through potential theory, using essentially semigroup methods and an es­
timate, due to Bolley, Camus, P. The Lai (see [2]), of the solution of the elliptic bound­
ary value problem depending on a parameter obtained applying formally the Laplace 
transform with respect to t. This estimate is reported in Theorem 1. 

The new proof of this optimal regularity result (Theorem 2) which is here given can 
be extended in various directions; for example one can consider general boundary 
value problems, and broader classes of data (just to give an example, one can show that 
Theorem 2 can be extended to the case 0 e]0, 1[U]1, 2[). But this requires, first of 
all, an extension of the result given in Theorem 1 and exhibits some new technical diffi­
culties; so the most general case will be treated somewhere else and here we shall limit 
ourselves to the linear case treated in [6]. We add only that the result given in Theorem 
2 is in fact of optimal regularity, as the assumptions of Theorem 2 are necessary and 
sufficient to get the desired regularity of the solution. This is not clear from [6]. 

We introduce now some notations we shall use in the sequel; if Q is a bounded open 
subset of Rn, with boundary of class C1 + a , for some nonnegative a, we shall indicate 
with || • | | | Q and with |j'• |||>5fithe norms in, respectively, the space CHQ) and CHdQ), 
for a certain £ e [0, 1 + a ] ; through the formula f{t){x) - = f(ty x) we shall identify 
scalar valued mappings of domain Q with functions of domain [0, T] with values in 
functional spaces on Q or dQ; so, for example, if E is a space of such a type on Q or 
dQ, we shall indicate with B([0, T]; E) {/: [0, T] ->JE?j/ is bounded with values 
in E}. Analogous notations will be used for functions which are continuous, holder 
continuous, etc. with values in E; each of these classes will be equiped with a natural 
norm. 

If A is a linear operator in a Banach space, we shall indicate with Q(A) and with o{A) 
its resolvent set and its spectrum respectively. 

If E and F are Banach spaces, we shall indicate with £(E, F) the Banach space of 
linear bounded operators from E to F; if E = F, we shall simply write £(E). 
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We shall use some elements of real interpolation theory (see for example [7, 
ch. 1]). Assume that E0 and E1 are Banach spaces with norms || • | j0 and || • \\x ; if a e 
e]0, 1[, we indicate with (E0, Ei)a> » the corresponding interpolation space. If Ex is the 
domain of an operatore inE0 such that R + CQ(A) and ||(£ - ^4)-1|L(£0) = 0 ( | _ 1 ) as 
£ —> + oo y one can show that (E0, Ei )ff> <*> coincides with the set of elements x in E0 such 
that \\A(^ - ^ ) _ 1 x | | 0 = 0 (£~ a ) as |^-> + oo . If E is a Banach space such that Ex ç E ç 
ç E0 and a e ]0, 1 [ we shall write E G Ja (E0, Ex ) if there exists C > 0 such that for any 
x e E j ||x||E ^ C||x||J~a | |x||i. 

Finally, we shall use quite loosely the symbol C to indicate a constant that we are 
not interested to specify and may be different from time to time. 

THE PROBLEM 

We start by introducing the main assumptions of this Note; let 0 e]0, 1[; we shall 
say that the conditions (He) are satisfied if: 

(I) Q is an open bounded subset of Rn, lying on one side of its topological 
boundary dQ, which is a submanifold of Rn of dimension n - \ and class C2 + d; 

(II) GL = Ci(x, dx) = 2 aa(x) 3" is a strongly elliptic operator of order two 
|a] &2 

(thatis, Re 2 aa (x) %a ^ v| § | 2 for some v > 0 and for any (x, £ ) E D X Rn with co­
lai = 2 

efficients of class Cd(Q)). 
If the conditions (He) are satisfied, there exist R ^ 0, <p0 E]JT/2, Jt[ such that for 

any X e C, with |A| ^ R and |ArgAj ^ (p0 the problem 

f Xu - du = / , 
(2) ' y . 

has for any fe Ce(Q)y gsC2 + d(dQ) a unique solution « belonging to C2+e(Q) 
(see [7, ch. 3]); it is of fundamental importance for parabolic problems to estimate how 
the norms \\u ||e, Q and \u||2 + e, Q depend on the data and the parameter X; the following 
result is due to Bolley, Camus and P. The Lai (see [2, Theorem 1]): 

THEOREM 1. Assume that the assumptions (He) are satisfied, for some 6 e]0, 1[; then, 
there exist R ^ 0, (j)0 e]jz/2, JZ[, M > 0 such that for any X e.C, with \X\ ^ R and 
| Arg A | ^ 0 o the solution u of problem (2) with g = 0 satisfies the estimate 

(3) \XV + 6'2 ||«||o,B + |A| ||«|U,s + ||«||2 + fl,JS ̂  M [ | | / | U J S + \X\el2 | |y 0 / l lo , a o] . 

We want to study the following mixed Cauchy-Dirichlet parabolic problem: 

Ï dtu(t,x) = Ou(t,x) +f(t,x), / e [ 0 , T], x e < 0 , 

(4) J u{t,x')=g{tix')) te[0,Tl x'edQ, 

[ #(0,x) = «o(x), X € f ì . 

More specifically, we shall prove the following result: 
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THEOREM 2. Assume that the assumptions (He) are satisfied for some 6 e]0, 1[; then 
problem (4) has a unique strict solution u belonging to B([0, T]; C2 + e(Q)) such that 
dtu eB([0, T] ; Ce(Q)) if and only if the following conditions are satisfied: 

(a) u0GC2 + e(Q); 

(b) fé C([0, Ti; C(Q)) (1 B([0, T ] ; Ce(Q)); 

(c) g e C([0, Ti; C2{dQ)) D B([0, T]; C2 + e(dQ)) n C1 ([0, T]; C{dQ)) 
and dtgeB([0,T];Ce(dQ)); 

{d) dtg-yfBCel2{[0,T];C{dQ)); 

(e) y0u0 = g(Q); 

(f)dtg(0)-YoAO) = YoOu0. 

We begin the proof of Theorem 2 verifying the necessity of the conditions 

(«)-(/): 

LEMMA 1. Assume that the assumptions (He) are satisfied; then, if problem (4) has a strict 
solution u belonging to B([0, T]; C2 + e(Q)) with dtU e B([0, T]; C^ (£>)), the condi­
tions (a)-(f) are all satisfied. 

PROOF. The only condition which is not obvious is (d); it is easily seen that one has 
3tg ~ Yof- Yo<3iu; now, one can verify that u_is Lipschitz continuous with values in 
Ce(Q); as C2{Q) eh-e/i (Ce(Q); C2 + e(Q)), we have that u zCd/2 ([0,T]; 
C2(Q))y which implies immediately the result. 

We set now 

D(A) := {u e fi W2'p (Q) | Ou e C(Q), y0u = 0 } , 
1 S=/> < + 00 

A# = (3^ for any & e D(A). It was proved by Stewart (see [11]) that A generates an ana­
lytic semigroup {T(t)\t ^ 0} in C(Q), which is not strongly continuous in 0. We use 
this fact to prove the uniqueness: 

LEMMA 2. Under the assumptions (He), for any / e C ( [ 0, T]; C(Q)), 
g e C([0, T]; C(dQ)) problem (4) has at most one strict solution. 

PROOF. Consider (4) with all data vanishing. A strict solution u of (4) clearly belongs 
(in this case) to C([0, T]; D(A)) D C1 ([0, T]; C @ ) ; from [11] we have that neces­
sarily u(t) =• 0. 

The following lemma is the crucial step of the proof: 

LEMMA 3. Assume that the assumptions (He) are satisfied for some 0e]O, 1[ and, 
moreover, / e C ( [ 0 , T]; C(fl)) n B ( [ 0 , T]; C ' ( 0 ) ) | y o / e C 0 / 2 ( [ O , T]; C(3£»), 
7o/(0) = 0- T#£#, problem (4) w>ô& &0

 = 0 #»^g - 0 has a strict solution u belonging to 
B([0, T]; C2 + *(&)) arò* d,« &?&*#** to JB([0, TJ; Ce(Q)). 
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PROOF. We start by remarking that the assumptions of Lemma 3 are exactly condi­
tions (a)-(f) in case u0 = 0 and g = 0. We set 

t 

«(/):= ÏT(t-s)f(s)ds. 
o 

We recall that, for t > 0, 

T(t) = (2m)~1 \txp{kt){k-ArldXy 

y 

where y is the usual path lying in Q(A), joining 4- coe~*e° to 4- œe
ld° for some 60 e 

e]n/2,Jt[. From Theorem 1 we have that there exists C > 0 such that for every 
te[OyTlfeCe(Q) 

We set also, for / > 0, 

t 

T{~1)(t):= dm)'1 \ T(s)ds = (2m)-1 j exp {Xt)k~x{X - AYldX ; 
o y 

we have 

(6) ÌÌT^Htìfl.o+ 4T{-1Ht)f\\2 + e,â^CbMe,li + t1-e/2 b0/1,3^ • 

We put 

t 

«! (/) := J T(/ - 5) [/(j) -/(/)]<&, u2{t):= T*"1» (/)/(/). 
o 

From (5) and (6), as C2(Q) e / 1 _ e / 2 (Ce(Q), C2 + e(Q)) we have 

which implies that ux e C([0, T]; C2(£?)) and that 

I I T ^ W W I U B « C(>e/2 ||/(f)||»>s + ||y0/W||o>ao), 
so that a 2 e C([0, T]; C2(:Q)), taking into account the fact that y 0 / e 

e C ( [ 0 , T ] ; C ( 3 f l ) ) and y 0 / ( 0 ) = 0. So « e C([0, T]; C2(Q)). Set now, for 
£ e]0, Ti, t s [e, Ti, 

t - S 

«,(/):= J Tit-s)fis)ds; 
0 

one has that ue e C1 (te, T]; C(Q)) and, for / e [e, T], 

«; (/) = Tie) fit -e) + JAT(t - s)fis)ds . 
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It is easily seen that \\u(t) — «e(/)||c([ô, T]-Q) ~> 0 as £ - » 0 + for every <5 e]0, T[, 

and in the same spaces u[ converges to T( *) / ( ' ) + 7"(* —s)f(s)ds; it follows that 
z z e ^ G O , T]; C(<Q)) and for every / e ] 0 , T] o 

u'(t) = T(t)f(t) + JT(t-s)f{s)ds. 

As y 0 / ( 0 ) = 0, / (0) belongs to the closure of D(A) in C(Q); this implies that 
| |TU)/(/) - / ( 0 ) | | o , £ - » 0 as / - > 0 + and so « e C1 ([Q, T]; C(fl)). From what we 
have already seen it follows also that u is a strict solution of (4) with u0 = 0 andg(t) = 
= 0, as clearly for every te [0, T] 

yo«W = J y 0 ^ - * ) / ( * ) <&-(), 

It remains to verify that « e £ ( [ 0 , T]; C2 + 6{Q)) and 3,«c=JB([0, T]; Ce(Q)); the 
secqnd condition can be easily drawn from the first, using the first equation in (4). 
Remark now, that the first condition can be obtained showing that &u e 
ejB([0, Ti; CHQ)). We have 

Ou2{t) = AT{~l){t)f(t) = T(t)f(t) -fit), 

and, from (5), 

l |T(/)/(/)| | f l,5^C(J|/(/)| | f l,B + # - e / 2 | | y 0 / O l k s J ^ C , 

for some C ^ 0. Finally, we want to estimate \\Qui(t)\\otQ; to this aim, \ye recall that 
(C(fl), D(A))e/2) oo is a closed subspace of Ce (Q) (see [1]); we shall show thatAui is 
bounded with values in (C(fl), D(i4))0/2, « ; now, with the usual trick of taking as new 
unknown quantity e ~hu instead of u, we can assume that {z e Ç |Re(z) ^ 0} ç Q{â), in 
such a way we can take y equal to the counterclockwise oriented boundary of {z e 
e CI |Arg.(z) | ^ 00} for a suitable 0O e]jr /2, JT[, and sup | |i* /2;4(§ - >4)~7||o,l3 as 
norm in (C(fi), D(A))e/2, » • So we have, for £ > 0, / e [0, T] 

llê^iKê-ii)-1^! wiles = 

( 2 J » ) _ 1 J Ï J exp (Ut - s))X(X - %)-lA{X - A)~l [f(s) -f{t)idx\ds 
0,Q 

From 

\\A(X-A)-l[f(s) -At)]||o,S3 < 

C[|A|-e/2 | | / | |B([o,r];^(S)) + (^-^)e/2llyo/llc^([o,T];C(5fi))] ^ 
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we have, for a certain a > 0, 

\\®Ul(t)\\(C(Q),D(A))e/2ì„ ^ 

^ C 

+ ^ / 2 J | e x p C - a r ^ - ^ J r ^ + r ) - 1 ^ U - j)e/2à||y0/llc^([o,T];COO)) 
0 \ 0 

We have 

ïe'2\\ \ exp(-ar(t-s))r(Ç + r)-1dr\(t-s)e/2ds = y(tÇ) 

o \ o 
with 

0 (r) = T«/2j| J e-^e^'/^ro + e ) " 1 ^ ^ 7 2 " 1 ^ , 
0 \ 0 

l / +oo 

o \ o / 

and it is not difficult to verify that <P and W are bounded in R+ . 

PROOF OF THEOREM 2. Let N s £(C(dQ), C{Q)) be such that y0Ng = g for any g e 
E C(dQ) and for every 0' e [0, 2 + 0]N,c«'(aO) e £(Ce'(dQ), C6' (£>)); an operator 
with these properties is constructed in [8]. Set v{t) '-= u0 + N(g(t) — yoU0); 
then * e C1 (CO, TJ; C{Q)) D C([0, T]; C2(Ô)) n.J3([0, T]; C2 + *(fl)) and 3 ^ e 
e B ( [ 0, T ] ; C ô ( £? ) ) ; subtracting v from # one reduces oneself to the situation treated in 
Lemma 3. 
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