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Equazioni a derivate parziali. — The parabolic mixed Cauchy-Dirichlet problem in
spaces of functions which are hélder continuous with respect to space variables. Nota di Da-
vipe GuiDETTI, presentata (*) dal Corrisp. G. Da Prato.

Asstract. — We give a new proof, based on analytic semigroup methods, of a maximal regularity result
concerning the classical Cauchy-Dirichlet’s boundary value problem for second order parabolic equations.
More specifically, we find necessary and sufficient conditions on the data in order to have a strict solution #
which is bounded with values in C2*¢(2) (0 < 6 < 1), with 3,# bounded with values in C?(Q).

Key worps: Parabolic equations; Cauchy-Dirichlet problem; Maximal regularity; Analytic semi-
groups.

Ruassunto. — I/ problema misto di Cauchy-Dirichlet per equazioni paraboliche in spazi di funzioni hélderia-
ne. Si da una nuova dimostrazione, basata su metodi di semigruppi analitici, di un risultato di regolarita
massimale per il classico problema al contorno di Cauchy-Dirichlet per equazioni paraboliche del secondo
ordine. Piu specificamente, si trovano condizioni necessarie e sufficienti sui dati per avere una soluzione
stretta # che sia limitata a valori in C2*%(@2) con 3,# limitata a valori in C?(R).

INnTRODUCTION

Let @ = A(x, 9,) be a second order strongly elliptic operator in a domain 2 of R”
with conveniently smooth boundary; consider the linear parabolic operator L:= 3, — @
and the corresponding mixed Cauchy-Dirichlet problem in the cylinder Q := [0, T'] X
X Q

Lu(t,x) =f(t,%),(¢,x) € Q,
(1) ult,x')=gt,x"),@t,x")el,
#(0,x) =uy(x),xe Q,

where we have indicated with 92 the topological boundary of £ and with I' the product
[0, T]1 X 9R2. We are interested in the existence and uniqueness of strict solutions of
(1), that is, of solutions which are continuous in Q together with their first derivate with
respect to ¢ and their first and second order derivatives with respect to x. Connected
with this, there are well known theorems of optimal regularity, giving necessary and suf-
ficient conditions (under suitable assumptions on £ and the regularity of the coeffi-
cients of @) on the data £, g and #, in order to have a solution # whose first derivative
with respect to ¢ and first and second derivatives with respect to x are holder-continu-
ous with respect to the parabolic distance in Q (see [10, 8]). But also the problem with
a datum f with is hélder continuous with respect to the space variables only has been
considered. In this framework results of interior optimal regularity have been for
example given in [4,5] (in [5] a problem in R” without boundary conditions is consid-
ered); the Cauchy-Dirichlet problem was treated by Sinestrari and von Wahl [9], who

(*) Nella seduta dell’11 maggio 1996.
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considered the case g = 0 and assumed the boundary of © of class C?*? for a certain

0 >0, fe C(Q) such that for every e [0, T1f(¢,+) e C?(Q) uniformly in ¢ (that

is, feB([0,T]; C%(Q)), uye 1 N wW»2(Q), with yous=0, Que C(Q2) and
Sp<

Y0 (Quo + £(0, +)) = 0, where we have indicated with y, the trace operator on 99Q;
they showed the existence of a solution # with many properties of regularity (among
them the interior optimal regularity) but did not obtain (of course even assuming %,
€ C?*9(Q)) the expected results that the first derivative with respect to # and the deriva-
tives of order less or equal to two with respect to x belong to B([0, T]; C?(R2)); in
fact [9] contains a counterexample due to Wiegner showing that, for example, the as-
sumptionsf e C(Q) N B([0, T1; C(RQ)), v, (0, *) = 0,4, = 0 andg = 0 are not suf-
ficient to guarantee that the solution has the desired regularity. There is in fact some-
thing lacking; such lacking condition was given for the first time by M. Lopéz Morales
in[6] and, in case g =0, is the 6/2-holder regularity with respect to ¢ of the trace
Vof

The aim of this Note is to give an alternative proof of the main result of [6], which
was obtained through potential theory, using essentially semigroup methods and an es-
timate, due to Bolley, Camus, P. The Lai (see [2]), of the solution of the elliptic bound-
ary value problem depending on a parameter obtained applying formally the Laplace
transform with respect to #. This estimate is reported in Theorem 1.

The new proof of this optimal regularity result (Theorem 2) which is here given can
be extended in various directions; for example one can consider general boundary
value problems, and broader classes of data (just to give an example, one can show that
Theorem 2 can be extended to the case 6 €10, 1{ U 11, 2[). But this requires, first of
all, an extension of the result given in Theorem 1 and exhibits some new technical diffi-
culties; so the most general case will be treated somewhere else and here we shall limit
ourselves to the linear case treated in [6]. We add only that the result given in Theorem
2 is in fact of optimal regularity, as the assumptions of Theorem 2 are necessary and
sufficient to get the desired regularity of the solution. This is not clear from [6].

We introduce now some notations we shall use in the sequel; if 2 is a bounded open
subset of R”, with boundary of class C'*, for some nonnegative a, we shall indicate
with || - ||z, 5 and with || + ||¢, 50 the norms in, respectively, the space C* (2) and C*(89),
for a certain £e [0, 1 + al; through the formula f(z)(x) := f(¢, x) we shall identify
scalar valued mappings of domain Q with functions of domain [0, T'] with values in
functional spaces on @ or 39; so, for example, if E is a space of such a type on Q or
0Q, we shall indicate with B([0, T]; E) {f: [0, T1—E|f is bounded with values
in E}. Analogous notations will be used for functions which are continuous, hélder
continuous, etc. with values in E; each of these classes will be equiped with a natural
norm.

If A is a linear operator in a Banach space, we shall indicate with 9(A4) and with o(4)
its resolvent set and its spectrum respectively.

If E and F are Banach spaces, we shall indicate with £(E, F) the Banach space of
linear bounded operators from E to F; if E = F, we shall simply write 2(E).
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We shall use some elements of real interpolation theory (see for example [7,
ch. 1]). Assume that E, and E, are Banach spaces with norms |+ ||, and ||+ ||;; if a €
€10, 1[, we indicate with (Ey, E,),, » the corresponding interpolatioh space. If E; is the
domain of an operator A in E, such that R* ¢ 0(4) and [[(&§ — A) || e(z,) = O(E 1) as
&— + », one can show that (E,, E,),, . coincides with the set of elements x in E such
that [|A(E — A) x|, = O(§ %) as £ = + . If E is a Banach space such that E; CE ¢
CE,and a €]0, 1[ we shall write E € ], (E,, E;) if there exists C > 0 such that for any
xeEy [lx|lg < Cllx[ls ¢l

Finally, we shall use quite loosely the symbol C to indicate a constant that we are
not interested to specify and may be different from time to time.

THE PROBLEM

We start by introducing the main assumptions of this Note; let 6 €]0, 1[; we shall
say that the conditions (Hy) are satisfied if:

(I) 2 is an open bounded subset of R”, lying on one side of its topological
boundary 8, which is a submanifold of R” of dimension » — 1 and class C**?;

@) @=alx,8,) = 2 a,(x)3%is a strongly elliptic operator of order two

lal =2

(that is, Re||2 aq(x) E% 2 v|E|? for some v > 0 and for any (x, &) € Q X R” with co-
al =2 .

efficients of class C?(RQ)). ‘
If the conditions (Hy) are satisfied, there exist R = 0, ¢ €1/ 2, 7] such that for
any 1€ C, with |A| =R and |Argl| < ¢, the problem
Au—Qu=F,
(2) { _ /
Yo =g,
has for any fe C%(2), ge C**9(82) a unique solution # belonging to C2*%(Q)
(see [7, ch. 31); it is of fundamental importance for parabolic problems to estimate how

the norms |||, 5 and ||#|; 1 6, 5 depend on the data and the parameter ; the following
result is due to Bolley, Camus and P. The Lai (see [2, Theorem 1]):

TurEOREM 1. Assume that the assumptions (Hy) are satisfied, for some 6 €0, 1[; then,
there exist R 20, ¢poeln/2, [, M > 0 such that for any A€ C, with |A| 2R and
|ArgA| < ¢ the solution u of problem (2) with g = 0 satisfies the estimate
(3) A lullom + (AL lullo,z + llullz v 0,3 < MIIfllo,z + [21%2 170 f]lo, 0]

We want to study the following mixed Cauchy-Dirichlet parabolic problem:

BQult,x) = Qult,x) + f(¢t,x), tel0,T] xe,
(4) u(t,x')=g(t,x"), tel0,T], x'€dQ,

u(0,x) = ug(x), xeQ.

More specifically, we shall prove the following result:
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THEOREM 2. Assume that the assumptions (Hg) are satisfied for some 6 €10, 1[; then
problem (4) bas a unique strict solution u belonging to B([0, T1; C2*9(Q)) such that
B,ueB([0,T]; C%(Q)) if and only if the following conditions are satisfied:

(@) uoe C**9(Q);

(6) fe C(10, T1; C(Q)) N B([0, T]; C*(RQ));

(c) geC([0, T1; C*(0R)) NB([0,T1; C2*%(3Q)) N C' ([0, T1; C(8R))
and 3,3 € B([0,T1; C%(0R));

d) 3,g — yfeCY*([0, T1; C(69Q));

(e) youo = g(0);

(f) 9,8(0) =y £(0) = yoCQu,.

We begin the proof of Theorem 2 verifying the necessity of the conditions

(@)-(f):

Lemma 1. Assume that the assumptions (_H o) are satisfied; then, if problen (4) bas a strict
solution u belonging to B([0, T1; C?+%(Q)) with d,u € B([0, T1; C°(R)), the conds-
tions (a)-(f) are all satisfied.

Proor. The only condition which is not obvious is (d); it is easily seen that one has
3,8 = Yo/ = yoQu; now, one can verify that # is Lipschitz continuous with values in
C%(Q); as C*(Q)e], —6)2 (C?(Q); C?*9(RQ)), we have that e C%?([0, T];
C?(R)), which implies immediately the result.

We set now
D):={ue N W22 (Q)| Qu e C(Q), you = 0},
sp< 0

Au = Qu for any u € D(A). It was proved by Stewart (see [11]) that A generates an ana-
lytic semigroup {T(#)|¢ = 0} in C(£), which is not strongly continuous in 0. We use
this fact to prove the uniqueness:

Lemma 2. Under the assumptions (Hg), for any feC([0,T]; C(RQ)),
geC([0, T1; C(3RQ)) problem (4) has at most one strict solution.

Proor. Consider (4) with all data vanishing. A strict solution # of (4) clearly belongs
(in this case) to C([0, T1; D(A)) N C' ([0, T1; C(R)); from [11] we have that neces-
sarily #(¢) = 0.

The following lemma is the crucial step of the proof:

LeMMA 3. Assume that the assumptions (Hg) are satisfied for some 0 €10, 1[ and,
moreover, fe C([0,T]; C(R)) NB([0,TI; C°(R)), y,feC¥?([0,T]; C(39Q)),
¥0 £(0) = 0. Then, problem (4) with uy = 0 and g = 0 bas a strict solution u belonging to
B([0, T1; C2*0(Q)) with 8,u belonging to B([0, T]; C?(RQ)).
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Proor. We start by remarking that the assumptions of Lemma 3 are exactly condi-
tions (4)-(f) in case #5 =0 and g = 0. We set

t

u(t):=jT(t—s)f<s)ds.

0
We recall that, for ¢ > 0,

T(t) = (2mi) ™" Iexp () (A — A)~YdA,
Y

where ¥ is the usual path lying in @(A), joining + ®e "0 to + e for some 6,

eln/2, nl. From Theorem 1 we have that there exists C >0 such that for every
tel0,T], feC?(Q)

(5) IT@Oflo,z + NT@Of2+ 03 < Cllflle,z + 2% o fllo,s0].

We set also, for ¢+ > 0,

T ()= (20) ! fT(s)ds = (2mi)"! Jexp (A" A - A)VdA s
0 Y

we have

©) TV e+ IT @ fllavoa < Clellflloz + 2 =2 | 70fllo, 501
We put

u (2):= IT(t = 5)[f(s) = f()1ds, uy () 1= TV (2) f(2).
0

From (5) and (6), as C*(R) €], 4,,(C?(R2),C**?(Q)) we have
1T =) [fs) = fO] 5 < Cle — )92 1,
which implies that #, € C([0, T]; C2(R)) and that

1T 0 05 < CE A0l + Ivo £, 50)

so that <uzeC([0,T]‘; C2(Q)), taking into account the fact that y,fe
e C([0,T]; C(8R)) and y,f(0)=0. So #eC([0, T]; C*(R)). Set now, for
ee€l0, T[, tele, T],

€

ue(0)i= [ T(t=5) fs)ds;
0
one has that #,e C'([e, T1; C(R)) and, for te[e, T],

4l (8) =T(e) flt — &) + jAT(t —§) f(s)ds.
0
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It is easily seen that ||u(z) — u. ()| cqs, 7.9 — 0 as €= 0" for every 0 €l0, T[,

and in the same spaces u, converges to T(-) f(+) + JT(- —5) f(s)ds; it follows that
#ueC'(]0,T1; C(L)) and for every €10, T] 0

t

u' (1) = T(t) f(£) + jT(t —5) f(s)ds .

0

As y, f(0) =0, f(0) belongs to the closure of D(A) in C(£); this implies that
[ T() f(t) = £(0)]o,g— 0 as #—0" and so # e C' ([0, T]; C(R)). From what we
have already seen it follows also that « is a strict solution of (4) with #, = 0 and g(¢) =
=0, as clearly for every te[0, T] ‘

yoult) = jyoT(f ) As)ds=0.
0

It remains to verify that #» e B([0, T1; C**?(Q)) and 8,2 € B([0, T1; C?(RQ)); the
second condition can be easily drawn from the first, using the first equation in (4).

Remark now, that the first condition can be obtained showing that due
eB([0,T]; C%(RQ)). We have

Au,y (1) = ATV (2) f(2) = T(2) f(2) — f(2),
and, from (5),

IT@) f@) o,z < CUl Ao+ 27" 2llyo fD)]0,00) <C",

for some C' = 0. Finally, we want to estimate || Cz, (¢) ”gyﬁ; to this aim, we recall that
(C(Q), D(A))g/2, » is a closed subspace of C? () (see [1]); we shall show that Ax is
bounded with values in (C(), D(A))g)5, » ; now, with the usual trick of taking as new
unknown quantity e ~*« instead of %, we can assume that {z € C|Re(z) = 0} co(A4), in
such a way we can take y equal to the counterclockwise oriented boundary of {z e
e C||Arg(z)| = 6,} for a suitable 8, e17/2, #l, and sup |EY2A(E —A) 'fllo,5 as

— E>0
norm in (C(£2), D(A))g2, - So we have, for £ >0, te[0, T]

lE92A(E ‘A)klaw(f)“o,ﬁ =

12

= “(Zm')"1 I( Iexp (/1(? —sNAA = E)TAMA —A) T £(s) —f(t)]dzl)ds
0 Y

0,2
From
JAA = A) 7 LAs) = fD]lo,m <

< CLIA 2| Also, T3 co@y + (2 = )" |ly o fllcorao, 13 ciaan]
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we have, for a certain a > 0,

Q2 ()l ic@), Diang s, <

<C 59/2J't rgxp (= ar(t=))r' =92+ )7 dr )ds|| 5o, 13, co@) +
i\
+§9/2f | jltwexpk —ar(t =) r(E+ )7 ar |t =) 2ds\lyo Flcorz o, T3 coonn
o \o
We have
ge/zf rexp( —ar(t —5))r' "2 (E+ )7 dr |ds = D (28),
7 e
ge/zj J exp (— ar(t — ) r(E+r)"1dr |t —s)2 ds = W(tE),
o\ o
with

=]

+
(r)—r"/zj fe““’@ ~92(z6 + o) 'do |0%* ' do,

70/2 ( e ®o(to+0) 'do|o?? ' do,

and it is not difficult to verify that @ and ¥ are bounded in R*.

Proor or Taeorem 2. Let N € £(C(89), C(R2)) be such that y,Ng = g foranyg e
e C(3R) and for every 8" € [0, 2 + 01N co' (50) € L(C? (3R), C? (2)); an operator
with these properties ‘is constructed in[8]. Set v(z):=uy+ N(g(2) — youo);
then v e C1 ([0, T1; C(2)) N C([0, T1; C*(Q)) NB([0,T]; C>*9(Q)) and v e
e B([0, T1; C%(R)); subtracting » from # one reduces oneself to the situation treated in
Lemma 3.
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