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Analisi matematica. — Some results on stochastic convolutions arising in Volterra
equations perturbed by noise. Nota di PriLipre CLEMENT e Giuseppe Da Prato, presen-
tata (*) dal Corrisp. G. Da Prato.

Asstract. — Regularity of stochastic convolutions corresponding to a Volterra equation, perturbed by
a white noise, is studied. Under suitable assumptions, holderianity of the corresponding trajectories is
proved.

Key worps: Stochastic convolution; Volterra equations; Completely positive ketnels.

Ruassunto. — Sulle convoluzioni stocastiche relative a equazioni di Volterra perturbate da un rumore. Si
dimostra la regolarita della convoluzione stocastica relativa a equazioni di Volterra perturbate da un rumo-
re bianco. Sotto opportune ipotesi viene provata 'hélderianita delle traiettorie cortrispondenti.

1. INTRODUCTION

Let H be a separable Hilbert space and let {e;} be a complete orthonormal system
in H. We are concerned with a stochastic version of a linear Volterra equation in H of
the general form:

t
(1.1) ult) = ja(t—r)Au(r)dr+x+g(;), xeH,
0
where A is a linear operator in H, 4 is a locally integrable kernel, and g is an H-valued
mapping.

This equation has been treated by many people in connection with applications to
problems in mathematical physics, such as viscoelasticity and heat conduction in ma-
terials with memory. We refer to J. Priiss [3] for a recent survey.

We shall assume that problem (1.1) is well posed, and we shall denote by S(¢),2 = 0
the corresponding resolvent operator. We recall that (- )x is the solution to (1.1) cor-
responding to g = 0.

In order to take into account random fluctuations, it is natural to consider equation
(1.1) with a very irregular exterior force: g(¢) = W(¢), where W is a cylindrical Wiener
process, or white noise, defined in a stochastic basis (2, &, &, P). We shall take W of
the form

(12) (W), b) = 3 (be)fele),  beH,

where {f.} is a sequence of real valued, mutually independent, Wiener proces-
ses.

For as the kernel 4 is concerned, we shall assume, following Ph. Clément and J. A.
Nohel [1], that a is completely positive, since completely positive kernels naturally arise

(*) Nella seduta del 19 aprile 1996.
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in the applications, see [3]. We recall that ¢ € L. (0, + ) is said to be completely posi-
tive if the solution s(a, +), @ > 0 to the integral equation

!
(1.3) s(t)+aja(t——t)s(t)dt= 1, =20,
4]
is nonnegative and nonincreasing for any a > 0.
Thus, we atrive to the problem

¢

(1.4) X(@0)= [alt = 0)AX(D)dr +x+ W(r), xeH.
0
If e WE.'(0, + ©), we can write problem (1.4) as an integrodifferential equa-
tion
(1.5) dX(s) = |a(0) AX(¢) + Ja "(¢ —1)AX(7)d7 |dt +dW(¢), X(0)=xeH.

0

For the sake of simplicity we shall assume that A is self- ad)omt negative, and diagonal
with respect to the basis {e;}:

(1.6) Aep= —pze,, up>0, keN.

In this paper we will try to extend the semigroup approach of G. Da Prato and J.
Zabczyk [2] to problem (1.4). By definition, a m:ld solution of (1.4) is a process X(¢),
t = 0, adapted to the filtration &, # = 0, such that

t
(1.7) | X(6) = S(e)x + [ S(e ~ 1) dW() .
0
In Section 2, we shall give sufficient conditions in order that this formula be mean-
ingful. Sections 3 and 4 are devoted to prove regularity properties of the stochastic
convolution

(1.8) W, . (t) = j St — 7)dW(r).
0

We notice that, as it was shown in [2] in the case when a = 1, these regulamty proper
ties are important to solve nonlinear equations as for instance

¢
(1.9) X(t) = Ja(t —1)(AX(7) + F(X(7)))dt + x + W(t), «xeH,
0
where F: H— H is a locally Lipschitz continuous mapping.

Applications of our results to linear and nonlinear heat equations with memory, will
be the object of a future paper.
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2. STOCHASTIC CONVOLUTION

We shall assume

Hyroruesis 1. () A is a self-adjoint negative operator. Moreover Ae, = — urep,
ke N, for some positive numbers u,, ke N.

(#) a is completely positive.
(¢1) We bhave

—Tr(A_1)=k§1(1/,uk) <+,

Under these assumptions, it is easy to see that there exists the resolvent S(¢), # = 0
of the deterministic equation (1.1), which is determined by
(2.1) S(t)€k=s(/,t/e,f)€/€, kFeN.

Moreover, the stochastic convolution W, , is given formally by

w t
(2.2) Wii0)= 3 [t = Dedpu (@),

"o
the integrals being intended in the Ito’s sense. In order to prove that the above series is
convergent in L?(8), we first need a lemma.

Lemma 2.1. Under Hypothesis 1 we bave

® t
(2.3) 2 J:z(yk,r)dr< +o, forall t>0,
=1
0
where s(uy,, +) is the solution to (1.3) with a = u,.

Proor. A locally integrable function 4 is completely positive if and only if there exist
Ko =0 and k; e L. (0, + ©), nonnegative nonincreasing, satisfying
(2.4) Koa(t) + (kK *a)(t) =1, t>0,
where * represents the convolution product. The pair (kq, k1) is uniquely determined
by a4, see [3]. Moreover the operator L in L'(0, T) defined by

D(L):={ueL'(0,T): kou+k;*ue W"-1(0,T),(kgu+Kk,;*u)(0)=0},

(2.5) d
== (Kou +K1""u),

dt
is m-accretive and densely defined in L'(0, T). Denoting by w =w(p,¢) the
function
(2.6) w(o,t) = (e " (1)), =0, rel0,T],
one can show that 0 S w(p,?) <1, for all =0, £€[0,T], and
T +
2.7) [ st de = [ =@ (xcgle, T) + (s, +w)(T)) de .

0 0
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We now can prove (2.3). Since s(¢, u) € [0, 1], we have
T T

Js(yk,t)zdts js(uk,t)dz,
0

0
from which, recalling (2.7)

T +
js(ﬂk,z)z & < f e~ (kqwl(o, T) + (k,*w)(T)) do .
0 0 :

Since w(g, ) € [0, 1] we obtain

T + o

T
Js(,u,e,t)zdt < j e“”‘"(KO + Jkl(s)ds)dg =(1/u)
0 0

0

T
Ko+ JKI (s)ds),
0
and the conclusion follows summing up on 4 and recalling Hypothesis 1-(7zz). ®

Now we prove the main result of this section.

Tueorem 2.2. Assume that Hypothesis 1 holds. Then for any t = 0 the series:

i Js(,u,e,t —1)ep dfe(T),
k=1

0

is convergent in L (82) to a Gaussian random variable W, , (t) with mean 0 and covariance
operator Q, determined by

12
(2.8) Q.e. = fsz(/,t,e,r)dre,e, keN.
0

Proor. Set
t
Wi.0= 3 J:(yk,t—r)ekdﬂk(r), neN.
)

If n,pe N we have

t

Is(ﬂk, ¢ —1)dB(7)
0

ﬂ+p

Wi () — WAL (0)]* = , )y

=n+

2

Taking expectation, we find

n+p 3
E(|W3ir ()~ Wi, (0| = 3 ljsz(ﬂ,e,t—z)dr.
=n+
0
In view of Lemma 2.1, this implies that the sequence {W ,(#)} is convergent in
L?(8) to a random variable W, , (¢). Moreover W , (¢) is Gaussian since W3 , (¢) is.
Also we have E(W, ,(t)) = 0 since E(W} ,(¢)) = 0.
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It remains to compute the covariance Cov Wy ,(¢) of W, ,(¢). Since, for any
x,yeH,

(Cov (W (0)%,9) = BUWao 0, X Wau (0,30 = 2[5 (g, 0)dr(x, @), ),

0
the conclusion follows. ®

Exampre 2.3. Assume that H =L?(0, 1), and set
(2.9) Au=D?*u, NueH?*(0,1)NH!(0,1).
Then Hypothesis 1-(¢) holds with
(&) =\2/msinks, &£e[0,1], keN,

and u, = n*k?, ke N. Let moreover

(2.10) at)=e™', t20,
then one has, as easily checked, .
(2.11) s, ) = (L4 ) " [14+pe T s u>0.0

Thus a is completely positive and Hypothesis 1 is fulfilled.

3. HOLDERIANITY OF THE STOCHASTIC CONVOLUTI’ON
We first prove the result.
Prorostrion 3.1, W, , is mean squarc; COntinuous.
Proor. If t > 7> 0, we have
[Wa,a(8) = Wa o (0) ]2 = [ Wy o () = |Waa(D)|? = AW, (8) = Wy ,(2), Wy, (2)).
Since Wy ,(¢) — Wy ,(t) and W, ,(7) are independent, we have
G.1)  E(|Wa, ()~ Wy, (0]*) =

= E(IWA,a(t)lz) - E(|WA,a(‘[)|2) zkgl Jsz(/uk, O)da>

and the conclusion follows from (2.3). ®

We now want to prove almost sure holderianity of W, ,. For this we need an addi-
tional assumption

Hyrotuesis 2. There exists 0 €10, 1[ and Cy > 0 such that, for all 0 < 1 <t we

bave
t

(3.2) fsz(,u, 0)do < Cou®~ 1|t —7|?,
(3.3) J[s(/t,r—a)—s(/t,t—a)]zda$C9y9_l|t~1:|0
and 0

(3.4) Ul l< 4o,

1

1 Ms

k
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Remark 3.2. If the kernel 4 is completely positive, inequalities (3.2) and (3.3) of
Hypothesis 2 holds for any 6 € [0, 1].

ProposiTioN 3.3. Under Hypotheses 1 and 2, for every positive number o < 0/2, the
trajectories of W, , are almost surely a-Hélder continuous.

Proor. By (3.1), taking into account (3.2) and (3.3), we have
E(|Wy ,(t) — Wy, (0)|?) < Cy 121 ul =t —r|°.

Since, by Theorem 2.2, W, ,(¢) — W, ,(7) is Gaussian, then for any 7 € N, there
exists a constant C,, > 0 such that

E(|Wy,,(¢) = Wy, (2)|*) <C, [C"El uz-l] |t — 7|7

Choosing # such that 726 > 1 and applying the Kolmogorov test, see e.g. [2], we find
that W, , is a-Holder continuous for @ = 6/2 — 1/(2m). The conclusion follows from
the arbitrariness of . ®

ExampLE 3.4. We use here notation from Example 2.3. We want to check that Hy-
pothesis 2 is fulfilled. Since (3.3) obviously holds, it remains to prove (3.2).

Let £ > 7> 0, then from (2.11) we have
t

Jsz(ﬂ, 0)do=(1+u)2[(t — 1) + 2u(1 + pu) (e HHMT — g=Utmry 4

T

+‘u2.(2(1 +ﬂ))—1(e—2(1+,u)r _ €—2(l+,u)t)] )
Let Cy be such that »
e —e | <Cola—Bl¢, a,B=0.
Then we have

Jsz(ﬂ, o)do<(1+u) 2[(t—1)+2u(1+ u)? 'Colt —7|% +

+u?(2(1+p)0)712°Cy |t — 7]%].
Thus (3.2) is fulfilled.

4. HOLDERIANITY OF THE STOCHASTIC CONVOLUTION IN SPACES
OF CONTINUOUS FUNCTIONS

We assume here that H = L?(0), where O is a bounded open subset of R”.
We set Wy ,(¢)(&) = Wy , (¢, &) and write the stochastic convolution as

(4.1) Wy (2, 8) =ki1 JS(uk,t—r)ek(E)dﬂk(f)-
=
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We want to prove that W, ,(#, &) is Holder continuous in # and £ For this
we need an additional hypothesis

Hypotuesis 3. There exists M > 0 such that

lee (§)] <M, keN, £eO,
{ |Ve, (E)| < Mul/?, keN, £Ee0.

Note that if Hypothesis 3 holds then, by interpolation, for all # €10, 1[ there exists
Mg > 0 such that

(4.3) lex (&) —en(n)| < Mpul/?|E-n|®, keN.

TueOREM 4.1. Under Hypotheses 1, 2, and 3, the trajectories of Wy , (¢, ) are almost
surely a-Holder continuous in (¢, &) for any a €l0, 1/4[.

(4.2)

Proor. We first note that, arguing as in the proof of Lemma 2.1, we find
P ¢
(4.4) kZ Iugsz(uk, 0)do < + ® .
=1
0

It follows that there exists Ny > 0 such that
(4.5) |Wa,a(t, &) = Wa (6,m)| <Ng|E—7|°,  6€l0, 1L.

Moreover, arguing as in the proof of Proposition 3.1 we find that there exists N; o > 0
such that

(4.6) E|W4,(t,8) —Wy,(r,8)|*< Ny olt—7|%, 6€l0,1[, £7>0.
By (4.5) and (4.6) it follows that, for some constant N, 4
4.7)  E|Wa,(t,8) — Wi, (r, D] SNy o[|E—n|?+ |t —7|?12,  6€lo, 1I.
By the Kolmogorov’s test, see [2], we arrive at the conclusion. ®
RemaRrk 4.2. It is easy to see that the functions {e.} defined in Example 2.3 fulfill

Hypothesis 3. Moreover in Example 2.3, the kernel a(¢) = e ™ can be replaced for in-
stance by any locally integrable, positive, decreasing and log convex function.
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