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A n a l i s i m a t e m a t i c a . — Some results on stochastic convolutions arising in Volterra 

equations perturbed by noise. N o t a di P H I L I P P E C L é M E N T e G I U S E P P E D A P R A T O , presen­

t a t a ! " ) dal Corr i sp . G . D a P r a t o . 

ABSTRACT. — Regularity of stochastic convolutions corresponding to a Volterra equation, perturbed by 
a white noise, is studied. Under suitable assumptions, hòlderianity of the corresponding trajectories is 
proved. 

KEY WORDS: Stochastic convolution; Volterra equations; Completely positive kernels. 

RIASSUNTO. — Sulle convoluzioni stocastiche relative a equazioni di Volterra perturbate da un rumore. Si 
dimostra la regolarità della convoluzione stocastica relativa a equazioni di Volterra perturbate da un rumo­
re bianco. Sotto opportune ipotesi viene provata l'hòlderianità delle traiettorie corrispondenti. 

1. INTRODUCTION 

Let H be a separable Hilbert space and let {e^} be a complete orthonormal system 
in H. We are concerned with a stochastic version of a linear Volterra equation in H of 
the general form: 

t 

( H ) u(t) = I a(t - x)Au{x)dr + x + gU), x e H , 
o 

where A is a linear operator in H, a is a locally integrable kernel, and g is an H-valued 
mapping. 

This equation has been treated by many people in connection with applications to 
problems in mathematical physics, such as viscoelasticity and heat conduction in ma­
terials with memory. We refer to J. Priiss [3] for a recent survey. 

We shall assume that problem (1.1) is well posed, and we shall denote by S(t), t ^ 0 
the corresponding resolvent operator. We recall that S(')x is the solution to (1.1) cor­
responding to g = 0. 

In order to take into account random fluctuations, it is natural to consider equation 
(1.1) with a very irregular exterior force: g(t) = W(t), where W is a cylindrical Wiener 
process, or white noise, defined in a stochastic basis (Q, $, $n P). We shall take W of 
the form 

(1.2) (W(t),h)= Ì (h,ek)pkit), heH, 
k = l 

where {/3k} is a sequence of real valued, mutually independent, Wiener proces­
ses. 

For as the kernel a is concerned, we shall assume, following Ph. Clément and J. A. 
Nohel [1], that a is completely positive, since completely positive kernels naturally arise 

(*) Nella seduta del 19 aprile 1996. 
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in the applications, see [3]. We recall that a e L\oc ( 0, + °° ) is said to be completely posi­
tive if the solution s{a, •)> a > 0 to the integral equation 

(1.3) s(t) + ala(t~-x)s(x)dx=ly t^0y 

0 

is nonnegative and nonincreasing for any a > 0. 
Thus, we arrive to the problem 

(1.4) X(t) = [ * ( / - x)AX{x)dx + x + W(t), x E H . 
o 

If a e WfocMO, + oo ), we can write problem (1.4) as an integrodifferential equa­
tion 

(1.5) dX(t) a(0)AX(t) + I V (t - x)AX{x)dr dt + dW(t), X(0)=xeH. 

For the sake of simplicity we shall assume that A is self-adjoint, negative, and diagonal 
with respect to the basis {e^}: 

(1.6) Aek=-[tkeky / ^ > 0 , ksN. 

In this paper we will try to extend the semigroup approach of G. Da Prato and J. 
Zabczyk [2] to problem (1.4). By definition, a mild solution of (1.4) is a process X(t), 
t ^ 0, adapted to the filtration &n t^0, such that 

t 

(1.7) X(t) = S(t)x+[S(t-x)iW(x). 
0 

In Section 2, we shall give sufficient conditions in order that this formula be mean­
ingful. Sections 3 and 4 are devoted to prove regularity properties of the stochastic 
convolution 

t 

(1.8) WA,a(t) = \S(t-T)dW(r). 
0 

We notice that, as it was shown in [2] in the case when a = 1, these regularity proper­
ties are important to solve nonlinear equations as for instance 

(1.9) X{t)= la(t-x)(AX(x)+F(X(x)))dx + x + W(t), x e H , 
o 

where F: H—>H is a locally Lipschitz continuous mapping. 
Applications of our results to linear and nonlinear heat equations with memory, will 

be the object of a future paper. 
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2. STOCHASTIC CONVOLUTION 

We shall assume 

HYPOTHESIS 1. (/) A is a self-adjoint negative operator. Moreover Aek — — ftkek> 
k e N , for some positive numbers ftj,, k e N . 

(//) a is completely positive. 

{Hi) We have 
00 

-TrW"1)= 2 (1/ftkX +*..-
k = i 

Under these assumptions, it is easy to see that there exists the resolvent S(t), t ^ 0 

of the deterministic equation (1.1), which is determined by 

(2.1) S{t)ek = s{fA,kyt)ek> keN. 

Moreover, the stochastic convolution WA,U *S given formally by 
00 / 

(22) WAtA*)= 2 \s(ptkyt-r)ekdl3k(r)y 

o. 
the integrals being intended in the Ito's sense. In order to prove that the above series is 
convergent in L2(Q), we first need a lemma. 

LEMMA 2.1. Under Hypothesis 1 we have 

(2.3) 2 \s2(uk>r)dr< + oo forali / > 0 , 
o 

where s{fi^y •) & róe solution to (1.3) «;//& a — ftk-

PROOF. A locally integrable function a is completely positive if and only if there exist 
K0 ^ 0 and Ki eLioc(0, +<*>), nonnegative nonincreasing, satisfying 

(2.4) ffotfW + (#i **)(*)== 1, f > 0 , 

where * represents the convolution product. The pair (A*0, KX) is uniquely determined 
by ay see [3]. Moreover the operator L in L1(0,T) defined by 

D(L):= {u e L1 (0, T): K0U + Kx*ue Wh l (0, T), (*0« + ^*u) (0 ) = 0} , 
(2.5) 

Lu\- — (K0U + KX*U) , 

is #z-accretive and densely defined in L^O, T). Denoting by w = w(g,t) the 
function 

(2.6) ^(e,r) = (é>-eL(i))(o, -e^o..,- f e [ o , T ] , 

one can show that 0 ^ W(Q, t) ^ 1, for all Q ^ 0, t e [0, T] , and 
T +00 

(2.7) Jj0«4,f)<&= J e-<*»(K0w{Q, T) + (K^w)(T))dQ. 
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We now can prove (2.3). Since *$(/,/*) G [0 ,1 ] , we have 

T T 

js(f*k,t)
2dt^ \s(iAk,t)dt, 

0 0 

from which, recalling (2.7) 

T • +oo 

js(/ik9t)
2dl^ J" e-^(K0w(Q,T) + (K^w)(T))dQ . 

0 0 

Since W(Q, t) G [0, 1] we obtain 

js([ik,t)
2dt^ J e-™*IK0+ jKl(s)ds\de-(l/pk)lKQ + JK1(s)dsV 

and the conclusion follows summing up on k and recalling Hypothesis l-(iii). • 

Now we prove the main result of this section. 

THEOREM 2.2. Assume that Hypothesis 1 holds. Then for any t^- 0 the series-. 

S \s(/tk,t-r)ekdpk(T), 

o 
is convergent in L2(Q) to a Gaussian random variable WAyU (t) with mean 0 and covariance 
operator Qt determined by 

t 

(2.8) Qtek = js2(/uk,T)dtekj keN. 
o 

PROOF. Set 

• ' » t 
WlAt)= E \s(/,k>t-t)ekdl3k(r), neN. 

k = l J 
o 

If n, p G N we have 

m;/(t)-wiAt)\2= 2 \\s(fik,t-T)d/3k(T) 2. 
k=n+1 J 

0 

Taking expectation, we find 

E(\WlV(t)-Wla(t)\
2)= E [ * 2 ( / W - r ) i r . 

o 

In view of Lemma 2.1, this implies that the sequence {WA>a(t)} is convergent in 
L2(Q) to a random variable WA>a(t). Moreover WA>a{t) is Gaussian since WA)a(t) is. 
Also we have E{WAtû(t)) = 0 since E(W2f,(f)) = 0. 
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It remains to compute the covariance Cov WA>a{t) of WAya(t). Since, for any 
x,yeH, 

00 t 

{Cov{WA,a{t))-x,y) = E({WAta{t),x){WA,a{t),y))= 2 \s2(fik, t) dt(x, ek)(y, ek), 
k = 1 J 

o 
the conclusion follows. • 

EXAMPLE 2.3. Assume that H = L 2(0, 1), and set 

(2.9) Au=D2u, V*/eH2(0, D f l H j f O , 1). 

Then Hypothesis l-(i) holds with 

ek(%) = ^Jlfrtsin££, £ e [ 0 , l ] , , * e N , •. 

and / ^ = 7t2k2
 y k&N. Let moreover 

(2.10) * ( / ) = * - ' , ; ^ 0 , 

then one has, as easily checked, 

(2.11) ^ , ^ = ( i + ^ r 1 [ i + ^ - ( 1 + ^ u ] , t,v>o. 

Thus a is completely positive and Hypothesis 1 is fulfilled. 

3. HÔLDERIANITY OF THE STOCHASTIC CONVOLUTION 

We first prove the result. 

PROPOSITION 3.1. WA>a is mean square continuous. 

PROOF. If t > x > 0, we have 

\WA>a(t) - WAia(r)\2 = \WAia{t)\2 - \WAJr)\2 - 2{WAaU) ~ WAitM, WAtt(r)). 

Since WAa(t) — WA>a(x) and WA>a{x) are independent, we have 

(3.1) E(\WA>a(t)-WA>a(x)\2) = 
00 / 

= E(\WAa(t)\
2)-E(\WA>a(T)\2)= 2 \s2(ftk>a)day 

k = l J 
T 

and the conclusion follows from (2.3). • 

We now want to prove almost sure hòlderianity of WAa. For this we need an addi­
tional assumption 

HYPOTHESIS 2. There exists 0 e]0, 1[ and Ce > 0 such that, for all 0 < x < t we 
have 

t 

(3.2) \s2(fi,o)do^Cefi
e-1\(-T\6, 

X 

X 

(3.3) ^bin, r - o) - s{fi, t - a)f da ^CeHe'l\t-x\e 

and 
oo 

(3.4) 2 fil'l< + o o . • • •• 
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REMARK 3.2. If the kernel a is completely positive, inequalities (3.2) and (3.3) of 
Hypothesis 2 holds for any 0 e [0, 1]. 

PROPOSITION 3.3. Under Hypotheses 1 and 2, forevery positive number a < 0 /2, the 
trajectories of WAa are almost surely a-Hòlder continuous. 

PROOF. By (3.1), taking into account (3.2) and (3.3), we have 

E(\wA>a(t)-wA)a(T)\2)^cd £ fiBrl\t-T\9. 

Since, by Theorem 2.2, WA>a{t) — WA>a(r) is Gaussian, then for any m e N , there 
exists a constant C^> 0 such that 

E(\WA>a(t)-WA,a(r)\2m)^Cm Ce 2J l*k 
k = i 

> - r | mB 

Choosing m such that mO > 1 and applying the Kolmogorov test, see e.g, [2], we find 
that WA>a is a-Holder continuous for a = 6/2 - I/{2m). The conclusion follows from 
the arbitrariness of m. • 

EXAMPLE 3.4. We use here notation from Example 2.3. We want to check that Hy­
pothesis 2 is fulfilled. Since (3.3) obviously holds, it remains to prove (3.2). 

Let t > r > 0, then from (2.11) we have 

ls2(M,o)da = (1 + fi)-2[(t - r) + 2fi(l + fi)-l(e-{l+f,)T - e-(1+t,)t) + 
T 

+ / / 2 - ( 2 ( l + / * ) ) ^ 

Let CQ be such that 

\e-a-e~V\^CQ\a-$W a , £ ^ 0 . 

Then we have 

\s2{ixya)do^ (1 + [i)~2[{t-r) + 2/*(l + iJi)e-lCe\t - x\6 + 

\fi
2{2{l^^-e)-l2eGe\t-x\e\. 

Thus (3.2) is fulfilled. 

4 . HÒLDERIANITY OF THE STOCHASTIC CONVOLUTION IN SPACES 

O F CONTINUOUS FUNCTIONS 

We assume here that H = L 2 (0) , where O is a bounded open subset of W. 
We set WA>a(t)(%) = WA>a{t, £) and write the stochastic convolution as 

00 t 

(4.1) WAtAt,Ç)=I, \s(f*k,t-T)ek(ï)dl3k(T). 



(4.2) 
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We want to prove that WA$a(t,£) is Holder continuous in / and £ For this 

we need an additional hypothesis 

HYPOTHESIS 3. There exists M > 0 such that 

f\ek(Ç)\<M9 keN,- | e 0 , 

{ | V ^ ( | ) | ^ M / / | / 2 , £ e N , § e O . 

Note that if Hypothesis 3 holds then, by interpolation, for all 6 e]0, 1[ there exists 
Ma > 0 such that 

(4.3) \ek{è)-ek(ti)\^M9p
e
k'

2\Ç-y\e, keN. 

THEOREM 4.1. Under Hypotheses 1, 2, #/z<i 3, /£e trajectories of WAtû(tt £) <m? afco^ 
j&re/j a-Holder continuous in U, £ ) /or ^^j a e]0, l /4 [ . 

PROOF. We first note that, arguing as in the proof of Lemma 2.1, we find 

t 

(4.4) E Ufc2(0*,<j)</a< +00 • 
o 

It follows that there exists Ne > 0 such that 

(4.5) ^ . « ( ^ - ^ ( / . « / J l ^ N ^ - i / l * , 0 e ] 0 , 1[. 

Moreover, arguing as in the proof of Proposition 3.1 we find that there exists Nie> 0 
such that 

(4.6) E\WAt4(t,ë)-WA,a(T,Ç)\2<Nlte\t-T\e
9 0 e]0, 1[, t,r>0. 

By (4.5) and (4.6) it follows that, for some constant N2)e 

(4.7) Ê | ^ , . ( ^ ^ ) - ^ . ( r , / ; ) | 2 ^ N 2 , 0 [ | | - ? 7 | 2 + | ^ - r | 2 f / 2 , 0e]O, 1[. 

By the Kolmogorov's test, see [2], we arrive at the conclusion. • 

REMARK 4.2. It is easy to see that the functions {e^} defined in Example 2.3 fulfill 
Hypothesis 3. Moreover in Example 2.3, the kernel a(t) = e ~l can be replaced for in­
stance by any locally integrable, positive, decreasing and log convex function. 
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