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~ Analisi matematica. — On the homogenization of the Poisson equation in partially
perforated domains with arbitrary density of cavities and mixed type conditions on their
boundary. Nota (*) di Orca A. OLENIK e TaTiana A. SHAPOSHNIKOVA, presentata dal

Socio O. A. Oleinik.

Asstract. — In this paper we study the behavior of solutions of the boundary value problem for the
Poisson equation in a partially perforated domain with arbitrary density of cavities and mixed type condi-
tions on their boundary. The corresponding spectral problem is also considered. A short communication of
similar results can be found in[1].

Key worps: Homogenization; Poisson equation; Perforated domains; Mixed type conditions; Spectral
problem.

Ruassunto. — Sull’omogeneizazione dell’equazione di Poisson in domini parzialmente perforati con arbi-
traria densita delle cavita e condizioni di tipo misto sul loro contorno. In questa Nota viene studiato il compor-
tamento delle soluzioni del problema ai limiti per I'equazione di Poisson in un dominio parzialmente perfo-
rato con arbitrarie densita delle cavita e condizioni di tipo misto sul loro contorno. Viene anche considerato
il corrispondente problema spettrale. Una breve comunicazione di simili risultati si trova in [1].

INTRODUCTION

Homogenization problems in a partially perforated domain with the Dirichlet, Neu-
mann and mixed conditions on the boundary of cavities were considered in [2-10].

Boundary value problems in perforated domains were studied in [11,12], and also
in monographs [13-18]. In these books one can find an extensive bibliography for this
subject. Note also that monograph [18] is one of the first investigations on the prob-
lems of homogenization in perforated domains.

1. — Let 2 be a bounded domain in R} with a smooth boundary 99,
Q={xeR!,0<x,<1,7=1,...,n}, Gyis adomain in Q such that G, c Q and G is
diffeomorphic to a ball. We denote

y=QN{x:x;=0} =20, Q"=Q2N{x:1x;>0}, Q2 =8N {x:x <0},
G, = UZ(ugGo+ez), a.,GyceQ,

where ¢ is a small positive parameter, 4, is a positive number which depends on & and
a,— 0 as €—0, Z is the set of vectors z with integer components.

(*) Pervenuta all’Accademia il 24 ottobre 1995.
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We set
Q:=Q+\5€’ YE=£Q\aEG07 SOZaGO> ‘Q.?:‘Q:UQ_U)/)
S, =0R2,NQ, r,=02N3Q,, oB={x:a 'xeB},

(#)y = o] ! Judx, where | |is the volume of the domain w .

In the partially perforated domain £, we consider the next boundary value
problem:

(1)

Au, =f in 2,, u,=0 on I,
{8u8/8v+bu€=0 on §,,

where v is a unit exterior normal vector to S,. For simplicity we assume that
b = const >0, f e L,(2). For the existence and uniqueness of solutions to problem
(1) see [26]. As usual we denote by H, (R, I';) the space of functions which is obtained
by completion of the set of infinitely differentiable in € functions #(x) equal to zero in
a neighborhood of I'y, by the norm H,(R):

el ) = I(”2+ |Vu|?)dx, where Vu = (—?ﬂ— Ou )

s aeey
9 ax] axn

We consider a weak solution #, € H, (Q,, I',) of the problem (1) and study the be-
havior of #, as ¢ — 0.
We need some auxiliary results.

Lemmva 1. If w e H (Y,), (#)y, = 0, then

2) el v,y < Kl Vall, v, »

where all constants K; here and in what follows do not depend on .
Lemma 2. If e H,(Y,), then

3) ledl, 0,500 < Ko{az = te " ullf, v,y + aclVulR, v, } 5

if =3, and

In -£

@ s, <K, [ i+ a0 Hwnam)},

&

if w=2.

Proofs of these lemmas can be found in [8].

Remark 1. Let e H, (2,, I',). We consider the set Y, of cells Y, + ¢z, ze Z,
which intersect the boundary 92. This means Y, + ex N 92 = #. We consider the
function

_ u, ifxef,,
“T 0, ifxeY,\Q.

It is easy to see thatz € H, (2, U Y,) and we can use Lemma 2 for every cell from
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Y,. Summing over all cells, which belong to 2, U Y, we obtain the estimates
(5) I, 5, < Ko {az ™ e ull o) + acllValf, o)}

if » =3, and

I T A A L
if =2

LemMma 3. If ue H,(2,,T,), then
(7) lell, o) < Kye? {alt =2 |ullyis,) + a2 =2 | Vallp, 0} 5

if =3, and

”V””Lzm; )} )

(8) l#lle,07) < Kse [ﬂe"l/z l#lle,s,) + 4/ [ In ZL
dé‘

if n=2.

We shall give the proof of Lemma 3 in the appendix.

2. - Letal "e"—>0as e—=0, fe L,(R) and # = 2.

Let us introduce the function v € H,(Q2 ™) as a weak solution of the problem
9) Av=f in Q" , v=0 on dR .

Proof of the existence and uniqueness of a weak solution v € H, (2 ™) of the
boundary value problem (9) is a consequence of the Lax-Milgram theorem. It is proved

in [20] that v € H, (2 ~ ). Now we define a function w, as a weak solution from the
space H,(2,, ;) of the problem:

(Aw, =0, xeQ UQS,

S +bw, =0, xeS§,,
v
(10) <w£=0, xel,,
[w]],=0,
ow, _
L aXl y 3x1 x1=—0,

where [@]|pe, =@|p+o— @|p-o for any point P ey and any function ¢.

The existence and uniqueness theorem for the problem (10) can be obtained from
the Lax-Milgram theorem. Taking in the integral identity for the problem (10) the sol-
ution w, as a test-function we obtain the equality

)

¢ axl

dx

x;1= -0

(11) J Iwas|2dx+wafdxx=—Jw
Qrue- Se 4

where ¥ = (x5, ..., x, ). By virtue of the Friedrichs inequality and the imbedding theo-
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rem for w, e H; (2,002~ N 3INX), we have

(12) w2, < Ke (lwelf,0-) + IVewe R, 0-)) < Ko |V, |, 0,) -
From (11) and (12) we deduce
(13) IVewell, 0. < Kg,  Nwelli,i,) < Ks.

From Lemma 3 and inequalities (13) we obtain the estimate
(14) ”we”Lz(!):) < KygM(e, #),

where M(e,n) =al'~"/2¢"/2 Let @, be an extension of w, on G,N R such

that

@I, o) < Kinllwelby0r) s IVet@ell, o+ < Kiz IVewellL 08 ) -

The construction of such a function w, is given in [13]. Then using the imbedding
theorem, we obtain the estimate

(15) ”wean(}’) SKBMI/Z(E;n)'
Now we prove for the function w, the inequality

(16) wellLy0-) < Kigllwe 0 -) = Kuallwe |, ) -

Indeed, let V, e H,(£2 ™) be a solution of the problem

(17) AV, =w,, xeQQ ; V,=0, xedQ ™.
It is obvious that the following relation is valid
, Vv, Ow,
J(ngV,S -V, 4w, )dx = f (ws — =V, —|ds.
ov v
Q" Ell
From this equality we deduce the estimate
v,
(18 bt < ] ol
We prove that for V, the following inequality is valid
(19) Vel o) < Kis e, o) -

For this let us introduce the mapping I,: H,(2 ™) — L,(£2 7)) such that
Ig (Vg) = ws b

where V, is a solution of the problem (17).

Taking into account that we have the uniqueness theorem in the space H; (2 ™) for
the problem (17) we can conclude that I, is a one-to-one correspondence. In addition,
it is easy to see that the following estimate is valid, ‘

el 2-) < KigllVe by o) -

Therefore, by the Banach theorem [19] the estimate (lé) is valid.
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By virtue of the imbedding theorem we obtain

(20) H o) < Ky [Vellt, o)

From inequalities (18)- (20 we get the estimate (16).
Thus, taking into account (15) and (16) we deduce

el i0-) < KigMY2(e,n).
From (11) and (15) we obtain
IV,well, 0, < KisM 2 (g, n).

Thus we have

Lemma 4. Let w, be a weak solution of problem (10), w,e H,(2,,T,).
Then

(21) {“ws||L2(9:) < KyM(e, 7),
el ) + IVewe i, @) SKyM V2(g,n).
We set
P {f , xeQF,
0, xefQ~

We introduce the function v, € H,(Q,, ') as a weak solution of the prob-
lem
Av,=f", xef,; v,=0, «xel,;
(22) ov,
v
The existence theorem in the space H, (2, , I',) for the problem (22) can be de-
duced from [26]. Now we derive estimates for the solution v,.
Using the integral identity for problem (22) and the Friedrichs inequality for the
functions of the space H,(R2,, I',)[13], we obtain

=0, «xes,.

(23) Vvl + el < Kaa -
From Lemma 3 and inequality (23) we have the estimate
(24) ”ve ||Lz < K23 M(E ”)

From the estimate (24), the Frledrlchs inequality and the integral identity for », we
get

(25) locll -y + Voo lly e, S KosM Y2 (e, 1)
Thus we have

Lemma 5. Letv, e H, (R,, I',) be a weak solution of the problem (22). Then esti-
mates (24), (25) are valid.

By virtue of the uniqueness theorem for a weak solution of problem (1) we have the
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representation

U, =v,+tw,+v in 27,
(26) ) .
. =w, + o, in 7.

Therefore, from Lemmas 5 and 6 and representation (26) we obtain for the case

al™"e" >0 as e—>0

Tueorem 1. Let u, € H, (R,, I',) be a weak solution of problem (1), v e H,(2 ™)
be a weak solution of problem (9) and 4! ~"¢” — 0 as ¢ — 0, (# = 2). Then the follow-
ing estimates are valid

{”uean(Q:) s K25M(8; ”) )

lte = vl 0-) + ”Vx_ue I, 0) < Ky \/M(S, n),

where M(e, n) = Val "e".

3. — Let gl "e"— ®© as £ —0.
We define function v, as a smooth solution of the boundary value problem
(27) dvy=f in Q, v,=0 on oRQ,
where f e C*(R), a > 0.
We set w, = u, — vy. According to the definition of the functions #, and v,
w,e H (2,,T,) is a weak solution of the problem
Aw, =0 in Q,
w,=0 on ,,
vy

(28) 2
* +bw, = —(—-— +b1)0) on S, .

ov ov

Using the integral identity for problem (28) and taking w, as a test-function, we ob-
tain the equality

Y
(29) f|vxw512dx+bjw3dsx=—J(a—V° +bvo)wedsx.
2 Se S

13

Taking into account Remark 1 and the Friedrichs inequality for space H; (2., I',),
we get

30) el s, < Koy (IM(e, 2)1 7w |1, ) + Va, |V,w, I, 06)) <
< Ky ([M(g, m)] ™" + Va,) IV, e, e.) »

if » =3, and

In =& I)”waean(Qs) >

(31) llwelimss)SK29([M<e,n>]-1+ a,|In 55

if n=2.
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Therefore, from (29) and inequalities (30), (31) we deduce
e llry o) < Kso (Vae + [M(e,m)17")

if n=3,

3

In

+ [M(s,n)]‘l),

”we ”HI(.Qe) < K;x( de

&€

if n=2.

THeOREM 2. Let f € L, () and 2 be a domain in R} with a smooth boundary 99, #,
be a weak solution of problem (1), v, be a smooth solution of problem (27); a; ~"&” — ®
as € > 0. Then the following estimates are valid

llee = voler, (2,) < Ks, (Va, + [M(g, n)]71),

if » 23, and

&

In

+ [M(S,n)]_‘),

llee = voler, 0, < Kss( a;
&

if n=2.

4. — Now we assume that 2! ~"¢”— C, as €¢— 0 and C, = const > 0.
We introduce the functions @, (x) as the solution of the problem

90,
R
(0:)y,=0, 6, is e-periodic function,

A0, =u, inY,, -b onaS,,

(32)

where u, = const which is defined from the solvability condition of problem (32),
that is

U, meas Y, = —bmeas(a,5,).
From here we have

b(a.e”!) measS, meas G,

(33) wp.=- AmeasSo -

Co Co(1 = (a,€71)" meas Gy)
(a? le™ —Cy')bmeasS, b
- = — L measS, + A, (al""e" = Cy) + B.(a,e 1),
1~ (0.6 ') meas G, C. meas S, (a; "¢ o) (a )

where |A, | <Ay, |B.| <B, and Ay, B, are constants, which do not depend on e.
Note that 4,6 ! —0 as £ — 0 since (z,¢ ') ~Cl 'a, as e —0.
We define also the function Nf(y) (y =xe~';7 =1, ...,7) as a solution of the
problem

ANE=0 ine 'Y NF _ 1§
GNF= ine'Y,, —Z-=-v; onead,

(Nf )5_1Y5 =0, N/ is 1l-periodic function.

(34)
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In addition we introduce the function #, (x) as a smooth solution in Q" and @ of
the problem

(35)

Axuozf in @7, Axuo'l',u()llo:f in .Q+,
uy=0 on 0Q,

where u, = —(bmeas$S,)/C,.
Problems of this type were considered in papers [21-23]. In the case of the bound-
ary value problem

Au,=f inQ,, Q={x:0<x<1,/=2,...,n, —1<x,<1}
with the boundary conditions
#,=0 for x, = =1 and for x;, =1, #, is a 1-periodic function in x = (x,, ..., x,)

the results, obtained above, are valid. For this problem the solution #,, corresponding
to the problem (35), exists and has the regularity properties which we need below. It
follows from theorems proved in [24].

Using the integral identity for problem (32) and also Lemma 1 and Lemma 2, we
obtain

”Vxesuiz()’{) s K34d€” R 'IOEHLZ(aESO) S

S Kssar e 2t + a2 ?)|V, 0, L, v, < Kseal 2|V, 0|, v,
since a? " 'e 2" 1 < g2 for small ¢, if » =3, and
||VX0€||%2(Y5) SI<37 (as +a, vln(€/2d£ ))”Vxeelle(Yg) s K38as V ln(e/Zda)”VxeS“Lz(YS) >
if n=2.

From here and from Lemma 1 we get the following estimates

-

V0.l < Ksoa?/?, [0, v,) < Kyeal'?
if =3, and

V0.l v, < Kyae Vin(e/2a,), 0., S Kpea, \/ln(f/z%) )
Lif w=2.

From Lemma 2 and (36) we deduce

>

(36) 1

(16 ll., 07 ) < Kipa™?e /2" 1,

Vo0 ly0r) < Kug(aee )72, [0eliis,) < Kgal” " V2672,

if =3, and

16,05 ) < Kigae \/1}?(;72—4:),

HVxOgHLz(.Q:)$K47(dg/28)\/1_n(£/—2‘le), 16, |15, < Kigale *In(e/2a,),
Lif »=2.

Thus we have

(37) 1
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Lemma 6. Let ¢! 7e”—>C, as € —>0 and C, = const > 0, and let 6,(x) be
a solution of problem (32). Then estimates (36) and (37) are valid.

For the solution N/ we have the following propositions. They are proved
in [8].

(38) INElle, v, + IV NF I, v, < Kyal'?,
IN£llz, o) + 1V, Nf o) < Kso (e ™" )72,
if =23, and
(39) INF Ny v,y + IV, NF I, v, < Ksiae Vin(e/2a,),
INF Nl + IV, NF L, 08 ) < Ks; (24, /€) Vin(e/2a,),

if n=2.

Now we define the function @, (x;) e C*(R}), ¢, =0 for x; < agp¢, ¢, =1 for
X 22406, 0< @, <1, |@,| Sboe ', |§,| < b e ? and the constant a, is chosen in
such a way that ¢, =1 for xe §,.

We set

3
= (14+9.0)u+eNfp, =2 | xeQFNQ".
ax]-

Here and in the following we use the usual convention of repeated indices. It is easy
to see that g, = u} — u, is a weak solution of the problem

Ags =A£(aelan8” - CO)”O(pe +.us((pe - 1)”0 +B£(ds’£_l)ﬂu0(ps + ¢£05u0 +

36, Buy ON/ Bu,
+2¢ 1y —= + 26,60 +2 + =
2¢€u0 axl PeU, a X, (pe(v 067 V uO) (peo AuO + 2(pe ayl axj
aN’S azuo auo azu a azuo
—_t 4+ e .Nf — 7 £ + = £
YOy, By PN g TN R Y e (VP B )

in Q) where the derivatives in the last term are considered as distributions,

o || _
AgE—O, xEQe) [gg]ly“[axl] y_O)
_ . 3u0
gs_eNj(ps axl; xere>
age auo ) . o auo .a—l_{g
> + by, (81/ + bu, -i-eN((9 (6’x,)+b3xj)’ xes,.

We represent the solution g, in the form

&e =g1,e +g2,e )
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where g, . is a weak solution in the space H;(2,,I';) of the problem

L OF. .,
Agl,,s:‘Fe + ax/e n ‘Qs )
(40) A4g, =0 in°, g,.,=0 onl,,
9
al€+bgls= s/evle+Ks OIISE,

where

F£+ =Ae(ael—n8” - CO)uO(ps +:u0((p£ - 1)%0 + (ﬁeesﬂo +Be(aee~l)nu0¢s +

a6, )
+2q')ea—u0+2(p80 +2(p£(V OE,Vu0)+§0€9 Auo

e axl
N N Fu Sug &,
+2 e + Qe tadi £ f )
¢ 3y1 % TP, aay TN G, TN 5
3%0

F. Nf
T P o o,

ox;

7

Ouy . Oug
K8=05(E +bu0) +8b]\’j - .
The function g, . is defined as a weak solution in the space H;(R,) of the
problem
(4g2,.=0 in Q- UL},

agZ,s b _ S
(41) av + gz,e_o on J,,

_eNeg o,

on I,.

Now we will obtain estimates for g; . and g, .. For this we represent the right hand
side of (40) in the form

Efs

i=1

where
fl,s = (pe|:A (del ”Sn - CO)uO + Z(ngx; quo) +

aNf & Ug
o, Ox; o,

+B, (g, " V) ug + 0, 4uy +

. 89 auo a 8 auo azuo
ﬁ,£—¢£(2 Ox; B, ot 2050 Ox; *2 ayl ax +eNf Ox; Ox;
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ou
e 0
p— &
ﬁ,s"‘q)s(eeuo'*'d\]j a )
Xj

f4,s =pol@e = Dup.
From Lemma 6 and Lemma 7 we have
(42) s, el S Kssllas =" = Co) + (aee™1)"21,
if » =3, and
(43) ”fx,e”Lz(Q:) < Ksql(al "€ = Cy) +a.e ' VIn(e/2a,)],
if n=2

Here the smoothness of the function #, is used.
We set

M,=QN{xeR! ape <x; <2a9¢}.
It is easy to see that
44) A elaor = 1A el €

< Ksse V.0, Ly, + 10y, +,§::1 UV, Nf ey, + €INF Il ) |-
Using estimates (36)-(39) we obtain the following inequalities
IV, 0.ll,m,) < Ksg Ve (a e ™" y7?,
(45) “0||L2(175) <Ky eVela,e )2,
INFlle, ) + IV, NF Iy, < Ksge'/2 (a6 7172,

if =3, and

IV, 6,2, < Ksoace ™2 Vln(e/2a,),
(46) 10 ll,(,) < Keoae Veeln (e/2a,)

4, J———
INFlle, 7,y + IV, NE I, < Ken Ve Vin(e/2a,),

if n=2.
From estimates (44)-(46) we deduce

{Ilfz,ellw;)SKeze*“(ab.e'l)”/z, if »>3, and

Ile,s”Lz(Q:) S K63ae£ ~3/2 Vv 11‘1(8/245) s if n=2.

Taking into account that ¢?/%e "/?/Cy'/%a}/?—1 as £e—0 and therefore
all?g ="+ V2 |C12 (4,6 71)1/2 51 as € — 0, we conclude that the right-hand sides
in inequalities (47) tend to zero as &€ — 0.



140 .O. A. OLEINIK - T. A. SHAPOSHNIKOVA

Thus we have
”fZ,s"Lz(.Q:)gKM Va88_17 lf”23) and

(48) -~
1A, ellr, 07 ) < Kes v ?8 In(e/2a,), n=2.

Similarly we get the following estimates
15, elp0s) S Kege ™2 (ace ™2,
if 23, and

”fE,s”LZ(Q:“) S K67ase —3/2 V ln(e/zae) ’

if n=2.
Therefore we have

(49) ”fB,e”Lz(Q:) S K68 Va.é& - > 1f nz3 » and
15, el 2 ) < Keo \/(ae/e)ln(e/Zae) , ifun=2.

Taking into account the definition of the function ¢, we obtain the following
estimate

(50) 174 elle, o) < Ko Ve.
From estimates (42), (43) and (47)-(50) we deduce that

1ES 00 S K l(al"e" = Co) + Vae™'1, ifnz3, and
”Fe+ “LZ(Q:) < K72[(d;182 e C()) + \/age“lln(e/ZaE)], lf n = 2 .

From Lemma 7 we derive

(51)

“Fg’ 4”Lz(95+) < K738(ﬂ68_1 )”/2 . ifnw=3 y and

”Fs,4”L2(.Q:) < K74ae V 1n(£/2a£) ’ itn=2.

From Lemma 2 and Lemma 7 we obtain the following inequalities

INF s, < Kos (g, e~ y/? \/;z_se‘l , ifx=3, .and

(53) )
INF e, s.) $K76f';‘\/;;13(8/245), itn=2.
€

From the definition of the k, we obtain the estimate

(54) &l < Koz (106l s + Ej; INF Il | -
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Therefore, from inequality (54) and estimates (37), (53) we deduce
”KE“LZ(SE) $K78 \/d_e(ﬂgﬁ_l)”/z, if » 23, and

(55) V.
&

“Ke “Lz<s€) < Ky

In(e/2a,), ifn=2.

Using the integral identity for a weak solution of space H, (£2,, I, ) of problem (40)
we get the equality

56 [ |Vego|2dx+ b [g,7 ds =
SE

3

e/ea

e 3

= - JFe+g1,£dx+k§::1 [ F agledx+jxgg1,£dsx.
Q.

Using Friedrichs inequality for functions of space H,(Q,, I',) equality (56) and
also the elementary inequality b < da®+ 0 'b6?, (a,b,6 >0) we obtain the
estimate

6D [ Vsl st [0,2 o <K I o+ S, Weslhiar + D).
Q, Se
Therefore, from inequalities (51), (52), (55), (57) we conclude that

”gl,£”H1( <K81[(d1 "e" = Cy) + Va, “1] itn=3, and

(58)
lgs, el 20 < Ksz[(ﬂ{lsz -G+ % ln(E/Zae)], if n=2.

Thus we have

Lemma 8. Let g; , be a weak solution of problem (40) and ¢} ~"&” — Cyas e = 0,
Co = const > 0. Then for g; . estimates (58) are valid.

Now we obtain the estimate for the solution of problem (41). We set
Oug
x;

Then it is easy to see that V, ;e H,(2,,T'.) and V, . is a weak solution of the
problem

VZ,E =82, f;‘(pgNe

( Ou,

AV, .= — ( Nf =2 ) in Q,,
’ Ox;

(59) 4 V2,e =0 on Fs»

8V2,g a e auo . a
'(91/ )—“85(1\]/*5;' bNa onSe.

'y 'j

\
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From the integral identity for problem (59) we deduce the equality

60) [V Vs, [2de+b [V, 2 ds, =
Q. Se
_ . auo . 3140
= —¢ J(Vx(qasN, E ) vxvz,e)dx bejN, Voo dss -
QF Se
It is easy to see that from equality (60) one can get inequalities

61) V. Vo 00 + 1Va, ellyis) <
e 3%0
Ve (q)e 7 axj )

< Kgge _21 {e Nl + € IV NPl o) + INF Iy } =
i<

= Lye5)

< Kg; ¢ El[ +[|INf ”LZ(SE)] S

n
=Ky _21 {INF e, + IV, NEll o) + €lINFll,is, 3 -
o

From estimates (38), (39), (45), (46), (61) and the Friedrichs inequality for V, , we
obtain

V2, el 0 < Kas (a:€ 7" Y2,

if =3, and

de
V2, el 0, < Kss + V In(e/2a,),

if n=2.
From these estimates we deduce that

g2, e, 2,) < Kgr (ace ™! /2, ifn=3, and

(62) Ao A T ‘
“gZ,SHHl(Qf)sKSS?E ln(ﬁ/Zde), ifﬂ:Z.

Thus we have

. Lemma 9. Let g, , € H, (22,) be a weak solution of problem (41) and 2, =" &" — C,
as € —> 0, Cy = const > 0. Then estimates (62) are valid.

Tueorem 3. Let #, be a weak solution of problem (1), u,e H (2., TI,),
u,€ C2(R27), upe C2(2*) be the solution of problem (35) and let 2! ~"¢&” — C,
as £ — 0, Cy = const. Then

“”e - uo“Hl(Qg) S K89{(ﬂel “re" = Cy) + Vﬂsfﬂl} »
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if » =3, and

e = woller, 0, < K%{(ﬂ;lfz = Co) ++ % In (ﬂe/z%)}

5. — The spectral problem, cotresponding to the boundary-value problem (1) can
be considered in the same way as in [4, 5], using the thed;fem from [13,25] about the
spectrum of a sequence of singularly perturbed operators.

On the basis of Theorem 1 we have

if n=2.

Tueorem 4. Let {A7 } be a nondecreasing sequence of eigenvalues of the eigenval-
ue problem

Aul? +A%ul =0 in Q,,
(63) Oul
ov

where 2! ""&” — 0 as ¢ — 0 and let {1” } be a nondecreasing sequence of eigenvalues
of the eigenvalue problem

Au” + A" u” = in 2", #”=0 on 27,

and every eigenvalue is counted as many times as its multiplicity, Then

L Ll<c, VM, n),

Y
where M(e, n) =all="/2¢"/2 C, is a constant independent of &.
From Theorem 2 we obtain

+bu? =0 onS,, u’=0 onl,,

TreoreM 5. Let {17 } be a nondecreasing sequence of eigenvalues of the eigenval-
ue problem (63) and let ¢} ~"&” — 4+ © as ¢ — 0, {1” } be a nondecreasing sequence

of eigenvalues of the eigenvalue problem
Au” +A"u” =0 in Q, 4”=0 on 0Q,
and every eigenvalue is counted as many times as its multiplicity. Then

1 1

T T | S C,{Va, + [M(e,n)]7"'},

if » =3, and

1 1
A A"
if » = 2, where M(e, n) was defined in Theorem 4, and C,, C; are constants indepen-
dent of e.

< Q{\/ae In(e/2a,) + [M(e,n)]7'},

On the basis of Theorem 3 we have

Treorem 6. Let {47 } be a nondecreasing sequence of eigenvalues of the eigenval-
ue problem (63) and let ¢! ~"¢&”" — C, as € = 0, C, = Const > 0, {A”} be a nonde-
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creasing sequence of eigenvalues of the eigenvalue problem
Au” + A"u” =0 in 27,
A" +pou” +A"u" =0 in QF,
#” =0 on 0Q,

and every eigenvalue is counted as many times as its multiplicity. Then

< C4{(ﬂ€1—n£n - Co) + Vﬂse-l},

< Cs{(zz;‘e2 -Cy) + \/%—ln(s/ZaE)},

1 1

P

if n=2.

APPENDIX

Proor or LEmMa 3. Let us extend the function #(x) for x € R”\Q setting # = 0 in
R"\Q. It is easy to see that such a function # € H, (R”\G, ). Consider the cell Y,. For
simplicity we assume that G is a ball with radius ¢ < 1 whose center coincides with the
centerof Q, (1 — 1/ V2) > a4, 0. Then the function # is defined in T, vz \e Gy, where
T, is the ball of radius o with its center coinciding with the center of €Q. Let P € 4,5,
PerS,, a,0 <r<e/\2 and P, P lie on the same radius-vector. Then for # = 3 we
have

8/ V2 e/ V2

—_ 2
64)  u2(P) <242(P) +2 J rl-”drj e
or
agQ agQ
. EV2
2 2-n 2
SZuZ(P)+—(—@)—— ou "~ ldr.
n—2 or

Multiplying  (64) by J|,=po=al '0" '®(py,...,¢,-1), where J=
=" 1®D(¢;, ..., ¢, 1) is the Jacobian for the spherical coordinates, and integrating it
with respect to ¢4, ..., ¢, _1, we obtain

(65) a:-lg"—ljuZ(z‘J)wl...d¢,,_1sz J w2 (P)ds, +

51 at-So

u

2
ar r”—l(p(¢l,"')¢n—l)drd¢l"'d¢n—1)

+2a.0 f
Tf/\/E\T“EQ

where S, is a sphere of radius 1.
Then multiplying both sides of inequality (65) by #”~

! and integrating it with re-
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spect to P over 7€ (4,0, &/ \/5), we deduce the estimate

C1oae 2
a? ton 1t J u’de < K,|e” f u’ds, +a,e" J |V, 2|?dx|.
TS/VE\TEGQ a‘ESO Ts/\/i\TﬂsQ

From that inequality we conclude

66)  ulf,ir, o \1,, ) < Kfad ~" e N6l o) + 02" " IVetllf iz, i1 -

Thus, we have an estimate of the form (7) for cell Y, . In the same way we can get an
estimate of all form (7) for any cell Y, + &z (z is a vector with integer components).
Summing up the inequalities of the form (66) over all cells of the form Y, + ez, we get
(7). In a similar way we can get estimate (8).
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