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Analisi matematica. — Oz asymptotics of solutions and eigenvalues of the boundary
value problem with rapidly alternating boundary conditions for the system of elasticity.
Nota(*) di Orca A. OLEmik e GreGOry CHECHKIN, presentata dal Socio O. A.

Oleinik.

AsstracT. — Boundary value problems for the system of linear elasticity with rapidly alternating
boundary conditions are studied and asymptotic behavior of solutions is considered when a small par-
ameter, which defines the oscillation of the boundary conditions, tends to zero. Estimates for the differ-
ence between such solutions and solutions of the limit problem are given.

Key worps: Homogenization; Linear elasticity system; Alternating boundary conditions.

Ruassunto. — Sul comportamento asintotico delle soluzioni e degli autovalori del problema ai limiti per il
sistema dell’elasticita con condizioni ai limiti rapidamente alternanti. Vengono studiati i problemi ai limiti per il
sistema dell’elasticita lineare con condizioni ai limiti rapidamente alternanti. Si considera inoltre il compor-
tamento asintotico della soluzione quando un piccolo parametro, che definisce I'oscillazione delle condizio-
ni al limite, tende a zero. Vengono calcolate stime per la differenza tra tali soluzioni e le soluzioni del pro-
blema ai limiti.

0. — The problem of the asymptotic behavior of solutions of boundary value prob-
lems with rapidly alternating boundary conditions for second order elliptic equations
was studied in many papers [1, 3, 5-8, 13, 14, 20]. For the elasticity system this problem
was considered in papers [2,4,5] and the convergence to a solution of a limit problem
was proved. In this paper we give the estimates for the deviation in H (£2) norm of sol-
utions of the considered problem from the limit problem solutions. The problem of vi-
bration is also studied here. Some theorems of this kind are formulated in [15].

1. — Let 2 be a smooth domain in R”, # = 2 and let 992 be its boundary. We sup-
pose that 02 = I'; U y, and consider the boundary value problem:

i a”tf .
(1) L/e(ue)E %i(akjl axj)=ﬁe(x) mn Q; k=1,...,ﬂ,
(2) u,=0 ony,,
(3) o(us)EAif(x)%vi=O on I,
ox;

7

where u, = (u}, ...,u?), L(u)=(L, (%), ..., L, (u))* = (8/ 3x; )(A” (x)(3u. [ 3x;)), A”
are (n X n)-matrices with elements af), which are bounded measurable functions,
a;(x) = afy (x) = aff (x),

(4) Kl&kigkigal:jl(x)gki‘SljSKZEIeiE/ei; Ki,K;=const >0, xe£,

(*) Pervenuta all’Accademia il 24 ottobre 1995.
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{&.} are real symmetric matrices, v = (v, ..., v,) is an outward normal vector to the
boundary 3R, F(x) = (f;(x), ..., £, (x))* e (L,(2))", T, consists of the sets I'%,
E=1,...,N,, diam I'% < ¢, and the distance between them is greater or equal than 2¢,
€ is a small positive parameter, y, = 02\ I,. Here and throughout we use the usual
convention of repeated indices.

We will study the limit behavior of solutions of problem (1)-(3), when ¢ tends to
zero and N, — o . Existence and uniqueness of the solutions #, of problem (1)-(3) in
space (H'(R,y.))" can be proved using functional methods[9]. The space
HY(R,v,) is defined as the completion of the functions from the space C * (), van-
ishing in a neighborhood of y,, with respect to the norm

1/2
ll#ller (o) = ( J(uz + |V”|2)dx) .

Q

2. — Lemma 1. For the function u(x) from the space H' (R, y,) the following
estimate

5) juzdeanj | Vu |2 dx

Q

n n

is valid, where the constant C does not depend on € 0 and w; 2, = {x: x€ 2, o(x, 02) <n},
o(x, 0Q) is equal to the distance between x and 3, € < 1.

ProoF. Let g% be a ball with radius & and let p c I'# be a center of the ball g% . Also
let QF be a ball with radius 2¢ with the same center, s* = 9Q N g%, §¥ = 3Q N Q~.
The function #(x) is obviously equal to 0 on ¥ \s¥. The domain G, which is a union of
the inward normals to the set S¥ with the length #, is considered. Since the boundary
92 is smooth, the domains G are diffeomorphic for all £. Then the Friedrichs inequal-
ity for the domains G (see [16]) gives us inequality (5) in G,’; with the constant C,

N,
which does not depend on ¢, 77 and 4. Since # = 0 on 89\(9 Sf), then, as usual, in the

domain @, = Q, \(L]CJ G,’f) we obtain inequality (5), using the representation of func-

tion #(x) as an integral of its normal derivative. The summation of these inequalities
gives us inequality (5).

Lemma 2. For the function u(x) from the space H* (2, y,) the estimate

2 < 2 ,
©6) qu dx<Clgj|Vu| dx

is valid, where the constant C,; does not depend on € and u(x).

Proor. By the mean-value theorem for an integral and (5) for = &, we obtain that
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there exists €, < € such that

2 \“‘ de,
(7) ,Ju ds < Ceg{ | V|

where [, = {x:x € Q, o(x, 32) = &, }. In the framework of the imbedding theorem
(see [17]), we obtain

(8) judescz just+ j | V|2 dx |,
Q\Qeo le() Q\-Qso

where the constant C, does not depend on € and #(x) because of the smoothness of the
boundary 99Q.
The summation of inequality (5) for # = ¢ and (8) gives us inequality (6).

Tureorem 1 (Korn’s type inequality). For the function u(x) = (u'(x), ..., u" (x))*
from the space (H*(R,7v,))" the inequality

N 7|2
J,Z‘IIV”I dxsg > (axj a,.)d"<

i,j=1

N 8u
<
C4J tj/ezl 1 8 ax,

is valid, where Cs, C, do not depend on u(x) and e.

Proor. We define the function (s) e C*(R') such that (s) =0, when
se[—w,1], w(s) =1, whens=1+0, 0<0<1/2, 0<y(s) <1. Let p*(x) =
= y(r, /), where (1, 0}, ..., 07~ ') is alocal system of polar coordinates, whose center
is pFe . Let

N,
= 1T 9t@x).
k=1
For the function #1, the Korn inequality holds in @, if » e (H' (2, y,)), ie

j~ 2
(10) I E NORTP )lzdx<Csf ( a(” W) dx
3 ij=1 ax,'

)

where the constant Cs does not depend on & and «(x). It is easy to see, that

n i j~ 2 I i ; 2~ —
I (a(” vo) | o W) =2 (59—”— + a”]) Yi+20ul |Vy, P+

ij=1 axj é’xi i,j=1 axj 8x,

31/)5 3% , / au auf - a@s j a{/;s i
+2”§)1 Eoalll +2,,21(3x ai)we( T e

J
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Then by the Holder inequality, we obtain from (11)

w2 3 (a(u(;st) + a(”]’pe)) <C6(|uI2IVw 2+ S (— + ia”—j)zwe),

ij=1 i ax,» ij=1 ax/ 8x,-

C¢ does not depend on & and #(x). By using the estimate (10)-(12), we deduce

(13) J 2 |Vu"|2dxsj 2 [V, dx <
i=1 i=1

Q\QZE Q

sCéj > (g” O’ ) dx+C7J|u|2|Vzp [? dx .

=1\ Ox; Ox;
e

It is easy to see that |Vy,| < Cs/e and |Vy,| =0 in 2\Q,,. Thus we have

(14) JZ|Vu|2dx<C6JZ(au a“’)dx+c9 Ilulzdx

ij=1 axj ax,
2\ Q2. 3¢
Let us set
n n : 2
D(u,Q)EJE |Vai|?dx, E(u, Q)= I E ( ‘Z‘;)dx
i=1 = 7 i
0

Now adding D(«, 2,,) to the left and right SIdes of (14) and using Lemma 1, we
obtain

(15) D(u, 2) < C4E(u, ) + C;yD(u, 2,,).

Ne
We consider the set @,, = Q,, \ lkJ G#, |, which is defined in Lemma 1. The sur-

face ©,, N3Q can be covered by open sets #/(; = 1, ..., M,) in such a way that nor-
mals to 7/ of length 2¢ inside of 2 and length 2¢ outside of £ form a domain R which is
star-shaped with respect to the ball 47 of radius &, which is outside of 2. We define
#=0in R{\Q. It is easy to see that » € H'(R]).

Now we will use the following theorem from [10-12].

TueoreMm. If the domain G is star-shaped with respect to the ball Q, then the following
Korn’s type inequality
D(u, G) < K(E(u4, G) + D(u, Q))

is valid, where K is a constant, which does not depend on u.

This theorem gives us the following estimate
D(u,R]) < Cyy (E(u, R}) + D(u, b1)) < C1E(u, R]),
since =0 in b, 7 =1, ..., M,.
The summation of these inequalities leads to the estimate
(16) D(u, ©,,) < C,E(u, ©,,).
It is not difficult to notice that G4, can be covered by star-shaped domains with re-
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spect to balls, which belong to @,, ( =1, ..., N,) if ¢ is sufficiently small. These balls
do not intersect. Therefore, from the Theorem we obtain the following estimate

N, N,
(17) D (ua, 'Ul Gée) <Cp (E (ue, -U1 Gée) + D(4,, ©,,)
j= j=
Finally, from (4), (15), (16) and (17) we obtain (9).

LemmMa 3. The solutions u, of the problem (1)-(3) are uniformly bounded with respect to
e in HY(R).

Proor. The definition of the weak solution #, in (H! (£, y,))" of problem (1)-(3)
gives us the following integral identity

7 B !/ A n
J > af) o1 X" = - J kglf/e(x)vk(x)dx

ij k=1 Ox; Ox; y

for allv e (H' (R, y,))". Taking v’ = u!, using Korn’s inequality (Theorem 1) and the
Friedrichs inequality (Lemma 2) we obtain that

n 7 i 7 \2
ng |vu§|2dxscl4j };l(a”f ; a”f) dx <
Q

i Ox; Ox;
g
C, S . Oul out
SCu 22| Y afx) == dx s
CB_(_) ij, k=1 ax/ ax,

n 7 1/2
<3 Vil il < cls( [ 3 1wt dx) .
Q

Therefore

z ' 1/2
(18) (J'kZ |vu;|24x) <Cs,
-1
Q2

where the constant C,5 does not depend on ¢ and #,. The uniform estimate of #, in
H!' () follow from (6) and (18).

3. — Let #,(x) be a weak solution of the problem
(19) L(uy) =f(x) in £,
(20) u,=0 on 09.

Tueorem 2. For the solutions u, of problem (1)-(3) and the solution uy of prob-
lem (19), (20) the estimate

(21) [ V(s = o) 792 (x)de < Cg[Ine| =
2
is valid, where the constant Ci; does not depend on & 0<6<2—2/n, N,=
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= O |ln£|(1_‘5/2)"—1) as € — 0, N, is the number of T'* on the boundary 02, ¥, (x) =

= H YE(x), vE(x) =y(|lne|/|lnr |), where (ry, 0}, ..., 05 1) is a local system
of polar coordmates, whose center is in pk e T'% | (s) is a function, defined in the proof of
Theorem 1.

Proor. Subtracting the integral identity of the problem (19), (20) from the integral
identity of problem (1)-(3) and setting » = (%, — %) 9?2, we obtain

” E_ I 2
J’ 2 g/:fl(x) :9(u uo) a((ug ﬂo)llfs) dx =0
7,7

Lkl =1 Ox; Ox;

and therefore

" Bk — k) Bt — 4l
[ 5 e T ) g
,7,R, /

k=1 ax,- ax]
Q
< O(ul — uf) oy
= — 17 — i l_ / &
Zj i1, ; la/el( ) ax,- (ug u())we(x) axj dx

From the Korn and the Hélder inequalities for (#, — #,) %, we obtain the following
estimate

(22) J21|V(u;—u6)|2w§dx=j ;lV((u;'—ua')wg)—(ué—ué)vwelzdxs
Q Q

<2[ 21V = ) w1 +2 [ lue— |2 |V, |2 de <

Q2 Q

N[ Oul—uf Aul —uf) \* 5 ,
SC17(QJ'1,EI( o + o, )¢sdx+j|us o | |Vp |? dx |.

7 el

From inequalities (4), (22) and the Hoélder inequality we deduce

(23) JlV(us—uO)ng(x)de
¢

n ) _
scls(j S w2 iy, a;iedx+J|u£—u0|2|V1/zg|2dx)$
7, i
Q

1= ~ Ox;
o]

%CEJ’I% uo |? |V, |2dx+C206J|V(u5—u0 )P y?dx,
é

where Cy9, C,y do not depend on ¢, 0 is sufficiently small. The next inequality follows
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from (23)
N
(24) j V(s — 1) |92 () de < Cpy 2, j e = uo |? |Vt |2 dx,
; /e=1w£
where w* is a ball with radius ¢'/(1* %, whose center is the point p¥. Note that
(25) V9t | < o llne| —— L
ln Ty g

Let us consider the imbedding theorem of S. L. Sobolev [17]: space H' (£2) contin-
uously imbeds in the space L, (£2), if the domain £ is a finite union of star-shaped do-
mains and ¢ < 21/ (n — 2). Using this theorem, we can obtain the estimate of the right
hand side of (24).

By using estimate (25) and the Hélder inequality, we deduce

(26) j|ue—uo|2<|1ne| llnr |2t )2 dx <
k

W

o} of

SIIneIZ( flus—uolz”%f)l/m( | <11nrk|-4r,;2>wx)””2,

where 1/p; + 1/p, = 1. We suppose that 2p; = g = 2n/(n — 2),p, = /2. Itis easy to
see that

(27) ( I(|1nr/e|—4rk—2)1’2dx)1/ﬂz < C23(|1n£l1—2n)2/n ,
ok

where the constant C,; does not depend on £ and e.
From inequalities (26) and (27) we obtain

@8) | | = uo|? | 4wt |7 de < Cay unewﬂ-z( [l =g /022 zzx)(”‘”’”,

ot ot

where the constant C,, does not depend on & and 4. Thus, we have

Ne
(29) JIV(ue_uO)lzwg(x)dx$C25kzll]_nglz/n—Z( JIue_uoI2n/(n—2)dx)(n—2)/n'
? B %

We

Using the Hoélder inequality and the imbedding Theorem, we obtain
N

(30) E ( Jv l”e_”olzﬂ/(”—Z)dx)(n_z)/"s
=1\

e

o}

N, 2/n [ N, (n—2)/n
< kz 1 kE flug—uolz”/‘”'”dx <
=1 =1

< (N |lue = wollf, @) < (N Y/ e = o g -
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Lemma 3 and the smoothness of the solution #, lead us to the conclusion that the
norms ||#, — % |}1(0) are uniformly bounded with respect to e. Therefore, if we take
N, =O(|lng| ~%/27=1) 35 £ — 0, then from (29) and (30) we obtain (21), where J
satisfies the inequality 0 < 6 < 2 — 2/#. The theorem is proved.

THEOREM 3. For the solution u, of problem (1)-(3) and the solution u, of problem (19),
(20) the estimate

(31) [ lue =y |2ds < CoelIne| 2, 0<8<2-2/n,
e
is valid, if Ny = O(|lng|?~%/27=1) 45 ¢ —0.

1/(1+0)

Proor. From Lemma 1 with = ¢ and Lemma 3 it follows, that

(32) jugdxsc27sz/(1+0>.

2y

Since #, =0 on 0Q,

(33) jugdxsc2882/<l+0).

2,

Therefore, the mean-value theorem for integrals gives us the conclusion that 8
exists such that 8 <7, and

(34) [ le =0 |7 ds < Cpe /1.
s

It is easy to see, that

(35) J[us—u0|2dsSC3o(J |u£—u0|2ds+£l/“+")J IV(us—u0)|2dx).
Iy g Qy

From inequalities (34) and (35) we get

(36) J|”a—”0|2d5$63181/(1+0),

by

since J |V(u, — uy)|? dx is uniformly bounded with respect to .
@
By the imbedding theorem (8) for (#, — #,), we obtain the estimate
(37) f |ue — ug |? dx < Cs, J |V(u£—u0)|2dx+J-|u€—u0|2ds ,
o2\Q, o\, by

where £, contains the support of Vi, and the constant C;, does not depend
on ¢, because of the smoothness of 92. From estimates (36) and (37) we obtain

j|u€—u0|2dx$C33( J |V(u5—u0)|2dx+£1/(”"))+ J |, — ug |* dx .
I’

Q\2, n
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By using estimates (32) and (33), Theorem 2, we get (31). The theorem
is proved.

4. — We study the limit behavior of the spectrum of problem (1)-(3) as ¢ — 0. The
question about the behavior of the spectrum of a boundary value problem, when the
boundary conditions are perturbed, was considered in [18]. The case, when the sets I'*
are disposed in a periodic way, was considered in [3]. In the present paper on the basis
of the theorem on the limit behavior of spectrum of the abstract operators sequence,
which is proved in [19] (see, also[16]), we study a nonperiodic case.

Consider the spectral problems, which cotrespond to boundary value problems (1)-
(3) and (19), (20):

(38) L(uf) + 2tuf=0 in Q,

(39) uf=0 onvy,,

(40) olu,)=0 onl,, £k=1,2, ..

and

(41) Lu§) +Afué =0 in Q,

(42) uf=0 ondR, k=12,...

Here u* e H'(Q,y,) and uf e H' (2,09), k=1, 2, ... . The sets {1}, {15}, k=
=1, 2, ..., are eigenvalues such that Al < A2... <A*< .. Al<sAl<.. <A<

and the eigenvalues are repeated according to their multiplicities.

Define the operator A,: L, () — H* (R, y,), setting A, f = —u,, where u, is the
solution of problem (1)-(3). The operator Ay: L, (2) — H' (R, 982) is defined by the
formula Ay f = —u,, where u, is the solution of the problem (19), (20). Let H, = H, =
=1,(2), V=H'(RQ,92) and let R, be the identity operator in L,(£).

Let us verify the conditions of Theorem 1.4 (ch. 3) from [16] (see also [19]). The
condition C1 is fulfilled automatically. It is easy to establish the positiveness, self-ad-
jointness and compactness of the operators A, and A,. The norms ||A, |1, are uni-
formly bounded with respect to & by virtue of Lemma 3.

In view of Theorem 3 the condition C3 holds. If a sequence {A,f, } is bounded in
H'(Q, v,.), therefore, it is compact in L, (£2). Because of Lemma 3 the condition C4 is
fulfilled.

Consider the spectral problems

Al =prul, ulzu?=.., k=12, ..
and

Agu§ = plus ,  wb=pf= .., k=12, ...

It is obvious, that u* = (A%)~!, u§ = (A%)~'. Theorem 1.4 (ch. 3) from [16] gives
us:
(43) |us—ub| <Csyy sup |[|Au - Aoﬂ“Hf ,

ueNub, Ay)
lleellerg = 1
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k=1,2... where N(u, Ay) = {u:u e Hy, Agu = usu}. Thus the following theorem
follows from (43) and Theorem 3:

TueoreMm 4. There exists a constant Css, which does not depend on € and such, that for
eigenvalues A% and A% of the problems (38)-(40) and (41), (42), respectively, the estimate
[(A8)™ = (A8) 1| < Cs5 |Ine| =2 for sufficiently small € is valid, where 0 < & < 2 —
—2/n, N,=0O(|lng|*=9/27=1) 45 ¢ 0.

5. — In the same way we considered also the elliptic equations and the stationary
linear elasticity system in perforated domains with rapidly alternating boundary condi-

tions. Let 2, = Q\ { l/;J T, } where the domain T, has a diameter &, and we consider the

equation in 2, with the boundary conditions (2), (3) and the Dirichlet boundary condi-
tions on AT, . Then the theorems, which are similar to Theorems 1-3 are valid. More-
over, we considered the problem when the Dirichlet condition is given on the boundary
of some domains T}, and the condition of the form (3) is given on the boundary of the
other T, . In addition, we suppose in this case that the function z € H* (£2,) can be ex-
tended in H' () in such a way that [«|[1 (o) < Cse|l#||1(0,), Where the constant Cs4
does not depend on e.

Similar results are proved in the case when we set on ¢, some other type of coercive
boundary conditions.

ACKNOWLEDGEMENTS

The research described in this publication was made possible in part through grants No MIEOOO
from the International Science Foundation and from the RFFL

REFERENCES

[1] G. A. CuecHkiN, On boundary-value problems for a second order elliptic equation with oscillating bound-
ary conditions. In: V. N. Vracov (ed.), Nonclassical Partial Differential Equations. Institute for Mathe-
matics of the Siberian Division of the Russian Academy of Sciences Press, Novosibirsk, 1988, 95-104
(in Russian).

[2] M. Loso - E. Perez, Asymptotic bebavior of an elastic body with a surface baving small stuck regions.
MMAN, 22 (4), 1988, 609-624.

[31 G. A. CuecuxiN, On the asymprotic properties of a partially fastened membrane. Russian Mathematical
Surveys, 44 (4), 1989, 197; UMN, 44 (4), 227.

[4] A. Brorarp - M. Logo - E. Perez, Homogénéisation des frontiéres par epiconvergences en élasticité lin-
éaire. MMAN;, 24 (1), 1990, 5-26.

[5] A. BrieLarp - M. Loso - E. Perez, Un probléme d’homogénéisation de frontiére en elasticité linéaire
pour un corps cylindrigue. C.R. Acad. Sci. Paris, 311, s. II, 1990, 15-20.

[6] G. A. CuecuxiN, Homogenization of boundary-value problems with singular perturbation of the boundary
conditions. Mat. Sbornik, 184 (6), 1993, 99-150 (translation Russian Acad. Sci. Sb. Math., (79, 1),
1994, 191-222).

[7] A. Damramian - Lt Ta Tsien (Lt Dacian), Homogénéisation sur le bord pour des problems elliptiques.
C.R. Acad. Sci. Paris, 299 (17), s. I, 1984, 859-862.

[8] A. Damramian - Li Ta Tsten (Lt Daqian), Boundary homogenization for elliptic problems. J. Math. Pure
et Appl, 66, 1987, 351-361.



ON ASYMPTOTICS OF SOLUTIONS AND EIGENVALUES ... 15

[9]1 G. FicHera, Analisi esistenziale per le soluzioni dei problemi al contorno misti, relativi all’equazione e ai
sistemi di equazione del secondo ordine di tipo ellittico, autoaggiunti. Ann Sc. Norm. Sup. Pisa, II, XV,
1946, 75-100.

[10] V. A. Konpratiev - O. A. OLemik, On Kom'’s inequalities. CR. Acad. Sci. Paris, 308, s. I, 1989,
483-487.

[11] O. A. Ouenk, Korn'’s type inequalities and applications to elasticity. In: Convegno Internazionale in
memoria di Vito Volterra (Roma, 8-11 ottobre 1990). Atti dei Convegni Lincei, 92, 1992, 183-209.

[12] O. A. OLEINIK, Some mathematical problems of elasticity and Korn'’s inequalities. In: Partial Differential
Equations. Pitman, Research Notes in Math. series., vol. 273, Longman, Harlow, 1992, 163-179.

[13] O. A. OLemnk - G. A. CuecHkiIN, On asymptotics of solutions and eigenvalues of an elliptic problem with
rapidly alternating type of boundary conditions. International Center for Theoretical Physics, Trieste,
SMR. 719/4, 1993.

[14] O. A. Oreink - G. A. CuecHKIN, On boundary-value problems for an elliptic equation with rapidly alter-
nating type of boundary conditions. Russian Mathematical Surveys, 48 (6); UMN, 48 (6), 1993,
163-164.

[15] O. A. OreNik - G. A. CHECHKIN, On boundary-value problems for elasticity system with rapidly alternat-
ing type of boundary conditions. Russian Mathematical Surveys, 49 (4); UMN, 49 (4), 1994, 114.

[16] O. A. OLENk - A. S. SHamAEV - G. A. YosiFLaN, Mathematical Problems in Elasticity and Homogeniza-
tion. North-Holland, Amsterdam 1992,

[17]1 S. L. SoBoLev, Some Applications of Functional Analysis in Mathematical Physics. 3rd ed., AMS Press,
Providence 1991.

[18] A. A. Samarsky, On an influence of fastening to the eigen-frequencies of closed domains. UMN, 5 (3),
1950, 133-134.

[19] G. A. Yosrrran - O. A. OLeNik - A. S. Suamaev, On a limit bebavior of spectrum of the sequence of op-
erators, which are defined in different Hilbert spaces. UMN, 44 (3), 1989, 157-158.

[20] O. A. OremNx, Some Asymptotic Problems of the Theory of Partial Differential Equations. Lezioni
Lincee. Accademia Naz. dei Lincei. Cambridge University Press, Cambridge 1995.

Department of Differential Equations
Faculty of Mechanics and Mathematics
Moscow State University

Moscow 119899 (Russia)



