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Analisi matematica. — On asymptotics of solutions and eigenvalues of the boundary 

value problem with rapidly alternating boundary conditions for the system of elasticity. 

Nota(*) di O L G A A. OLEINDC e GREGORY CHECHKIN, presentata dal Socio O. A. 

Oleinik. 

ABSTRACT. — Boundary value problems for the system of linear elasticity with rapidly alternating 

boundary conditions are studied and asymptotic behavior of solutions is considered when a small par­

ameter, which defines the oscillation of the boundary conditions, tends to zero. Estimates for the differ­

ence between such solutions and solutions of the limit problem are given. 

KEY WORDS: Homogenization; Linear elasticity system; Alternating boundary conditions. 

RIASSUNTO. — Sul comportamento asintotico delle soluzioni e degli autovalori del problema ai limiti per il 

sistema dell'elasticità con condizioni ai limiti rapidamente alternanti. Vengono studiati i problemi ai limiti per il 
sistema dell'elasticità lineare con condizioni ai limiti rapidamente alternanti. Si considera inoltre il compor­
tamento asintotico della soluzione quando un piccolo parametro, che definisce l'oscillazione delle condizio­
ni al limite, tende a zero. Vengono calcolate stime per la differenza tra tali soluzioni e le soluzioni del pro­
blema ai limiti. 

0. - The problem of the asymptotic behavior of solutions of boundary value prob­
lems with rapidly alternating boundary conditions for second order elliptic equations 
was studied in many papers [1, 3, 5-8, 13, 14, 20]. For the elasticity system this problem 
was considered in papers [2,4,5] and the convergence to a solution of a limit problem 
was proved. In this paper we give the estimates for the deviation in H1 (Q) norm of sol­
utions of the considered problem from the limit problem solutions. The problem of vi­
bration is also studied here. Some theorems of this kind are formulated in [15]. 

1. - Let Q be a smooth domain in Rn, n ^ 2 and let dQ be its boundary. We sup­
pose that dQ = re U ye and consider the boundary value problem: 

(1) L 4 ( 8 , ) s ^ - U ^ ) = / 4 ( x ) • i n f l , k = l,...,n, 

(2) ue = 0 on Ye , 

OU 

(3) o(ue ) = A» (x) -^ v,• = 0 on re, 

where «, = («/ , ...,«,*), L{u) = {Ll{u), ....L„(«))* = {3/dXi){Aij{x){3ujdxj)), Aij 

are (n X#)-matrices with elements aft, which are bounded measurable functions, 
a'^(x)=aï(x)= affix), 

(A) KiÇnÇu'SeifiWèkiêy^XiÇkiÇki, * i , * 2 = const > 0 , xeQ, 

(*) Pervenuta all'Accademia il 24 ottobre 1995. 
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{£& } a r e r e a l symmetric matrices, v = ( vx, ..., v„ ) is an outward normal vector to the 
boundary dQ, f(x) = (f (x), ..., / , (*))* e (L2(fl))", Te consists of the sets r * , 
& = 1, ..., N e , diamTg ^ £, and the distance between them is greater or equal than 2e, 
£ is a small positive parameter, ye = dQ\re. Here and throughout we use the usual 
convention of repeated indices. 

We will study the limit behavior of solutions of problem (l)-(3), when e tends to 
zero and NE —» <*>. Existence and uniqueness of the solutions ue of problem (l)-(3) in 
space (H1(Q, y e))

n can be proved using functional methods [9]. The space 
H1 (Q, ye ) is defined as the completion of the functions from the space C °° (Q), van­
ishing in a neighborhood of ye, with respect to the norm 

I M I H 1 ( 0 ) S ( j(u2+\Vu\2)dx\/2 

2. - LEMMA 1. For the function u(x) from the space H1(Q,y£) the following 
estimate 

(5) ju2dx^Crj2 | \Vu\2dx 

is valid, where the constant C does not depend on e, rj and u; Qn = {x: x e Qy Q(X9 dQ) ^rj}, 
Q(X9 dQ) is equal to the distance between x and dQ, £ ^ rj. 

PROOF. Let q£ be a ball with radius e and let p£ c rk
e be a center of the ball q£. Also 

let Q£ be a ball with radius 2e with the same center, sj? = dQ f! qk
E, S* = dQ fì Q£ . 

The function u(x) is obviously equal to 0 on S£ \s£. The domain G%, which is a union of 
the inward normals to the set S£ with the length rjy is considered. Since the boundary 
dQ is smooth, the domains G% are diffeomorphic for all k. Then the Friedrichs inequal­
ity for the domains G% (see [16]) gives us inequality (5) in G% with the constant C, 

which does not depend on £, rj and k. Since u = 0 on dQ \ I U S£ I, then, as usual, in the 

domain 6>̂  = -Q^ \ IUG^Iwe obtain inequality (5), using the representation of func­

tion u(x) as an integral of its normal derivative. The summation of these inequalities 

gives us inequality (5). 

LEMMA 2. For the function u{x) from the space H1 (Q, ye) the estimate 

(6) l^dx^cJ \Vu\2dx, 
Q Q 

is valid, where the constant C\ does not depend on e and u(x). 

PROOF. By the mean-value theorem for an integral and (5) for rj = £, we obtain that 
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there exists £0 ^
 e s u c n that 

(7) [u2 ds^Ce I \Vu\2dx, 

where lEQ = {x: x G Q, Q(X, dQ) = £ 0}. In the framework of the imbedding theorem 
(see [17]), we obtain 

[ u2 dx^C2l I V ds + [ |V«|2 

\G e o V£o ®\Qe0 

(8) I u2dx^C2[ \u2ds+ I \Vu\2dx\ 

Q\Q£i 

where the constant C2 does not depend on e and u{x) because of the smoothness of the 
boundary dQ. 

The summation of inequality (5) for rj = e and (8) gives us inequality (6). 

THEOREM 1 (Korn's type inequality). For the function u{x) = (ux(x), ...,un{x))* 
from the space {Hl{Q,ye))

n the inequality 

^ ÇA E 4JiM -jr~ -jr- dx 
J ij,k,i=i oxj dXi 

Q 

is valid, where C3, C4 do not depend on u(x) and s. 

PROOF. We define the function ip(s) e C00 (R1 ) such that ip(s) = 0, when 
s G [ - oo , 1], yj(s) = 1, when s^ 1 + a, 0 < a < 1/2, 0 ^ ip{s) ^ 1. Let y>k

e(x) = 
= ip(rk/e)y where (r^, 6\, ..., 0% ~1 ) is a local system of polar coordinates, whose center 
is pk

e e r * . Let 

v«(*) = n vïM. 

For the function uxpe the Korn inequality holds in Qy ïî u e {H1{Q,ye))
n, i.e., 

where the constant C5 does not depend on £ and u(x). It is easy to see, that 

f drpe 3rpe f idu{, duJ\~ (dips 
+ 2 Z, -x r—«V + 2 Z, "â- + " a - ^« ~a~~ u' H—T— u 

dxj 
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Then by the Holder inequality, we obtain from (11) 

C6 does not depend on e and u{x). By using the estimate (10)-(12), we deduce 
ç n ç n 

(13) E \Vu'\2dx^ E \V(u^E)\2dx^ 
J ; = 1 J / = 1 

'«l.&fê + f)'*^{l.Hvf.P*. 
Q \ J I Q 

It is easy to see that |Vt/>£| ^ Cs/e and \Vip£\ = 0 in Q\Q2e. Thus we have 

Let us set 

D(uyQ)= [ É |V«' |2<k, E(uyQ)= [ É ( 1 ^ + ^r-\dx. 
i i = \ J *,y = i \ avy a*/ / 

Now adding D(z/, jQ2£) to the left and right sides of (14) and using Lemma 1, we 
obtain 

(15) D(«, Q) ^ C6E(u, Q) + Cl0D(u, Q2e). 
IN. \ 

We consider the set 02e
 = &2e \\ U Gfe I, which is defined in Lemma 1. The sur­

face &2e rï 3i3 can be covered by open sets r̂  (/" = 1, ..., M£ ) in such a way that nor­

mals to r{ of length 2e inside of Q and length 2e outside of Q form a domain R{ which is 

star-shaped with respect to the ball b{ of radius £, which is outside of Q. We define 

u = 0 in RJ
£ \Q. It is easy to see that ueH1 (R{). 

Now we will use the following theorem from [10-12]. 

THEOREM. If the domain G is star-shaped with respect to the ball Q, then the following 
Rom s type inequality 

D(uy G) ^ K(E(u, G) + D(u, Q)) 

is valid, where K is a constant, which does not depend on u. 

This theorem gives us the following estimate 

D(uyRÌ)^Cn(E(u,RÌ)+D(u,bÌ))^CnE(u,RÌ), 

since u = 0 in b{, j = 1, ..., M£. 
The summation of these inequalities leads to the estimate 

(16) D(u,02e)**CuE(u,02e). 

It is not difficult to notice that GJ
2e can be covered by star-shaped domains with re-



ON ASYMPTOTICS OF SOLUTIONS AND EIGENVALUES . . . 

spect to balls, which belong to &2e (J = 1> ..., N£ ) if £ is sufficiently small. These balls 
do not intersect. Therefore, from the Theorem we obtain the following estimate 

(H) D ^ y y - i G ^) ^ CAE[U'^I G ' 2 £ ) + m u » @ 2 A 
Finally, from (4), (15), (16) and (17) we obtain (9). 

LEMMA 3. The solutions u£ of the problem (l)-(3) are uniformly hounded with respect to 
e in HHQ). 

PROOF. The definition of the weak solution u£ in (H1 (fi, ye))
n of problem (l)-(3) 

gives us the following integral identity 

ZJ aftix) -r1-^- dx= - 2J fk(x)vk(x)dx 
J ij,k,i=\ ox, dXi J k = i 

Q Q 

for all v e (H1 (Q, y e ))
n. Taking vl = ul

e, using Korn's inequality (Theorem 1) and the 
Friedrichs inequality (Lemma 2) we obtain that 

||1IW*«cu/S i(f + f)'*< 
Q Q V ' 

_ C4 f Y iU dui 3uk
e 

^ C14 — 2J ak
Ji(x) — -T— dx ^ 

C3 J ij,k,i=\ dXj dXi 
Q 

*£ c14 Sx II/ALWIWILU» ^ cj J J£ |V«* | 2 i* 

Therefore 

(18) ( J SjVwil 2^] ^Cx,, 

where the constant C15 does not depend on e and z/e. The uniform estimate of u£ in 
Hl{Q) follow from (6) and (18). 

3. - Let u0(x) be a weak solution of the problem 

(19) L(«o)=/(*) in fi, 

(20) ^o = 0 on 3f i . 

THEOREM 2. For /fe solutions ue of problem (l)-(3) and the solution u0 of prob­
lem (19), (20) the estimate 

(21) J |V(«fi - u0)\
2r/>2

e(x)dx ^ C16 | Ine| ~ô 

w ZW/ûÎ, z^ere the constant C16 âfoey #ctf depend on £, 0 < ô < 2 — 2/n, Ne = 

1/2 
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= 0 ( | l n £ | ( 1 ôt2)n ) as £ -*0 , Ne is the number of Tk
e on the boundary dQ, ipe{x) = 

= EI y>k
eM, ipìW = xl){\\ne\l \\&rk | ) , where (rk, 8\, ..., 6%~l) is a local system 

k = i 
of polar coordinates, whose center is in pi e rk

e, tp(s) is a function, defined in the proof of 
Theorem 1. 

PROOF. Subtracting the integral identity of the problem (19), (20) from the integral 
identity of problem (l)-(3) and setting v = (ue — u0)ip

2, we obtain 

J i,j,k,l = l 
x 3 (^ -4 ) 3((«i-«o;)^) , A 
) -z ax = 0 dx{ dxj 

Q 

and therefore 

d(uk
e - UQ ) d(u[ - u\ 

= -2Ì ì a ^ x ) d { u ì ~ 4 \ u ì - u ^ M ^ d x . 
J ij, k, i = i oix1/ cbCj 

Q J 

From the Korn and the Holder inequalities for (ue — u0 ) ip£ we obtain the following 
estimate 

ç n r n 

(22) E |V(«i-«é) |Vf^= E |V((«i-«5)V e)-(«i-«é)V^ e |2^^ 
J / = 1 J / = 1 

2J Ê i|V((«i-«5)Ve)|2 + 2 j |«£-«o|2 \Vtps\
2dx^ 

Q Q 

From inequalities (4), (22) and the Holder inequality we deduce 

(23) J \V(ue-u0)\
2ip2(x)dx^ 

Q 

— C19 \ue -u01
2 \Vipe\

2 dx + C20ô \V(uE-u0)\
2ip2dxy 

Ô 
Q Q 

where C19, C20 do not depend on e, ô is sufficiently small. The next inequality follows 
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from (23) 

r Ne r 
(24) J \V(u€-u0)\

2ip2
EMdx^C21 2 ^ J l « e - « o l . 2 | V V Î | 2 ^ , 

where c^ is a ball with radius e1 / ( 1 + a ) , whose center is the point p\. Note that 

(25) | V ^ | ^ C 2 2 | l n £ | 
ln2^ ^ 

Let us consider the imbedding theorem of S. L. Sobolev [17]: space H1 (fi) contin­
uously imbeds in the space Lq{Q), if the domain fi is a finite union of star-shaped do­
mains and q ^ 2nj[n — 2). Using this theorem, we can obtain the estimate of the right 
hand side of (24). 

By using estimate (25) and the Holder inequality, we deduce 

(26) J k - a 0 | 2 ( | M l l n r ^ - V 1 ) 2 ^ ^ 
(Ok

£ 

<\]ne\2l J | « £ - « 0 | ^ ^ y / P l M ( | W , | - 4 r , - 2 ^ ^ \ 1 / p 2 

where l/p\ + l /p 2
 = 1. We suppose that 2px = q = 2nj(n — 2),p2

 = n/2. It is easy to 
see that 

(27) h(\]nrk\-*rk-
2Y>dx\1/P2^C2}(\\ne\i-2>')V\ 

where the constant C23 does not depend on k and £. 
From inequalities (26) and (27) we obtain 

(28) J k - « 0 | 2 M v t | 2 ^ C 2 4 | l n £ | 2 / " - 2 / J k -« 0 | 2 » /C- 2 >^y" - 2 > / \ 
Û)* \(Ok

£ ) 

where the constant C24 does not depend on e and &. Thus, we have 

(29) J |V(« £ -« 0 ) | 2 ^ 2 U)^^C 2 5 2 i | In£ | 2 / " - 2 / J|«£-«0 |2"/<"-2»^y""2) /K. 

Using the Holder inequality and the imbedding Theorem, we obtain 

(30) J / j k - « o | 2 - / ( - 2 ) ^ ] ( " " 2 ) / " ^ 

/ Ne \ 2 / « / Ne 

^ (N£)2/"||«£ - «o||? (fl) $ {Ne)
2'"\\ue - «0^.(0, 

Ns \2/« / N„ \ ( » -2 ) /« 
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Lemma 3 and the smoothness of the solution u0 lead us to the conclusion that the 
norms \\ue — «OIIH1^)

 a r e uniformly bounded with respect to e. Therefore, if we take 
N8 = 0 ( | In e | ( x " ô/2)n ~ l ) as s -> 0, then from (29) and (30) we obtain (21), where ô 
satisfies the inequality 0 < ô < 2 — 2/n. The theorem is proved. 

THEOREM 3. For the solution ue of problem (l)-(3) and the solution u0 of problem (19), 
(20) the estimate 

(31) I \u£-u0\
2dx^C26\lne\-0, 0<ô<2-2/n, 

Q 

is valid, ifNE = 0{\]ne\{l-ô,2)n-1) as £ ->0 . 

PROOF. From Lemma 1 with rj = £
11{1 + (J) and Lemma 3 it follows, that 

(32) ju2dx^C27s
2/{1 + a) . 

Since u0 = 0 on dQ, 

(33) ju2dx^C28s
2^1 + a) . 

Therefore, the mean-value theorem for integrals gives us the conclusion that /? 
exists such that /? ^ rj, and 

(34) J k - i f o l 2 ^ ^ ^ 1 ^ . 

It is easy to see, that 

(35) | \ue - u01
2 ds ^ cJ J k - «0 |

2 A + fiVd + cF) f | V ( ^ £ _ ^ o ) | 2 ^ \ B 

From inequalities (34) and (35) we get 

(36) \\ue-uQ\2ds^Cne
ll^ + °\ 

since | V(&e — % ) 12 dk is uniformly bounded with respect to e. 
Q 

By the imbedding theorem (8) for (uE — «0 )>
 w e obtain the estimate 

(37) J \uE-u0\
2 dx^C32l J | V ( « e - « o ) | 2 ^ + J | « e - « o | 2 ^ | > 

where Qv contains the support of Vt/>£, and the constant C32 does not depend 
on £, because of the smoothness of dQ. From estimates (36) and (37) we obtain 

J k - Z / o l 2 ^ ^ ^ / | | V k - ^ o ) | 2 ^ + £1/(1 + a ))+ J |«e"«ol 
Û \Q\Qr, J QV 

: <iv. 
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By using estimates (32) and (33), Theorem 2, we get (31). The theorem 
is proved. 

4. - We study the limit behavior of the spectrum of problem (l)-(3) as e —» 0. The 
question about the behavior of the spectrum of a boundary value problem, when the 
boundary conditions are perturbed, was considered in [18]. The case, when the sets T\ 
are disposed in a periodic way, was considered in [3]. In the present paper on the basis 
of the theorem on the limit behavior of spectrum of the abstract operators sequence, 
which is proved in [19] (see, also [16]), we study a nonperiodic case. 

Consider the spectral problems, which correspond to boundary value problems (1)-
(3) and (19), (20): 

(38) L(«*)+A*«* = 0 in Q, 

(39) uk
£ = 0 on ye , 

(40) o(u£) = 0 on r£ , £ = 1 , 2 , . . . 

and 

(41) L ( 4 ) + 4 4 = 0 i n f l , 

(42) 4 = 0 on dQ, k = 1, 2, . . . . 

Here uk
£ e H1 (Q, y£ ) and 4 e H1 (Q, 3Q)y k = 1, 2, . . . . The sets {A* }, { 4 }, £ = 

= 1, 2, ..., are eigenvalues such that X\^ X2
£... ^ Àk

£ ^ ..., Aj ^ AQ ^ ... ^ AQ ^ ... 
and the eigenvalues are repeated according to their multiplicities. 

Define the operator A£ : L2 (Q) —» H 1 (42, ye ), setting A £ / = —u£, where &e is the 
solution of problem (l)-(3). The operator A0 : L2 (Q) -» H 1 (fî, 9fî) is defined by the 
formula A0f= —u0, where z/0 is the solution of the problem (19), (20). Let H£ = H0 = 
= L2{Q), V = HHQ, dQ) and let R£ be the identity operator in L2(fl). 

Let us verify the conditions of Theorem 1.4 (ch. 3) from [16] (see also [19]). The 
condition Cl is fulfilled automatically. It is easy to establish the positiveness, self-ad-
jointness and compactness of the operators A£ and A0. The norms |[/4£||L(H£) are uni­
formly bounded with respect to e by virtue of Lemma 3. 

In view of Theorem 3 the condition C3 holds. If a sequence {A£f£} is bounded in 
H1 (Q, y £ ), therefore, it is compact in L2 (Q). Because of Lemma 3 the condition C4 is 
fulfilled. 

Consider the spectral problems 

A£u
k
£ = iik

£u
k
£ , IA\^ II\^ ... , £ = 1 , 2 , . . . 

and 

A > 4 = / 4 4 , jul^[il>z..., k = i,2,.... 

It is obvious, that fik
£ = {Xk

£ ) _ 1 , /UQ = (AQ) _ 1 . Theorem 1.4 (ch. 3) from [16] gives 
us: 

(43) | / 4 - / 4 l ^ C 3 4 sup \\A£u - A0U\\HE , 
ueN(fi%,A0) 

I I « I I H 0 = I 



14 O. A. OLEINIK - G. CHECHKIN 

k = 1, 2. . . where N(JUQ,A0) = {u:u eH0,A0u — pi\u\. Thus the following theorem 
follows from (43) and Theorem 3: 

THEOREM 4. There exists a constant C35, which does not depend on e and such, that for 
eigenvalues Xk

£ and AQ of the problems (38)-(40) and (41), (42), respectively, the estimate 
\(Xk

£)~
l - Wo)"11 ^ C35 | ln£| ~ô for sufficiently small e is valid, where 0 < ô < 2 — 

-2/n, N ^ O d l n f i l * 1 - * / 2 * - 1 ) as e ->0 . 

5. - In the same way we considered also the elliptic equations and the stationary 

linear elasticity system in perforated domains with rapidly alternating boundary condi­

tions. Let Qs = Q\ | U Tk \ where the domain T* has a diameter £, and we consider the 

equation in Qe with the boundary conditions (2), (3) and the Dirichlet boundary condi­
tions on dTfr. Then the theorems, which are similar to Theorems 1-3 are valid. More­
over, we considered the problem when the Dirichlet condition is given on the boundary 
of some domains T̂  and the condition of the form (3) is given on the boundary of the 
other Tk. In addition, we suppose in this case that the function u GH1{Q£) can be ex­
tended in H1 (Q) in such a way that H^HH1^) ^ Q ó I M I H 1 ^ ) > where the constant C36 

does not depend on e. 
Similar results are proved in the case when we set on y E some other type of coercive 

boundary conditions. 
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