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Anal is i funzionale . — Extension of distributions and representation by derivatives 

of continuous functions. N o t a di J é R ô M E L E M O I N E e J A C Q U E S S I M O N , p resen ta t a (*) dal 

Socio E . M a g e n e s . 

ABSTRACT. — It is proved that any Banach valued distribution on a bounded set can be extended to all 
of Rd if and only if it is a derivative of a uniformly continuous function. A similar result is given for distribu­
tions on an unbounded set. An example shows that this does not extend to Frechet valued distributions. 
This relies on the fact that a Banach valued distribution is locally a derivative of a uniformly continuous 
function. For sake of completeness, a global representation of a Banach valued distribution by derivatives 
of functions with compact supports is given. 

KEY WORDS: Distributions; Extension; Vector-values; Representation. 

RIASSUNTO. — Estensione di distribuzione e rappresentazione per mezzo di derivate continue. Si dimostra 
che ogni distribuzione a valori in uno spazio di Banach, in un aperto limitato di Rd può essere estesa a tutto 
Rd se e solo se è una derivata di una funzione uniformemente continua. Un risultato simile è dato anche per 
distribuzioni in un insieme non limitato. Un esempio dimostra che questa proprietà non si può estendere al­
le distribuzioni a valori in spazi di Fréchet. La dimostrazione dipende dal fatto che una distribuzione a va­
lori in un spazio di Banach è localmente una derivata di una funzione uniformemente continua. Per com­
pletezza è data anche una rappresentazione globale di una distribuzione a valori di uno spazio di Banach 
per mezzo di derivate di una funzione con supporto compatto. 

1. INTRODUCTION 

In this work we prove that any Banach valued distribution on a bounded set can be 
extended to all of Rd if and only if it is a derivative of a uniformly continuous function 
(Theorem 3). That i s / e Qf (Q; E), E Banach space, has an extension in Q' {Rd; E) if 
and only if it can be written as / = d^g. 

More generally, a distribution in any open set has an extension if and only if, on 
all bounded subset, it is a derivative of an uniformly continuous function (Generaliza­
tion 4). 

This relies on the fact that any Banach valued distribution/is locally a derivative of 
a uniformly continuous function. That is, in each compact subset of Q, f = d^g (Theo­
rem 1). The function g is given explicitely, using an elementary solution A of 
(3 i3 2 . . . ddYA = ô0, and it depends «continuously» on / . 

An example shows that these results do not extend to Frechet valued distributions, 
and a fortiori to locally convex spaces (Theorem 5). 

For sake of completeness, in a second part (Sections 6 and 7) we give a 
global representation of any Banach valued distribution by an infinite but locally 
finite sum of derivatives of uniformly continuous functions with compact supports. 
That is / = 2 d^'gi with &/ which cancel in any m ce Q from a finite order iœ 

ieN 

(Theorem 11). 

(*) Nella seduta del 18 novembre 1995. 
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This relies on a global representation of any distribution with compact support by a 
finite sum (Theorem 7), using a parametrix. 

For real distributions on all of Rd, this global representation was yet obtained by L. 
Schwartz [3]. On other hand he gave in [2] a representation by a finite sum which holds 
for more general spaces than Banach ones (quasi-complete dual of Frechet spaces), but 

which is only local. 

2. REVIEW 

Let £ be a Banach space and Q an open subset of Rd. We denote by CD' (Q; E) the 
set of all continuous linear maps from (&(Q) into E. The space Q(Q) is endowed with 
the inductive limit topology of (DK (Q) (space of functions of (D(Q) with support in K) 
for all compact K included in Q. Each QK(Q) is a Frechet space for the following semi-
norms (which are increasing with m) 

IIMIL= sup \dpç(x)\. 

A subset of Q(Q) is open if its intersection with any C)K(Q) is open. 
A distribution is therefore a linear map of CD(Q) into E which is continuous on each 

CDK (fl), that is such that, for each compact X c û , there exists m eN and b eR such 
that: Vcpe®K(Q), 

(1) \\(f,<p)\\E*l>\\\<p\\\m. 

REMARK. The topology of CD(Q) is generated, cf. [4], by the (filtering) family of fol­
lowing seminorms: for each function q e C(fl), a seminoma is defined by 

IMUo);* = sup sup \q(x)dfi<p(x)\. 
xeQO<\0\<\q(x)\ 

A linear map/from Q(Q) into E is therefore continuous if there exists q e C(Q) and 
e e R such that: Mcp e 0>(Q), 

(2) \\(f,q>)\\E<cM\a>{û)iq. 

This property characterizes distributions. Indeed, (2) implies (1) since, if sup­
port cpcK, ||ç>||o)(û).f ^ H I M I L f o r m = SUP k(* )h conversely (1) implies (2), 
cf. [4]. • xeK 

3. LOCAL REPRESENTATION 

A distribution with values in a Banach space is locally the derivative of a continuous 
function, according to the following result. 

THEOREM 1. Let feQ' (Q;E). For all coccQ, there exists g e CU(Q;E) and 
fi<=Nd such that 

f = d^g in co . • 

We denote by GU(Q;E) the space of uniformly continuous functions. For 
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real valued distributions on Rd, this property has been established by L. Schwartz [3, 
Theorem XXI, p. 82], by using Hann-Banach theorem. 

PROOF. Let K be a compact set such that co ccK cc Q, and m satisfying (1). Let 
XeCm(Rd) be defined by 

A(x) = ((;» + l)\)-d{xxx2...xd)
m + l if all of ^ are ^ 0 , A(x) = 0 else. 

It satisfies ( dx d2 ... dd )m + 2 X = ô 0 . Indeed (did2 ...ddY"X = pin classical sense where 
(JL(X) = xxx2 ...xd if all of Xj are ^ 0, //(x) = 0 else, and (dld2 ... dd )2p = ô0 in distribu­
tion sense. 

Let a and Ç be two «localization» functions such that, denoting r = sup \x\, 

a e < £ ( R J ) , a(x) = 1 if x e co , a(x) = 0 if x $K, 

£ E < £ ( R J ) , £(X) = 1 if |x| ^ 2 r , £(x) = 0 if |x| ^ 2r + 1. 

We define ^ e CD' (Rd ; E) by g = a(af *(£A)), where ~ is the extension by 0 to Rd. 
This definition is lawful since Ç, and thus ÇA, have a compact support, which allows to 
define the convolution. The announced properties - and some others - are satisfied ac­
cording to the following lemma. • 

LEMMA 2. One has ge Gu {Rd ; E ), support g c K, ( dl ... dd )m + 2g = fin co and there 
exists cm>0)}K such that 

sup \\gM\\E^bcm>(0}K. • 
xsRd 

This result shows that, in addition to Theorem 1, one can choose g with compact 
support depending «continuously» on/(through h) and |/31 = {m + 2) d where m is the 
order o f / i n co, defined by (1). 

PROOF. Support. According to the properties of the support of a product, 
support g c support a c K. 

An identity. In co, g = af *(ÇA) thus 

(3) (d1...ddr
 + 2g = ïf*(di...ddr

 + 2(&) ina). 

ln{x: \x\ <2r}onehasÇ = l t h u s , ( 3 1 . . . 3 J r + 2(ÇA) = ( 3 1 . . . 3 i r + 2A = ô 0 . I t 
follows that, in all of Q, (dx ... ddY

 + 2J£X) = ô0^6 where support 6 c {x : \x\& 2r}. 
Hence (3) yields (d1 ... dd)

m + 2g = af*ô0 + a / * 0 J n û>. 
On the other hand, support (a / * 0) c support a / + support 0 c {x : \x\ ^ r} + 

+ {x : |x| ^ 2 r } c { x : \x\ ^ r}. The last set has an empty intersection with co therefore, 
in the above equation, it remains 

(d1...dd)
m + 2g = oj*ô0 = ïf=f i n t o . 

Properties of regularized functions gn. In order to get the continuity and to bound the 
norm of g by passing to the limit, uniform properties on regularized functions g„ are 
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proved now. Given a mollifier gn, that is gn e Q(Rd) such that gn(x) = 0 i£ \x\ ^ l/n 

and Ï gn = 1, a function A„ e C00 (R^) is defined by X„ = X*gn and a function 

gn e e " (fl; E) is defined by 

(4) gn = a{af *{&„)). 

One has a / *(£AW ) e e00 ( 1 ^ ; E) and, setting h (y) = h( -y), 

( S? *(&,))(*) = (of, r-x(ÇAjV = </> «_,(£!„ ) V 
Together with (1) this yields: Vx E ,Q, 

(5) | |(^*(C2J)(x)| |E^^| | |ar_x(^Jv | |U. 
The Leibnitz's formula gives, since £ and thus £AB have their supports in A = 
= {z: | z | < 2 r + l } , 

|||ar_x(ajV||L,a ^ Cm |||a||U,0 | | | ( a j V | |L , e -* = 
= cm | | |a| |L,0 | | |a„ HUM *S (c j 2 |||a||U>fl IlltHU,^ |||A. \\\m,A . 

Multiplying (5) by \a(x)\ and taking the upper bounds, we therefore obtain 

(6) sup\\(g„)(x)\\B^bca>a>i\U„\\\miA. 
x<=Q 

Passing to the limit. Let us prove that (g„ ) n e N is a Cauchy sequence. Replacing in 
(4) Xn by Xn — Xn>, we obtain gn — gn> instead of gn. The above calculus is still lawful 
after this substitution, therefore (6) yields 

(7) sup \\(g„ - g„')(x)\\E ^ bcm>a^\\\Xn - Xn> \\\myA . 
xsQ 

Since Xe6m (Rd ) and A is bounded, one has, when n -> oo y \\\X„ - X \\\m>A —> 0. Thus 
the inequality (7) implies that the gn form a Cauchy sequence in Gu (Q; E). It converges 
to g in Q! (Q; E) and therefore in CU(Q; E). Passing to the limit in (6) we finally 
obtain 

sup \\g{x)\\E ^ bcm>aA \\\X\\\„tA = bcm}(tììK 
x e Q 

which completes the proofs of Lemma 2, and therefore of Theorem 1. • 

4. EXISTENCE OF AN EXTENSION 

A distribution in a bounded open set has an extension if it is the derivative of a uni­
formly continuous function, according to the following result. 

THEOREM 3. Suppose that Q is bounded. A distribution f e. (Df (Q;E) has an extension 
in Qf (Rd;E) if and only if: there exists g e GU(Q;E) and /? e Nd such that 

f= d?g in Q. m 

In an arbitrary open set, such a representation in each bounded part is sufficient. 
This is the goal of the following result. 
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GENERALIZATION 4. A distribution fé 0)' (Q; E) has an extension in Qr (Rd; E) if 
and only if: for any bounded open set œ c Q, there exists ge. Cu(co;E) and fi s Nd such 
that 

f = d^g in co . • 

PROOF. The condition is necessary since, if there exists an extension, the Theorem 1 
shows that it is of the form/ = d^g in co, with g e 6{Rd;E), and therefore/= d^g\œ 

with g\œeeu(<a\E). 
Let us prove that the condition is sufficient. If Q is bounded, we can choose co = Q, 

and the corresponding function g has an extension g G <3(Rd ; E) (cf. for example [1, 
Theorem 5.2, p. 302]). Then d^g is an extension of/. 

If Q is not bounded, we consider a partition of unity on Rd by functions an 

such that an e (D(Rd), support an c {x : n - 1 < \x\ < n + 1}, 2 an = 1. in con = 

= {x e Q : |x | < #} one can, by assumption, represent / = d^ngn with g„ G Ĉ  (CO„ ; E), 
and we choose an extension g„e G(Rd ;E). 

One defines a distribution/G <£' (R J; E) b y / = 2 o.nd^Hgn because this series is 
converging in 0)' (Q; E) since, in each compact set of R , only a finite number of 
and^ngn are not zero. This distribution is an extension of g because the equality 
an d^ngn = a„f holds in con and in £?\support an, and therefore in their collection Q, 
so that summing with respect to n, f =f in Q. • 

5. NON-REPRESENTATION OF DISTRIBUTIONS WITH VALUES IN A FRECHET SPACE 

Suppose now that £ is a Frechet space. That is a space endowed with a sequence of 
seminorms || \\E)V which turn E into a Hausdorff complete space. The space Qf (Q;E) 
is again the set of linear continuous maps from Q(Q) into E. 

The above results do not extend to the distributions with values in a Frechet space 
according to the following result. 

THEOREM 5. One can choose open sets œ ce Q CC Rd, a Frechet space E and a distribu­
tion fG ®' (Q; E) with compact support which, in co, is not the derivative of a continuous 
function. That is 

VpeNd, Vgee(Q;E), f\a* (d^* . 

More generally, f is not the sum of derivatives of continuous functions. That is, 

VI finite, VfreN4, Vgiee(Q;E), / L * S O ^ L - • 
i e.1 

REMARK. The results of preceding sections may be extended to the distributions 
which have the following additional property: VK cc Q, there exists m G N and b G R 
such that, Vi> G N , Vç9 G (D{Q) such that support cpcK, | |(/, <p)|U;v ^ £ | | M I L ^n 

general m and b depend on v, that is on the semi-norm of E). 
This property is equivalent, cf. [4], to the following: there exists q G G(Q) and 

CGR such that, V < ? G ( D ( £ ) , V v e N , | |(/, <p)\\E;v ^ c\\(p\\Q{Q)iq. • 
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In order to prove Theorem 5, we will use the following seminomas on CD' (Q; E) de­
fined, for all cp e Q(Q) and v e N , by: 

(8) \\f\U'(Q;E);(p,v=\\{f,Cp)\\E,v 

and we will use the following property proved in [1]. 

LEMMA 6. The space Q' (Q;E) endowed with those seminorms is Hausdorff and se­
quentially complete. • 

PROOF OF THEOREM 5. Choose Q = R,œ =] — 1, 1[ and E = C(R) endowed with 
the following seminorms, indexed by v e N , IHIe(iO;v = SUP I^W|. 

| z | < v 

Definition of f Let h G (5(R) satisfy support h = [0, 1/2], sup \h(z)\ = 1, 
£(1/4) = 1. Define f e (3)'(R; Q(R)) by: Vcpe(D(R), % e R , *el? 

(fcp)(z)= E S^(0)A(z-«). 
« ^ l 

This definition is lawful since the series defining/is converging in CDf (R; G(R)). To 
check it, define fN e®'(R; e(R)) by (fN, cp)(z) = 2 3^ (0 )h(z - n), and fix v. 
F o r N ' ^ N ^ , 1 *** N 

IK/N' -/N,^>lle(R);v= SUp 
| z | < v 

E 3>(0)£(z-/*) 
N + 1 ^n^N' 

0 

since # ^ |z| + 1 implies #(z - ») = 0. 
Hence (/N)JVGN is a Cauchy sequence in Q' (R; C(R)) for the seminorms de­

fined by (8). By Lemma 6, this sequence has a limit which is, by definition, the distribu­
tion / 

Support off. Since support/^ = {0}, passing to the limit gives support /= {0}. 

Non-representability by only one derivative. Suppose that there exist g G C(R; C(R)) 
and fi eN such that 

(9) f=3Pg in ] - l , l [ . 
1 

It would satisfy (/, cp)(z) = ( - 1 ) ^ | g(x, z) d^cp(x)dx for all cp G 6D(] - 1, 1[) and 
zeR, thus, Vi>, - l 

(10) IK/,?>>lle<K);v^v SUP \d^Cp{x)\ 
\x\<\ 

where cv = sup \g{x, z) | . 
|*| < 1 , | z | < v 

Let us go back to the definition of/. It gives (/, cp){fi 4- 1 + 1/4) = d^+1cp(0) 
(since HP +l + l/4-n) = 0i£n*P+l mdh( 1/4) = l) thus | |(/, cp)\\e{R).fì + 2 ^ 
^ \dfi + 1q>(0)\. Together with (10), this would give, for all (p e®(] - 1, 1[), 

\d? + 1(p(0)\^ce+2 sup \dP(p(x)\. 
\x\<l 

This, and therefore (9), are not true, since for any given c, one can choose cp such that 
sup \dfi<p(x)\ ^ 1 and \dfi + 1<p(0)\> c. 

\x\<l 
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Non-representability by a sum of derivatives. It cannot exist a finite set J c N , 
gi E e(R, e(R)) and fa E N such tha t /= 2 dPigt in ] - 1, 1[. Indeed, otherwise, (9) 

tel 
should be satisfied with /? = max { /?/} and g = 2 G/, where G, is any anti-derivative of 

i i 
order fi - /?, of g,- (that is d? " ^ G , = &• ). • 

6. REPRESENTATION OF A DISTRIBUTION WITH COMPACT SUPPORT BY DERIVATIVES 

OF CONTINUOUS FUNCTIONS WITH COMPACT SUPPORT 

For sake of completeness, we will give in next section a global representation of any 
Banach valued distribution by an infinite sum of derivatives of continuous func­
tions. 

In order to prove it, we begin by the following representation of distributions with 
compact support, which uses the parametrix method of L. Schwartz. 

THEOREM 7. Letfe Q! (Rd;E) with compact support. There exists a finite number I of 
functions g{ e 6U (Rd ; E) and /?, E Nd such that 

(11) / = 2 d^gi in Rd. 

The gi can be choosen depending {linearly) onf and with support in an arbitrary neigh­
bourhood of the support of f. • 

For the real valued distributions, these results have been established by L. 
Schwartz [3, Theorem XXVI, p. 91]. 

REMARK. Theorem 7 extends to the case where £ is a quasi-complete dual of 
Frechet space. Indeed L. Schwartz proved in [2] that a distribution with compact sup­
port is of finite order [2, Corollary 2, p. 85], and that a distribution of finite order satis­
fies (11) [2, Corollary 2, p. 90]. • 

We will use a parametrix of order m + d + 1, where m is the order of/. More pre­
cisely, we represent Dirac mass as following. 

LEMMA 8. For all r > 0 and m e N , one has 

ô0 = rj+ 2 dfiy fi 
\fi\=m+d+l 

where rje(D(Rd), ype (5™(Rd), and rj and y fi have their support in B = {xsRd: 
\x\^r}. • 

PROOF. The case where m + d + 1 is even. Consider the elementary solution of 
ô0 = A{™ + d+1)/2XmRdthatisX(x)=c\x\m + H£disoddX(x)=c\x\m + 1\og \x\ i£d 
is even. This equation can be written <50 = 2 cgd^X. 

\fi\=m+d+l 

Let 6 be a localization function such that 6 E e00 (Rd ), G(x) = 0 if x ^ r, 6(x) = 1 if 
|x| ^ r/2. Multiplying the two members of the equation by 0 it comes, ô0 = 6ô0 = 

2 CfiOdPX. 
\fi\=m+d+l 
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According to the dual Leibnitz's formula, dd^X = d^(6X) + rj^ with 

vp= 2 (-i^-oil0o)d0(Xd^-oe). 

This function is C00 (it cancels in a neighbourhood of 0), thus we get the announced de­
composition with t] = 2 cpVp a n d Y p = cpOX. 

P 

The case where m + d + 1 is odd. The above decomposition relative to the even 
number (m + 1) + d+ 1 yields, denoting Y = c|x|w + 2 or c|x|w + 2log |x| whether 
the parity old, and /? + <?/ = (/Ji/.. . ,/J, + 1, ...,Pd), 

\P\=m + d+ 1 1 =£/=£</ 

Hence the announced decomposition holds with 

PROOF OF THEOREM 7. Let us first prove that/has a finite order in all of Rd. Let K 
be a compact set such that support fccK. According to (1), there exists m such that, 
V<p e(D(Rd), support cp cK, 

ll</»l|B^MMIL-
Let a G Q(Rd ) be such that a = 1 in a neighbourhood of support/ support acK. As­
sume now that cp e G)(Rd). Then (/, <p) = ( / acp) thus 

IK/.^IU^^III^IIU^VJIIallUllkllU^HIklL 
which proves that the order of / is m in all of Rd. 

Decomposing 

f = f*ôo=f*fl+ 1 f*dfiYp=f*V+ 2 dfi(f*Yp) 
\p\=m+d+l \P\=m + d+l 

the announced properties in the Theorem 7 - and some others - are given by the fol­
lowing lemma. • 

LEMMA 9. One has f* ye. (5™ (Rd; E) , /*y j 9G eu(R
d ; E),f*rj and f* y p have their 

support in support/ + i3, and 

SUp \\(f*V)M\\E^bCm,J,r, SUp \\(f* Yp)M\\E ^ bcm>dtr . • 
xeRd xeRd 

PROOF. The imbeddings on supports result from the fact that support f*g c 
C support / + support g. 

The regularity of/ * rj is classical, since rj is regular. In order to bound its norm, we 

observe that (f*v)M = (f>*-xV) n e n c e IK/**7)(*)||JB ^ *IIMIL-
To establish the continuity and to bound the norm, we are going to regularize y^, 

which will allow some similar calculus to those done o n / * 77, then we will pass to the 
limit. Given a mollifier Qn, a function y^ e Q00 (J?**) is defined by Yp = Yp*Q*-
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One has / * y} e e? (Rd ; E) and, Vx, ( / * y£ )(*) = (/, r _X yf) thus 

ll(/*y2)(*)l|B^*ll|r-x^llL = *llly?IIU 
hence 

(12) sup U(/*y2)(*)||B^|||y2HL. 
xeRd 

Let us prove that t h e / * 7 J? form a Cauchy sequence. Replacing in these calculus 7J3 
by 7/J3 — y^' we bound likewise, 

sup \\(f*Yl>-f*Y$)M\\E<l>\\\Y"fi-Yfi\\\>.-
xeRd 

Since 7p e <SW (R^) and has a compact support, |||yJ8 - y $ |||w —> 0 thus this inequality 
implies that ( /*y^)„EN is a Cauchy sequence in Qu (Rd ; E). It converges t o / * y ^ in 
CD'(Rd;E) and therefore in eu(R

d;E). Passing to the limit in (12), we obtain 

sup||(/*7^)U)||^H||7^IIU 
xeRd 

which completes the proof of Lemma 9, and therefore the proof of Theo­
rem 7. • 

REMARK. A distribution with compact support can be represented by only one 
derivative, that is / = d^g in all Rd, but g has not necessary a compact support. 

Such a representation is obtained by using the local representation of Theorem 1 
for the extension/ by 0, and for the compact K = Q. One checks that g cannot always 
been choosen with compact support by considering Q = R a n d / = ô 0 ; none of its 
primitives has a compact support. • 

COROLLARY 10. Let Q be an open subset ofRd andfe. (Df (Q; E), such that the support 
of f is compact and enclosed in Q. 

There exists a finite number I of g{e. GU(Q;E) and /},- e Nd such that 

For all KDD support/, one can choose g{ such that support g/CK. • 

PROOF. It suffices to apply Theorem 7 to the extension by 0 of / to all of 
Rd. • 

7. GLOBAL REPRESENTATION OF A DISTRIBUTION 

A distribution (again with values in a Banach space) can be globally represented by 
an infinite converging sum, which is locally finite, of derivatives of uniformly continuous 
functions, in the following way. 

THEOREM 11. Let / e <& (Q; E). There exists g,(=eu(Q;E) and /?,- G Nd such 
that 

f= 1 3 % in ®'(Q;E), 
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support g / is compact and included in Q and, for each co ce Q, all the gi cancel in œ from 
a finite order iœ. Therefore 

/ = 2 d^gi in co. • 

For real valued distributions, this property has been established by L. Schwartz 
[3, Theorem XXX, p. 96]. 

PROOF. We decompose Q in a collection of open sets co„ which converge to the 
boundary in the following way: V « e N , 

Qn = {x: \x\ <»,bafl(x, l/n) c Q}(Q0 = 0), con = Qn + 2\Qn . 
To the covering of Q by the conwe associate a partition of unity {an }„ e N . It satisfies 
an e (D(con ), 2 a„ = 1 in Q. We decompose / = 2 /« where fn — a„ f. One has 

support/„ CCû>„ cc i3 which allows to decompose fn with the Corollary 10. This latter 
gives the existence of a finite number I„ of gi>n e G(Q;E) and of /?/,„£ N^ such that 
fn= . 2 dfii'"gi,n a n d support^-^Ctt),,. Finally, 

« =5 0 / ^ I„ 

and renumbering the couples (/,«), we obtain the announced properties. • 

REMARK. The representation formula of Theorem 11 extends to the case where E is 
a quasi-complete dual of Frechet space. 

Indeed Theorem 7 extends to this case, as seen in a former remark, and we can con­
clude by the above proof. • 
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