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Analisi funzionale. — Extension of distributions and representation by derivatives
of continuous functions. Nota di JEROME LEMOINE e JACQUES SmMON, presentata (¥) dal
Socio E. Magenes.

Asstract. — It is proved that any Banach valued distribution on a bounded set can be extended to all
of R? if and only if it is a derivative of a uniformly continuous function. A similar result is given for distribu-
tions on an unbounded set. An example shows that this does not extend to Frechet valued distributions.
This relies on the fact that a Banach valued distribution is locally a derivative of a uniformly continuous
function. For sake of completeness, a global representation of a Banach valued distribution by derivatives
of functions with compact supports is given.

Key worps: Distributions; Extension; Vector-values; Representation.

Ruassunto. — Estensione di distribuzione e rappresentazione per mezzo di derivate continue. Si dimostra
che ogni distribuzione a valori in uno spazio di Banach, in un aperto limitato di R? pud essere estesa a tutto
R? se e solo se & una derivata di una funzione uniformemente continua. Un risultato simile ¢ dato anche per
distribuzioni in un insieme non limitato. Un esempio dimostra che questa proprieta non si pud estendere al-
le distribuzioni a valori in spazi di Fréchet. La dimostrazione dipende dal fatto che una distribuzione a va-
lori in un spazio di Banach & localmente una derivata di una funzione uniformemente continua. Per com-
pletezza & data anche una rappresentazione globale di una distribuzione a valori di uno spazio di Banach
per mezzo di derivate di una funzione con supporto compatto.

1. INTRODUCTION

In this work we prove that any Banach valued distribution on a bounded set can be
extended to all of R if and only if it is a derivative of a uniformly continuous function
(Theorem 3). That is fe @' (2; E), E Banach space, has an extension in @' (R?; E) if
and only if it can be written as f = 8g.

More generally, a distribution in any open set has an extension if and only if, on
all bounded subset, it is a derivative of an uniformly continuous function (Generaliza-
tion 4).

This relies on the fact that any Banach valued distribution £ is locally a derivative of
a uniformly continuous function. That is, in each compact subset of 2, f = 3#g (Theo-
rem 1). The function g is given explicitely, using an elementary solution A of
(8010,...8;)"A =0, and it depends «continuously» on f.

An example shows that these results do not extend to Frechet valued distributions,
and a fortiori to locally convex spaces (Theorem 5).

For sake of completeness, in a second part (Sections 6 and 7) we give a
global representation of any Banach valued distribution by an infinite but locally
finite sum of derivatives of uniformly continuous functions with compact supports.

That is f = 2, 8%, with g; which cancel in any w cc 2 from a finite order 7,
ieN

(Theorem 11).

(*) Nella seduta del 18 novembre 1995.



32 J. LEMOINE - J. SIMON

This relies on a global representation of any distribution with compact support by a
finite sum (Theorem 7), using a paramettix.

For real distributions on all of R?, this global representation was yet obtained by L.
Schwartz [3]. On other hand he gave in [2] a representation by a finite sum which holds

for more general spaces than Banach ones (quasi-complete dual of Frechet spaces), but
which is only local.

2. Review

Let E be a Banach space and £ an open subset of R?. We denote by @' (Q; E) the
set of all continuous linear maps from @(£2) into E. The space M(R2) is endowed with
the inductive limit topology of Mg (£2) (space of functions of M(L2) with support in K)
for all compact K included in Q. Each @k (£2) is a Frechet space for the following semi-
norms (which are increasing with #z)

llell,= sup  [37q(x)].

0s|B|smxeR

A subset of M(R) is open if its intersection with any My (£2) is open.

A distribution is therefore a linear map of M(L) into E which is continuous on each
Mk (82), that is such that, for each compact K ¢ 2, there exists 7 € N and b € R such
that: Yo € 0g (2),

(1) IKA ele<bllell -

Remark. The topology of M(£2) is generated, cf. [4], by the (filtering) family of fol-
lowing seminorms: for each function g € C(Q), a seminorm is defined by

lollowi,=suwp  sup |g(x) P @(x)].
xeQ 0<|B|<|qlx)|

A linear map f from @(R) into E is therefore continuous if there exists g € C(£2) and
c € R such that: Vp e @(Q),

2) KA @Mz < clollo, -

This property characterizes distributions. Indeed, (2) implies (1) since, if sup-
port @ CK, |@llew), S7|l|@|ll. for m = sup |g(x)|; conversely (1) implies (2),
f.[4]. m *ek

3. LocAL REPRESENTATION

A distribution with values in a Banach space is locally the derivative of a continuous
function, according to the following result.

TueoreM 1. Let fe @' (2;E). For all wccQ, there exists ge C,(R; E) and
B e N such that
f=3% ino. u
We denote by @,(2;E) the space of uniformly continuous functions. For
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real valued distributions on R, this property has been established by L. Schwartz [3,
Theorem XXI, p. 82], by using Hann-Banach theorem.

Proor. Let K be a compact set such that w cc K cc 2, and » satisfying (1). Let
Ae " (R?) be defined by

Ax) = ((m+ D)% (eyxy ...y ifall of x; are 20, Ax) =0 else.

It satisfies (8,9, ... 8;)" *2A = 8. Indeed (8,3, ... ;)" A = u in classical sense where
u(x) = x1%, ...x,if all of x; are = 0, u(x) = 0 else, and (8,9, ... 8;)*u = &, in distribu-
tion sense.

Let a and ¢ be two «localization» functions such that, denoting r = sup |x|,
xeK

ae®R?), ax)=1ifxeow, alx)=0if x¢K,

tedRY), tx)=1if|x|<s2r, Ex)=0if|x|=2r+1.
We define g € @' (R%; E) by g = a(af *(¢A)), where ~ is the extension by 0 to R?.
This definition is lawful since ¢, and thus A, have a compact support, which allows to

define the convolution. The announced properties — and some others — are satisfied ac-
cording to the following lemma. ™

Lemma 2. One has g € €, (R%; E), support g K, (9 ... ;)" T 2g = fin w and there
EXISES Cpy, o, k StiCh that

sup [z < bcy0x. @
xeR?

This result shows that, in addition to Theorem 1, one can choose g with compact
support depending «continuously» on f (through 4) and | 8| = (7 + 2)d where » is the
order of f in w, defined by (1).

Proor. Support. According to the properties of the support of a product,
support g C support a c K.

An identity. In w, g = &7*(@1) thus

3) (8y...8;" " 2g=af %(8,...8;, )" *?(EA) in w.

In {x: |x| <2r} onehas & = 1thus, (3; ... 3; )"t 2(EA) = (9, ... 8; )" *2A =8,. It
follows that, in all of 2, (9, ... 8,;)" *2(EA) = 8, + 6 where support 6 ¢ {x : |x| = 2r}.
Hence (3) yields (8 ...8;)"*2g=af *d,+ af *0 in .

On the other hand, support (af * 6) c support af + support 6 C {x: |x| <r} +
+ {x: |x| = 2¢} c {x: |x| = r}. The last set has an empty intersection with o therefore,
in the above equation, it remains

(8y..8;" 2 g=afxdp=af =f inw.

Properties of regularized functions g, . In order to get the continuity and to bound the
norm of g by passing to the limit, uniform properties on regularized functions g, are
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proved now. Given a mollifier g,,, that is @, € @(R?) such that g, (x) = 0 if |x| = 1/#
and IQ,, =1, a function 4, e @ (R?) is defined by A,=A*p, and a function
g,€ C; (82; E) is defined by

(4) gn = alaf *(&,)) .

One has af *(&A,) € €* (R%; E) and, setting )a/(y) =h(—y),

(af *(82,))(x) = (af, 7 (E,) Yes = (£, a7 (E2,) e .
Together with (1) this yields: Vx e Q,
) I(af <€A, Dels < blllaz —. (82,) Il
The Leibnitz’s formula gives, since { and thus ¢A, have their supports in A =
={z:|z| <2r+1},
llaz (&) w0 < el @lllm, 2 I (A Mm@ - =
= llallln, @ &4 lln, 4 < () lalll, @ WL, 4 M2 ], -

Multiplying (5) by |a(x)| and taking the upper bounds, we therefore obtain
(6) Sug “(gn)(x)“E < bcm,a,C “Iin mm,A .

Passing to the limit. Let us prove that (g, ),y is a Cauchy sequence. Replacing in

(4) A, by A4, — A,., we obtain g, — g, instead of g, . The above calculus is still lawful
after this substitution, therefore (6) yields

(7) sug ”(gn — & )(x)”E < bcm, a, & ”I/l,, - /‘Ln' ”lm,A .
Since A € €” (R?) and A is bounded, one has, when » — ®, |||, = ||, » = 0. Thus
the inequality (7) implies that the g, form a Cauchy sequence in @, (£2; E). It converges

to g in @' (Q; E) and therefore in C,(L2; E). Passing to the limit in (6) we finally
obtain

Sug ” g(x)”E < bcm,a,é ”M”lm,A = bcm,w,K
xe

which completes the proofs of Lemma 2, and therefore of Theorem 1. W

4. EXISTENCE OF AN EXTENSION

A distribution in a bounded open set has an extension if it is the derivative of a uni-
formly continuous function, according to the following result.

TueoreM 3. Suppose that Q2 is bounded. A distribution f e @' (2; E) has an extension
in @ (R, E) if and only if there exists g€ C,(R2;E) and B e N? such that

f=0fg nQ. m

In an arbitrary open set, such a representation in each bounded part is sufficient.

This is the goal of the following result.
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GENERALIZATION 4. A distribution fe @' (Q; E) bas an extension in ®' (R*; E) if
and only if: for any bounded open set w C Q, there exists g€ C,(w; E) and B e Nd such
that

f=0% inw. m

Proor. The condition is necessary since, if there exists an extension, the Theorem 1
shows that it is of the form / = 3%g in w, with g € @(R?; E), and therefore f = 3%¢|,,
with g|, € C, (w: E).

Let us prove that the condition is sufficient. If 2 is bounded, we can choose w = Q,
and the corresponding function g has an extension g € C(R?; E) (cf. for example [1,
Theorem 5.2, p. 302]). Then 8#7 is an extension of f£.

If Q is not bounded, we consider a partition of unity on R? by functions a,
such that a, € ®(R?), support @, C{x:7n — 1< |x| <#n + 1}, go a,=1.Inw,=

={xe Q:|x|<#} one can, by assumption, represent f = 3%g, with g, € €, (w,,; E),
and we choose an extension g, € C(R?; E).

One defines a distribution /e @' (R?; E) by f = >, a,, 8%, because this series is
converging in @' (2; E) since, in each compact set of R?, only a finite number of
a,dP"g, are not zero. This distribution is an extension of g because the equality
a,8% g, =a,f holds in w, and in Q\supporta,, and therefore in their collection £,
so that summing with respect to #, f=Fin Q. ®

5. NON-REPRESENTATION OF DISTRIBUTIONS WITH VALUES IN A FRECHET SPACE

Suppose now that E is a Frechet space. That is a space endowed with a sequence of
seminorms || ||,, which turn E into a Hausdorff complete space. The space @' (22; E)
is again the set of linear continuous maps from @(L2) into E.

The above results do not extend to the distributions with values in a Frechet space
according to the following result.

THEOREM 5. One can choose open sets w cC 2 cC R?, a Frechet space E and a distribu-
tion fe @' (R; E) with compact support which, in w, is not the derivative of a continuous
Sfunction. That is

VBeN?, VgeC(R;E), flo,=(8%9],.
More generally, f is not the sum of derivatives of continuous functions. That is,

VI finite, VB;eN?, Vg, eC;E), fl,= 2 (8Pg)|,. =
iel

Remark. The results of preceding sections may be extended to the distributions
which have the following additional property: VK cc Q, there exists z € N and b € R
such that, Yv e N, Yo € ®(Q) such that support @ c K, |[(£, @)z, < bllle]l.. (in
general 7 and 5 depend on v, that is on the semi-norm of E).

This property is equivalent, cf. [4], to the following: there exists 4 € C(£2) and
ceR such that, Vg € (@), We N, [, D)z0 < clolawy,. ™
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In order to prove Theorem 5, we will use the following seminorms on @' (2; E) de-
fined, for all p e M(R) and v € N, by:

(8) ”f”(D'(Q;E); R ”(f; (p>”E;v
and we will use the following property proved in[1].

Lemma 6. The space @' (2; E) endowed with those seminorms is Hausdorff and se-
quentially complete. M

Proor oF TuEOREM 5. Choose 2 = R, w =] — 1, 1[ and E = @(R) endowed with
the following seminorms, indexed by v € N, [|5|ecr),» = sup |5(z)].

zZ|<wv

Definition of f. Let he C(R) satisfy support b = [0, 1/2], sup |b(z)| =1,
h(1/4) = 1. Define f e @' (R; @(R)) by: Vp e ®(R), VzeR, ek

(f, @)(2) = gl 3" @(0)h(z — n).

This definition is lawful since the series defining f is converging in @' (R; G(R)). To
check it, define fy e @' (R; C(R)) by (fy, 9)(z) = 2 8"9(0)h(z — #), and fix v.
For N'2N =y, tsnsN

|l<fNr—fN,¢>||@<R>;v=Isup > 3e(0)h(z—n)|=0

N+1<n<N'
since # = |z| + 1 implies h(z — n) =
Hence (fy)yen is a Cauchy sequence in @' (R; C(R)) for the seminorms de-
fined by (8). By Lemma 6, this sequence has a limit which is, by definition, the distribu-
tion f.

Support of . Since support fy = {0}, passing to the limit gives support f = {0}.
Non-representability by only one derivative. Suppose that there exist g € C(R; C(R))
and B e N such that

9) f=0%g inl1-1,1[.

It would satisfy (f, @)(z) = (—1) jg(x 2) 3 p(x)dx for all p e ®(]1 — 1, 1[) and
ze€ R, thus, Vv,

(10) ”(f’ (/))”G'(R);v X2 Islufl 'aﬂq) X I

where ¢, = sup  |g(x,2)].
[x] <1, 2| <w

Let us go back to the definition of £. It gives (f, p)(B + 1+ 1/4) = 3+ 1¢p(0)
(sinceh(B+ 1+ 1/4—n)=0ifn =B+ 1andh(1/4) = 1) thus [(f, @)lew)p+2 =
= |3#*1¢(0)|. Together with (10), this would give, for all p € ®(1 — 1, 1[),

[0F+1p(0)| < ¢4 l31'.1p1 |9 p(x)] .
x| <

This, and therefore (9), are not true, since for any given ¢, one can choose @ such that
sup [0Pp(x)| <1 and [8P*1q(0)] > c.

x| <1



EXTENSION OF DISTRIBUTIONS AND REPRESENTATION ... 37

Non-representability by a sum of derivatives. It cannot exist a finite set ICN,
g;€ C(R, C(R)) and B, € N such that f = Z dPig.in1— 1, 1[. Indeed, otherwise, (9)

should be satisfied with § = max {B:} and g Z G;, where G; is any anti-derivative of
order B — B; of g; (that is 8’9 biG, =g,). l

6. REPRESENTATION OF A DISTRIBUTION WITH COMPACT SUPPORT BY DERIVATIVES
OF CONTINUOUS FUNCTIONS WITH COMPACT SUPPORT

For sake of completeness, we will give in next section a global representation of any
Banach valued distribution by an infinite sum of derivatives of continuous func-
tions.

In order to prove it, we begin by the following representation of distributions with
compact support, which uses the parametrix method of L. Schwartz.

TueoreM 7. Let fe @' (R?; E) with compact support. There exists a finite number I of
functions g; € C,(R*; E) and B;e N* such that

(11) f= EI dg, in R?.

The g, can be choosen depending (linearly) on f, and with support in an arbitrary neigh-
bourbood of the support of . 1

For the real valued distributions, these results have been established by L.
Schwartz [3, Theorem XXVI, p. 91].

Remark. Theorem 7 extends to the case where E is a quasi-complete dual of
Frechet space. Indeed L. Schwartz proved in [2] that a distribution with compact sup-
port is of finite order [2, Corollary 2, p. 85], and that a distribution of finite order satis-
fies (11) [2, Corollary 2, p.90]. =

We will use a parametrix of order 7 + d + 1, where 7 is the order of £. More pre-
cisely, we represent Dirac mass as following.

Lemma 8. For all r > 0 and m € N, one has

So=n+ 2 aﬂyﬂ
|Bl=m+d+1

where n e ®(R?Y), YpE C”(R?), and n and vp have their support in B ={xeR*:
|| <r}. m

Proor. The case where m +d + 1 is even. Consider the elementary solution of
Bo=A"+2+ 12X in R that is X(x) = c|x|” *1if d is odd X(x) = c|x|™ * 1 log |x| ifd

is even. This equation can be written 6, = > cg X,
|Bl=m+d+1

Let 6 be a localization function such that 8 € C* (R?), 8(x) = 0ifx =7, O(x) = 1 if
|| < /2. Multiplying the two members of the equation by 6 it comes, 8, = 65, =

1Bl=m+d+1
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According to the dual Leibnitz’s formula, 63X = 8% (6X) + 5, with

ng= 2 (—1)"3‘”'(;)8"()(85—00).

0so<f

This function is @ (it cancels in a neighbourhood of 0), thus we get the announced de-
composition with 7 = >, cgnp and yp = cp0X.
B

The case where m + d + 1 is odd. The above decomposition relative to the even
number (7 + 1) +d + 1 yields, denoting Y =¢|x|”*2 or c|x|” *?log |x| whether
the parity of d, and B +¢;= (B4, ..., B, + 1, ..., Ba),

00=1Nme1t 2 2 979(ep1,0Y).

Bl=m+d+1 1<i<
Hence the announced decomposition holds with

N=Npe1+ > ZJCM,_,,_Ya,.e, yﬁ=91<2<dcﬂ+gia,.y, n

|Bl=m+d+1 1<i<

Proor orF THEOREM 7. Let us first prove that f has a finite order in all of R. Let K
be a compact set such that support f cc K. According to (1), there exists 7 such that,
Vo € ®(R?), support ¢ cK,

KA @)le < b @l -

Let @ € ®@(R?) be such that a = 1 in a neighbourhood of support £, support a c K. As-
sume now that @ € M(R?). Then (f, @) = (f, ap) thus

K7 @)l < b @ lllm < brew llallln @l < 2l @]l
which proves that the order of f is # in all of R?.

Decomposing

fetrdafont S S Pnepent S )

|Bl=m+d+1 Bl=m+d+1

the announced properties in the Theorem 7 — and some others — are given by the fol-
lowing lemma. ®

Lemma 9. One bas f x5 € CZ (R?; E),fxyse C,(R* E), f*nandf*yphave their
support in support f + B, and
Supd ||(f."77)(x)”E s bcm,d,r ) Supd ” (f*yﬂ)(x)”E s bcm,d,r . u

xeR xeR

Proor. The imbeddings on supports result from the fact that support f*gc
C support f + support g.

The regularity of f * 7 is classical, since # is regular. In order to bound its norm, we
observe that (f#1)(x) = (£, 7_.1) hence (£ =) < 5ll7]ll.-

To establish the continuity and to bound the norm, we are going to regularize y,
which will allow some similar calculus to those done on f*#, then we will pass to the
limit. Given a mollifier ¢,, a function yje C; (R?) is defined by YE=Yp*0n.
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One has f*yhe C; (R*; E) and, Vx, (f*y}%)(x) =(f, t_x)V/[§’> thus

I+ vpelle < bllr -yl = Ellly5 I

hence
(12) sup [|(f 5 vp) e <ol -
xeR
Let us prove that the f * y% form a Cauchy sequence. Replacing in these calculus yj
by y% — v} we bound likewise,
sup [[(fx v =Fxyp)Colle <ollvg—vi lllu-
xeR
Since ¥4 € €” (R?) and has a compact support, |||75 = ¥4 ||l — 0 thus this inequality
implies that (f*y%),n~ is a Cauchy sequence in C, (R?; E). It converges to f * y 4 in
@' (R*; E) and therefore in @, (R?; E). Passing to the limit in (12), we obtain
sup [+ <l Il
xeR

which completes the proof of Lemma 9, and therefore the proof of Theo-
rem7. W

Remark. A distribution with compact support can be represented by only one
derivative, that is f= 8%g in all R?, but g has not necessary a compact support.

Such a representation is obtained by using the local representation of Theorem 1
for the extension f by 0, and for the compact K = Q. One checks that g cannot always
been choosen with compact support by considering 2 = R and f= d; none of its
primitives has a compact support. H

CoroLLARY 10. Let Q be an open subset of R? and f € @' (Q; E), such that the support
of f is compact and enclosed in 9.
There exists a finite number I of g;€ C,(R2;E) and B;e N® such that
f= 2 9y,
1<7<1

For all K 5> support f, one can choose g, such that support g;cK. ®

Proor. It suffices to apply Theorem 7 to the extension by 0 of f to all of
R\ =

7. GLOBAL REPRESENTATION OF A DISTRIBUTION

A distribution (again with values in a Banach space) can be globally represented by
an infinite converging sum, which is locally finite, of derivatives of uniformly continuous
functions, in the following way.

Tueorem 11. Let fe ' (2; E). There exists g; € C,(22;E) and B;e N¢ such
that ‘
f=2 g, in @ (2;E),

ieN
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support g; is compact and included in Q and, for each w cc 2, all the g; cancel in w from
a finite order i,,. Therefore
f=2 g inw. =
For real valued distributions, this property has been established by L. Schwartz
[3, Theorem XXX, p. 96].

Proor. We decompose 2 in a collection of open sets w, which converge to the
boundary in the following way: Vz e N,

Q,={x: |x| <n,bal(x, 1/2)c QN R, =0), 0,=2,,,\2,.

To the covering of 2 by the w, we associate a partition of unity {a, },.n . It satisfies
a,e®R(w Za =1 in Q. We decompose f = Zf,,wheref a, f. One has

support f,, cCw, CC £ which allows to decompose f, w1th the Corollary 10. This latter
glves the existence of a finite number I, of g, , € @(2; E) and of ; , € N such that
2 dPing, , and supportg, ,Cw,. Finally,
<I,
f=2 ;1 Fing,

and renumbering the couples (7, #), we obtain the announced properties. M

Remark. The representation formula of Theorem 11 extends to the case where E is
a quasi-complete dual of Frechet space.

Indeed Theorem 7 extends to this case, as seen in a former remark, and we can con-
clude by the above proof. ®
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