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Analisi matematica. — On «power-logarithmic» solutions of the Dirichlet problem 
for elliptic systems in KdX Rn~d, where Kd is a d-dimensional cone. Nota di VLADIMIR A. 
KOZLOV e VLADIMIR G. MAZ'YA, presentata (*) dal Socio G. Fichera. 

ABSTRACT. — A description of all «power-logarithmic» solutions to the homogeneous Dirichlet prob­
lem for strongly elliptic systems in a «-dimensional cone K = Kd X Rn ~d is given, where Kd is an arbitrary 
open cone in Rd and n > d > 1. 

KEY WORDS: Elliptic systems; Boundary singularities; Asymptotics of solutions. 

RIASSUNTO. — Sulle soluzioni «power-logarithmic» del problema di Dirichlet per sistemi ellittici in Kd X 
X Rn~d, dove Kd è un cono d-dimensionale. Viene data una descrizione di tutte le soluzioni «power-logari-
thmic» del problema omogeneo di Dirichlet per un sistema fortemente ellittico in un cono «-dimensionale 
K = KdX Rn~d, dove Kd è un qualsiasi cono aperto in Rd e 

INTRODUCTION 

«Power-logarithmic» solutions play an important role in the theory of elliptic 
boundary value problems in domains with piecewise smooth boundaries (see [1-3]). 
With the help of these special solutions one can describe asymptotic behavior of arbit­
rary solutions of boundary value problems near singularities of the boundary. In this ar­
ticle we consider the Dirichlet problem for strongly elliptic systems in a #-dimensional 
cone, which is invariant with respect to shifts along certain directions, i.e. in the cone 
K = KdxRn~d, where Kd is an arbitrary open cone in Rd and n > d > 1. In particular, 
for d = 2, it is the case of a dihedral angle. 

We are interested in the solutions of the homogeneous Dirichlet problem which 
have the form 

O^k^K (K — k)\ 

where x e K and uk are vector-valued functions with finite Dirichlet integral in a domain 
Q which is the intersection of the cone K and the (n — 1)-dimensional unit 
sphere. 

The main result is a description of such solutions in terms of similar solutions for the 
cone Kd (Theorems 1 and 2). 

As an example we consider the Laplace operator and obtain all positive homoge­
neous solutions for it (here solutions with logarithmic terms are absent). 

(*) Nella seduta del 10 febbraio 1996. 
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1. FORMULATION OF THE PROBLEM 

We represent the space Rn, » ^ 3, as the Cartesian product RdxRn~d, 
1 < d < n, and use the notation* = (y,z),y = (? i , . . . ,?</), z = (zi , . . . ,z»_</). We in­
troduce the spherical coordinates (r, û>), (ç, 0) and (a, 0) in the spaces Rn, R^ and 
R«-^ , where r = |x | , Q = | j | , a = \z\ and o> e Sn ~ 1 , <p e 5 J _ x, 0 e 5" " i _ 1 . 

Consider the open ^-dimensional cone Kd = {y eRd *Q > 0, (p e Qd}, where Q d is 
a domain on the sphere Sd~ l, Qd^ Sd~l. 

Let K be the #-dimensional cone {x e Rn : r > 0, co e Q} which can be represented 
as the product KdX Rn~d. In this case co e Q if and only if 

a) = (0cos r, 0sinr) , where r e ( 0 , ^ / 2 ) , <psQdy 6eSn~d~l. 

Consider the differential operator 

(l.i) a(Dx)= E A*A?, 
| a | = 2w 

where Dx = i~l grad and Aa are constant I X I matrices. This operator is assumed to be 
strongly elliptic which means that for any £ G Rn , / G Cl the following inequality is valid 
Re(CI(£)/,/) ^ c 0 | l | 2 w l / | 2 ^ o > 0, where (, ) and | • | are the scalar product and 
the norm in C*. 

O , , 

We shall seek the vector-valued function U in the space (Hfoc (K> 0)) — {17: rjJJ e 

G (Hm(K))1 for all rj G Q00 (R*\{0})} satisfying the system 
(1.2) CI(DJU = 0 o n X . 

Our aim is to describe all the solutions of this Dirichlet problem which have the 
form 

(1.3) U(x)=rx E , * , (log r)'-kuk(Q>), 
O^k^K (K-k)l 

O j 

where % are vector-valued functions from (Hm(Q)) . 

REMARK 1.1. It is easy to see that the distribution (1.3) belongs to the class 

(Hgc(X, 0))' if and only if uk G (Hm(Q))1. 
Let A(X) denote the differential operator on Sn~l defined by the equality 

A{X)u=r2m-xa(Dx){rku). 

By £ = £{X), l e C , we mean the polynomial operator pencil 

(1.4) £(X):(Hm(Q))l^(H-m(Q))l
y 

defined by £(X)u=A(X)u. 
The following assertion can be checked directly. 

PROPOSITION 1.1. The vector-valued function (1.3) satisfies the system (1.2) if and 
only if 

£{j){X) 
2 — U s - j = 09 S = 0,1,...,K> 
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where J£(y) (A) is the derivative of order j with respect to A. In other words, the exponent X in 
(13) is an eigenvalue of the pencil <£, u0 is its eigenvector and uly... yuKare generalized 
eigenvectors. 

REMARK 1.2. Proposition 1.1 implies that the dimension of the space of solutions of 
the form (1.3) coincides with the algebraic multiplicity of the eigenvalue X. The dimen­
sions of spaces of solutions (1.3) for a fixed K are uniquely determined by the geo­
metrical and partial multiplicities of X. For K = 0 the corresponding dimension coin­
cides with the geometrical multiplicity of the eigenvalue X. 

The next assertion is generally known and easily verified. 

PROPOSITION 1.2. (i) The spectrum of the operator pencil £ consists of eigenvalues with 
finite algebraic multiplicities having only the limit point at infinity. 

(ii) The line Re A = m — n/2 contains no eigenvalues of the operator pencil. 

Consider the formally adjoint operator of &{DX): 

a*(Dx)= 2 A*Dx
a. 

\a\ =2m 

Let A* (A) be the differential operator on the unit sphere defined by the equality 

A*(X)u=r2m'xa*(Dx)(r
xu). 

The operator pencil 

(1.5) £*(X) = (Hm(Q))l-^(H-m(Q))1 

is defined by £* (X)u = A* (X)u. Proposition 1.1, Remark 1.2 and Proposition 1.2 are 
also valid for this operator pencil. Moreover, the operator pencils JE and £* are con­
nected by (j£(A))* = £(2m — n - A) (see [2]), which leads to the following asser­
tion. 

PROPOSITION 1.3. The number A is an eigenvalue of the operator pencil £ if and only if 
2m — n — X is an eigenvalue of the operator pencil £* . The algebraic, geometrical and par­
tial multiplicities of both eigenvalues coincide. 

2. SOLUTION OF (1.3) FOR ReA > m — nj2 

PROPOSITION 2.1. If U is a solution of the system (1.2) of the form (1.3) where X e C 
o 

and UkE.( Hm {Q)) , then the vector-valued functions D / U have the same properties for an 
arbitrary multi-index y. 

PROOF. Applying the local energy estimate to the derivative dz.Uh, where U/, is a 
mollification of U inz with radius h, and passing to the limit as h —» 0, we obtain dz.U G 
G (Hgc(X, 0))1. It is also clear that dz.U is a solution of (1.2) and has the form (1.3). 
Using Remark 1.1 we arrive at the desired result for | y | = 1. It remains to apply the 
induction in \y\. • 
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Below we need the set of solutions of the system 

(2.1) a(Dy> 0) = 0 onKd, 

which have the form 

(2.2) U(y) = Ql S - * , (log (?)'-*«* W , 
O , 

where #* are vector-valued functions from (Hm(Qd)) . 
Similarly to Section 1 we associate the operator pencil 

£dW:.(Hm(Qd)Y^>(H-m(Qd)Y 
with the equation (2.1). Propositions 1.1 and 1.2 are valid (with obvious changes) for 
this operator pencil. In particular, the line Re A = m —d/2 contains no eigenvalues of 
the operator pencil £d. 

Let {{ijjjez be a sequence of eigenvalue of £d numerated with regard to their alge­
braic multiplicity, and let the eigenvalues, lying in the half-plane Re// > m —d/2, have 
non-negative indices while the remaining eigenvalues have negative indices. We can as­
sume that each eigenvalue jUj generates one solution of (2.1), which has the form 
Vj{y) = Q^Qjifyy log Q), where Q is a polynomial in the second argument with coeffi-

o , 

cients in (Hm (Qd)) . If ptj = ptj+1 = ... = jjij + N_ j , where N is the algebraic multiplic­
ity, then the polynomials Qjy ..., Qj + N _ 1 are linear independent. 

PROPOSITION 2.2. Let a be a (n — d)-dimensional multi-index and letj be a non-nega­
tive integer. To each pair (/• a) there corresponds a solution of the system (1.2), having the 
form 

(2.3) Vja(x)= 2 z V + | a -H QjP(4>, log Q), 
ft ^ a 

where Qjp are polynomials in \ogQ with coefficients in {Hm{Qd))
1 and Qja= Qj. 

PROOF. For the sake of brevity let the coefficient of z^ in the right-hand side of 
(2.3) be denoted by Wp{y). The equality QL{DX) Vja = 0 is equivalent to the system of 
equations 

(2.4) a(Dy,0)Vy=- 2 K—^ JLaV-Y)(D 0)Wfi{y) onKd, 
y<P^a (p-y)l 

where y is an arbitrary (n — d)-dimensional multi-index satisfying y ^ a and 
<3L{0) (w> £) = (dçAXrjy £). Suppose that all Wp are constructed for /? > y. Then Wy can 
be determined by (2.4) using Proposition 7.1 [3]. 

REMARK 2.1. If among the numbers fij + 1,. . . ,//y + \a\ there are no eigenvalues 
of the operator pencil £d (//) then Vja is uniquely defined. Moreover, the degrees of the 
polynomials Qjp, /3 ̂  a, do not exceed the degree of Qja. 

REMARK 2.2. Suppose that the collection jUj + 1,. . . ,jUj + \a\ contains s different 
eigenvalues with the maximal partial multiplicities KX, ... ,KS. Then the degree of the 
polynomial Q^in (2.3) does not exceed K0 + jq + ... + KS, where K0 is the degree of 
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the polynomial Qj. Moreover, Vja is unique up to a linear combination of solutions 
Vj'a'> a' < a m<^/V + I a ' I = H'j + IaI • Thus, to each pair (/, a) there corresponds a 
solution of the form (2.3). Since the coefficients Q^'Qjofz0, in (2.3) are linear indepen­
dent, it follows that the same is true for Vja. 

PROPOSITION 2.3. Let the vector-valued function 

(2.5) U(x)= E zaQX-HQa(<P,log Q), 
| a | ^ N 

o 7 

where Qa is a polynomial in log g with coefficients in (Hm (fij)) #«J Re A — N > m — 
— d/2, be a solution of the homogeneous Dirichlet problem for (1.2). Then X — pis + k for 

some s, k ^ 0 #W 

(2.6) U(*) = I CjaVjaW. 
pj+ \a\ =fis + k 

PROOF. It is clear that the coefficient of za with \a\ =N in (2.5) satisfies 
GL(Dy, 0)(gx~NQa) = 0 onKd. Hence and from the inequality ReX - N > m - d/2 it 
follows that X - N = fij, j ^ 0, and 

^~NQa(0>logE>) = 2 Ç a ^ t y ) , 9a = Const. 
{j-.fij = X-N} 

Therefore the difference 

U(x)- E cjaVja{x) 
{j:ftj = l-N} 

is a solution of the homogeneous Dirichlet problem (1.2) and can be represented in the 
form (2.6) with N - 1 instead of N. Subsequently reducing the order of the multi-
index a we arrive at (2.6). • 

THEOREM 1. The vector-valued function U of the form (1.3), where Re A > m — n/2 

and Uk E ( Hm (Q))1, is a solution of the system (1.2) if and only ifX = [àS + q for some non-

negative integer s and q, and U is a combination of the vector-valued functions Vja with 

PROOF. By Proposition 2.1 D?U is a solution of the homogeneous Dirichlet prob­
lem for the system (1.2), which can be represented as (1.3) with coefficients in 

o 7 

( Hm (Q)) . The role of y is played by X - \y\. Hence it follows for an arbitrary multi-
Jndex y that 

(2.7) Dy
aDzrU(x) = r * - l « l - M f (log r)k<pk(co), 

k = o 

where (pk E {Hm~^ (Q))1 and \a\ ^m. 
Let F(yy Ç ) be the Fourier transform with respect to the second variable of the vec­

tor-valued function U(y, z) and let F(y, • ) E (S'(Rn ~d))1 for ally e Kd. Since for Ç ^ 0 
and M = 0, 1 , . . . , we have 

(2.8) F(y,S)= | e | " 2 M j ^ ( Ç ' z )(-/ l z)M«0>,z)<fe, 
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it follows that the function £ - > F ( - , £ ) belongs to the class C°° (R"-d\{0}; 

(HZc(Kd))
1). For all £ * 0 the system 

(2.9) a (D„£)F(y ,C) = 0 

is satisfied on Kd. From (2.8) and (2.7) it follows 

(2.10) \\Dy
aF(\y\8,£)\2dd^cN(!;)\y\-N, 

®d 

where | a | ^ #z and N = 0, 1, ... . 
We show that the function F(-, Ç) belongs to the space (Hm(Kd))

1 for any Ç ^ 0. 
Let x e Co00 (R" " d ) , x = 0 outside the unit ball and % = 1 for \z \ ^ 1/2. By F0 (y, £) 
and Foo (y, £ ) we denote the Fourier transform in z of the functions xU and ( 1 - %) U, 
respectively. For \a\ ^m we have 

(2.1D \dy | \Dy
aF0\

2dt = cjdy \ \Dy
a(XU)\2dz, 

Q R»-d Q R»-d 

where Cd= {y sKd: \y\ < l } . The condition Re A > m - n/2 and (2.7) imply that 
the right-hand side in (2.11) is finite. 

We represent F x as 

i7» (?,£)' = | £ | " 2 M / ^ } ( - ^ ) M [ ( l - x ) U ] & , 
Rn-d 

where M is a sufficiently large integer. By ParsevaPs theorem we have 

\dy f | Ç r | D ; F „ | 2 # ^ E \dy f |D/.(1 - * ) | 2 \Dz
ôD?U\2dz. 

J J \y\ + \ô\=2M J J 
Q Rn~d Q Rn~d 

The boundedness of the right-hand side follows from (2.7). 
Thus F( •, £ ) e (Hm (Kd))

1 for all £ * 0. Since the vector-valued function F( •, £ ) is a 
solution of (2.9) with strongly elliptic operator <3L(Dy, £ ), it follows that F( •, £ ) vanishes 
for £ ?* 0. Therefore, 

U(y ,z )= E za<pa(y). 

From this and (1.3) we find that <pa(y) = QX~ , a | Q«(0,log g), where Qa is a polyno­
mial in the second argument with coefficients in (Hm(Qd))

1. Since U e (ffgcCK)/, it 
follows that Re A - N > m — d/2. The reference to Proposition 2.3 completes the 
proof. • 

REMARK 2.3. From the above theorem and the linear independence of vector-
valued functions Vja mentioned in Remark 2.2 it follows that the algebraic multiplicity 
of the eigenvalue X of the operator pencil £ with Re A > m — n/2 is equal to the num­
ber of pairs (/, a) such that X - ju; + | a | , / ^ 0. 

The theorem just proved gives a description of all solutions of the form (1.3) 
to the system (1.2) for Re A > m — n/2. According to Proposition 1.2(ii) the line 
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ReX=m—n/2 does not contain solutions with the exponent X. It remains to 
study the case Re A < m — n/2. 

3. SOLUTIONS OF THE FORM (1.3) WITH Re A < m — n/2 

PROPOSITION 3.1. Let j < 0. There exists a solution of the Dirichlet problem for the 
system 

(3.1) <3L(Dy,Ç)W=0 onKd, 

which has the form 

(3.2) Wj(y,Ç)=x(Q& S taQlli+WQja(4>AogQ)+Rj(y,t). 
\a\ ^m-d/2- Re/*, 

Here % e Q00 {Rn~d),%= lin a neighbourhood of the origin, Qja are polynomials in log Q 

with coefficients from (Hm(Qd))
1, Qj0 = Qjy the vector-valued function Rj belongs to the 

space C00 (Rn~d\{0},Hm(Kd)
1) and can be expressed in the form 

(3.3) Ry(y ,£)= | £ l " " 2 ^ ( y | S l , Ç / l 5 D 0 o g | Ç | ) * > 

where Nj is the largest degree of the polynomials Qja, and the vector-valued functions 

0-*R,*(- ,0) belong to the space C00 {Sn~d~ x; (Hm{Kd))
1). 

PROOF. We put xpja(y) = Q^J+ | a | Qja(<P>l°g Q) a n d seek the vector-valued func­
tions ipja by the equality 

a(D y ,Ç) (Sr^a( j ) )=0 onKd. 

Making the coefficient of £ a equal to zero we obtain the equation 

(3.4) a ( D , , 0 ) V V a = - 2 * a ( a - ^ ( D y , 0 ) ^ ( j ) o n K , . 

Starting with the vector-valued function ipj0 = Vj one can find subsequently all tpja 

from (3.4) using Proposition 7.1 [3]. Hence the remainder Rj in (3.2) satisfies the 
system 

(3.5) a ( D , , Ç ) R y ( ^ £ ) = F y ( y , Ç ) on X , . 

The right-hand side admits the representation 

(3.6) Fj{y,Z,)=x(QÇ) 2 W + l<x| ~2mQ'/aHcp, log g) + 
OT < | a | + Re/*, + d/2 ^ 3#z 

+ X Xa(^) r^ + | a | " 2 "Q) a
2 ) (0 , loge) , 

| a | <Òtn-d/2 -Re/ij 

where %a e C0°° (R* ~ J \ {0} ) , Qja
1}, Q j^ are polynomials in log Q of degree not higher 

than the largest degree of the polynomials Qja and with coefficients from the class 

(H-m(Qd)Y. 
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From (3.6) we obtain FJBC* (Rn~d; (H-m(Kd))
1) and 

(3.7) FJ(y,0=m2m-fl'' 2 FA(y|C|,C/|e|)(log|a)*, 

where Nj is the largest degree of the polynomials Qja, \a\ ^m— d/2 — ftJf 

and the vector-valued function 6 —» Fjk ( •, 0 ) belongs to the class 

C'{S"-d-1;(H--(KJ)Y). 
By the strong ellipticity of the operator A(DX) we find that the mapping 

(A(Dy, Ç))-1 : (H~m(Kd))
1^ (Hm(Kd))

! 

is bounded together with all its derivatives uniformly with respect to Ç, | Ç | = 1. There­
fore the system (3.5) has a unique solution in 

C"(Rm-d\{0};(Hm(Kd)Y). 

By (3.7) this solution can be expressed in the form (3.3), where 

Rjk(;0) = (a(Dy,0))-1FJk(%0). 

The proof is complete. • 

REMARK 3.1. If among the numbers jUj + 1, ...,/ij + [m — d/2 - jUj] there are no 
points of the spectrum of the operator pencil JS^(//), then the vector-valued function Wj 
is uniquely defined. Moreover, the degrees of the polynomials Qja and the number Nj 
do not exceed the degree of the polynomial Qj. 

REMARK 3.2. Suppose that the collection jUj + 1,... yptj + [m - d/2 - jUj] contains 
s different eigenvalues with maximal partial multiplicities KX, ... ,KS. Then the degrees 
of the polynomials Qja and the number Nj do not exceed K0 + KX + ... + KS , where K0 

is the degree of the polynomial Qj. 

The vector-valued function Wj is unique up to a linear combination of solutions 
t,aWi, 0 ^ \a\ = fii — jUj. Henceforth we assume that the solutions Wj9j < 0, which 
have the properties mentioned in Proposition 3.1, are fixed. 

REMARK 3.3. Since the functions Q^Qj are linear independent, it follows that the 
functions t>

aWj) j < 0, \a\ ^ 0 , are also linear independent. 

The following two lemmas will be used in the study of the inverse Fourier transform 
of the vector-valued function Rj with respect to the variable £. 

LEMMA 3.1. Let Rj he introduced in Proposition 3.1. Then 

DÌRJ(y^)=\^\-^-M 2 K M (y |Ç | ,Ç / |Ç | ) ( log |Ç | )* , 
0 ^ k ^ Nj 

where the vector-valued functions 6^>RjYk(',6) belong to the class 

C00 (Sn~d~1; (Hm(Kd))
1) and y is an arbitrary multi-index. 
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PROOF. Formula (3.6) implies 

(3.8) D^{y,^=\^-"'-M 2 FM(y|Ç|,Ç/|e|)(log|£D*, 
b o ^ /è ^ No­

where 6->Fjyk(-,0) is a vector-valued function from C " ( 5 * - ' - 1 ; ( H " " ^ ) ) 7 ) . 
Using the obvious equality 

fl(D„ Ç)(Dt»K,) = D ^ y - 2f j^-py ^ - « ( D , , £)(Df R,) 

together with (3.8), we complete the proof by induction in |y | . 

LEMMA 3.2. For any positive integer N the sums 

E f(1 + Q2)N P ; ^ ( y , 0)|2<fy, k = 0,... ,Ny , 
|a | ^ j » J 

#re bounded uniformly with respect to 6. 

PROOF. It is clear that 

a(Dy9 e){ i + g2 )1/2Rjk = ( i + Q2)1/2FJk - [a(Dy> e\ ( 1 + e2)1/2]R^ . 

From (3.6) and (3.7) it follows that the vector-valued function ( 1 + Q2)N^2Fjk belongs 
to C00 (S"''-1; (Hm(Kd))

1) for all N. Using the boundedness of the operator 

[a(Dy, 6), ( 1 + e2)1/2] : (H* (JK,))' -> (H~m (Kd))
1 

and the induction in N we obtain the boundedness of the norm of ( 1 + Q2)n^2Rjk in 

(Hm(Kd))
1. The lemma is proved. 

Let / denote the inverse Fourier transform of the distribution / = / (£ ) , i.e. 

Then by (3.2) we have 

(3.9) (w;--R>)(y,z) = e">+a-« 2 (D^Xe-MQya^ioge). 
|otj ^m-d/2-Refij 

Since £ e £(£" ~ ^), it follows that for |x | ^ b < oo all components of derivatives in x of 
the vector-valued function (3.9) of order not higher than m do not exceed 
(3.10) r - ^ M - » + ̂ - » ( 1 + | l o g £ | ) N ^ ( 0 ) , 

where M is an arbitrary positive number and q is a positive function in L2(fi^). 
It is readily verified that (3.10) is a square summable function on the set 
{x eK:0 < a ^ \x\ ^b < oo}. Therefore the function (3.9) belongs to the space 

(HToc(K))1. 
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Since Q = rcos r, Z/Q = 0tanr , (3.9) can be transformed in the following way 

( r c o s r ) ^ - * 2 (Dax)(0tmr)QJa(<p> log(rcosr)) = 

\a\ ̂ m-d/2-'Rsfij 

s . . + <-„% (fog^)V V m « ~ v * O)«V)(0, log COST) v = 0 V\ \a\^m-d/2-Rcpij V\ 

where Q%] (0, /) = dJQJa((t>> t). Thus, the function (3.9) has the form (1.3) with coef­
ficients from (Hm(Q))1. 

By Lemma 3.2 we have 

a n ) ,JL / '?ay-w|2*«gigi-2*»-'^!+1 logiair-x | a | .... 

0 s? k *£ Ny 0 e S' 
amJ\Rjk(-,0)\\{èm(v^m 

112 

Since — 2 Re//y — d + 2*» > d — n, it follows that the inverse Fourier transform 
Ry(y, ' J G W ^ ) / is defined for almost all yeKd. Moreover, by (3.11) the 
function Rj can be considered as an element of the space S'{Rn~d; (L? (Kd))

1) 
o 

where Lf {Kd) is the completion of Q00 (Kd) with respect to the Dirichlet integral of 

order m. The first term in the right-hand side of (3.2) belongs to the space 

(C00 nS')(R"-d; (Hfoc(K,))0, hence WjsSf(R^d; (HToc(Kd))
1). Therefore 

WjeS'iR'-'iil&iKjtf). 
We show that CL(DX) Wj = 0 on K in the sense of the distribution theory. For this 

purpose it suffices to verify that GL(Dy, £ ) Wj•• = 0 on K in the space 
5'(R*"</;(Hiiw(K</, 0))0. Indeed, by (3.11) the function Wj belongs to 
Loc,ioc(^""; (Hfoc(D,, O))0andhencea(Dy, Ç)WjeL„t]oc(R

H-d; (H?oc(Kd, 0))1). 
Thus, the equation &(Dy, £ ) Wy = 0 obtained earlier for £ ^ 0 can be extended to 
all £. 

PROPOSITION 3.2. The vector-valued function Wj has the form (1.3) where A = /ij + 
+ d -n, K^ Nj, uks(Hm (Q))1 and Wj satisfies the system (1.2) o» K. 

PROOF. We have shown in the proof of Lemma 3.2 that Wj — Rj has the form (1.3), 

where A = //, + d - n, K^ NJy uke(Hm {Q))1, and that Wj satisfies (1.2). In order to 

complete the proof it suffices to use the following assertion. 

•^ o , 

LEMMA 3.3. The vector-valued function Rj belongs to ( H\oc (K)) and the representation 
(1.3) is valid for Rj with K^NJ. 

PROOF. Let Ry = Ry
(1) + Ry

(2), where 

R J V £) = x(S)Rj(y, £), KJ2,(y> C) = d - z(Ç))*,(y, £)• 
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Using Parseval's theorem we find 

(3-12)
 I I T ^ H T I \D?DW1)(y,z)\2*z = 

Kd,b 
\y\: 

= c j | ^ ( Ç ) | 2 { \Dy"Rj(y,Ç)\ 
Kd,b 

dy 
| ^ | 2 ( « - | o | ) ' 

where Kd>b = {y eKd : \y\ <b}> b = const and \a\ + \f}\ ^m. From (3.11) it fol­
lows that the right-hand side in (3.12) does not exceed 

c \ ix(s)i2ia"2Re"^"+2'B+2^|(i+|iogiai)2N^<». 
Rn-d 

Now let us estimate the integral 

(3.13) J* J* (h\4N+ \z\4N)\Dy
aDz^RJ2)(y,z)\2dydz 

Kd,b Rn~d 

for | a | + |/31 ^ m and for a sufficiently large N. By Parseval's theorem this integral is 
equal to 

(3.14) c \ \ \(-Ai)
N(CHl-x(t)))Dy

aRJ(y,C)\2dydC + 
Kd,b Rn~d 

+c j \ \\y\2nn\-%{t))^Rj{y>t)\2dydl;. 
Kd,b Rn~d 

By Lemma 3.2 the first integral on the right does not exceed 

(3.15) C J |Ç | ^ -4N + 2 | a | + 2 | / î | - J ( 1 + | l o g |Ç||)2NyX 

m>a 

xf S 2 \Dy
aRJkY(y,t;/\t;\)\2dydt;. 

K Nj \y\ 
Kd 

Since the inner integral is bounded and since N is large, it follows that the value (3.15) 
is finite. 

The second integral in the right-hand side of (3.14) is not greater than 

c J |ç |-2 / V-4N + 2 | a | + 2 | / > | - i ( 1 + | l o g |Ç||)2NyX 

X [| , |4N E | D ; ^ ( y , Ç / | Ç | ) | 2 ^ Ç . 
Kd

 J 

This value is also finite because the inner integral is uniformly bounded with respect to 
Ç/|Ç| by Lemma 3.2. 
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Since the integrals (3.12) and (3.13) are bounded, it follows that the integral 

f 1 \Dx
aRj(x)\2dx 

J t t \a\ ^m 
xsK,a< \x\ <b 

converges. 
We verify the zero Dirichlet conditions for Rj on 3K\{0}. Put 

where £ is a small positive number. By Lemma 3.1 

Rj£eS(R"-d;(H">(Kd))
1). 

Therefore RJeeS(R"-d; (Hm{Kd))
1). Moreover, RJ£ G (Hm(K))1. Replacing Rj by 

Rj — RjE in the above argument we obtain that the integrals 

f dy 
J I \2{m-\a\) 

\ \Dy
aDzHR^-R^)\2dz, 

j \ ( b l 4 N + \z\4N)\Dy«D?(R}»-R^)\2dydz, 
Kd,b Rn~d 

tend to zero as £—>0. Consequently, RjE (H^iK))1. 
By (3.3) we have 

R. 

which is equivalent to (1.3) for d = Nj. The lemma and Proposition 3.2 are 
proved. 

The following assertion is an immediate corollary of Proposition 3.2, Remark 3.3 
and Proposition 2.1. 

PROPOSITION 3.3. For any multi-index y the vector-valued function D / Wj has the form 
o , 

(1.3), where X = fij + d — n — \ y | , K^NJ, U^E (Hm (Q)) , and satisfies the system 
(1.2). The vector-valued functions DzWj, j < 0, | y | > 0 are linear independent. 

Now we can give a description of all solutions of the form (1.3) for Re A < m — 
-nil. 

THEOREM 2. The vector-valued function U of the form (1.3), where Re A < m — n/2 
O r 

and uk G ( Hm (Q)) , is a solution of the system (1.2) if and only if X = jus + d — n — kfor 
some integers k ^ 0, s < 0. Moreover U is a linear combination of the vector-valued func­
tions D^Wj, X=pij + d-n- \y\. 

PROOF. Let £* (X) be the operator pencil (1.5) and let £d (X) be a similar operator 
pencil constructed with regard to the operator^* (Dy, 0) in Kd. By Proposition 1.3 the 
spectrum of £d (A) consists of the eigenvalues 2m — d — JijJ = 0, ± 1 , . . . , numerated 
with account taken of their algebraic multiplicity. This and Theorem 1 imply that the 
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spectrum of £* (A) consists of the eigenvalues A*y = 2m — d — Jij + |y | in the half-
plane Re A > m — n/2 (here/ < 0 and y is an arbitrary (n — d) -dimensional multi-in­
dex). Applying Proposition 1.3 again we obtain that the spectrum of the operator pencil 
JE(A) consists of the eigenvalues 2m — n — X*y = ftj + d — n — \y\ numerated with 
account taken of their algebraic multiplicity and placed in the half-plane Re A < m — 
— n/2. Therefore, according to Remark 2.2, the number of linear independent solutions 
of the system (1.2), which have the form (1.3) with ReX<m—n/2 and u^e. 
e ( Hm ( Q ) Y, is equal to the number of the representations of A as ptj + d — n — \y\ with 

j < 0, | y | ^ 0. It was shown in Proposition 3.3 that the solutions D / Wj are linear in­
dependent. Consequently, all solutions of the system (1.2), which have the form (1.3), 
are generated by linear combinations of D / Wj. 

4. THE LAPLACE OPERATOR IN KdX Rn -d 

In the case of the Laplace operator in Kd X Rn ~d Theorems 1 and 2 admit a more 
explicit interpretation. Here CL(DX) = AXi (3L(Dy, 0) = Ay. £j(/t) = ô + pi{pL + d — 2), 
where ô is the Beltrami operator on Sd~l. Let {/f/Jy^o be the sequence of positive 
eigenvalues of the operator pencil J£J(/J) numerated with account taken of their 
multiplicities and let {WJ}J^0 be the sequence of real eigenfunctions. The number 
2 - d — jXj is also an eigenvalue and Wj is the corresponding eigenfunction. 

In a similar way we denote by {Xj} a sequence of eigenvalues of the operator pencil 
J£(A) generated by the operator Ax in the cone K and by {UJ}J^0a sequence of corre­
sponding eigenfunctions. The same eigenfunction corresponds both to the eigenvalues 
Xj and 2 - n — Ay. In particular, the eigenfunction (cos xYjWj{^>) generates two sol­
utions (1.3): Q*Wj(4>) and Vj(x) = r2-n~2^Q^Wj{(j)). 

In order to find all eigenfunctions of the operator pencil J£(A) and consequently all 
solutions of the form (1.3) it suffices to do it for the eigenvalues 2 — n — Xj. 

First of all we show that one can use Vj as the functions Wj introduced in the preced­
ing section. We have 

e 
i(z, £) dz 

( £ 2 + \z\
2p + 1+"/2 (4.1) J ei{*>QVj(y,z)dz = Q,i>-Wj(4>) J 

Rn-d Rn-d 

<)2 - d/2 - Pj ~(n - d)/2 

= r^-i + n/2) e2-J-»*We\S\y"-1+4aKi-»-*<Q\Z\). 

where Kv is the modified Bessel function. 
The function g1 ~d^2K1_fl.^df2(Q) Wj(<p) satisfies the zero Dirichlet condition on 

dKj\{ 0} and is a solution of the equation Au — u — 0 on Kd. Since for Q —> 0 we have 

X1_^._j / 2(^) = Q1~^~d/2Pk(Q
2) + 0(QE), e > 0, whereP^is a polynomial of degree 

k, 2k ^ jUj — 1 + d/2, then the right-hand side of (4.1) admits the representation (3.2) 
and hence it can play the role of Wj. This and Proposition (1.3) imply that the linear 
combinations of the functions D/ty exhaust the set of solutions of the form (1.3) for 
ReA< I-n/2. 
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We introduce the polynomials QYfK(z) of degree \y\ by the equality 

Qr,*(z) = ( \A2 + D lrl +K/2D?( \z\2 + irK/2 

and represent them as the sum of the homogeneous polynomials 

Then 

Qr,K= 2 Q ^ , d e g Q ^ = |y | -2s. 
0 = S ^ | y | / 2 

r*+2\y\Dyf-k= 2 Q2SQ{
y
S)

K(z) 

and therefore the eigenvalue 2—n — [ij — k, k = Q, 1 , . . . , has eigenfunctions 

uvJ(o) = (cos TT*yv(<P) 2 (cosr)2sQ{
y
s)

K ( 9 a n r ) , 
O ^ J ^ \y\/2 

where KV = n — 2 + 2fiv and juv + \y\ = ptj + k. By Theorem 2 there are no other lin­
ear independent eigenfunctions. The same eigenfunctions are generated by the eigen­
value /JLj + k. 

Thus we have proved the following assertion. 
o 

THEOREM 3. The function U e H\OC{K, 0) of the form (1.3) is a solution of the equa­
tion A x U = 0 in K if and only if 

(i) X = jUj + ky j , k = 0, 1 , . . . , and U is a linear combination of the functions 

Q"'YV(4>) 2 Q2sQ(y%v(z), 
0Gs*\y\/2 

where ptv + \y\ = ptj + k; 

(ii) A. = 2 — n — fij — k, j,k = 0, 1 , . . . , tf#<i U is a linear combination of the 
functions 

Q^yv((/>)Dzr(r2-n-2^) = Q^yv(<p)r2-n-2^ 1 Q2sQY
s)

Kv(z), 
0^s^\y\/2 

where //v + | y | = fij + k. 
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