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Analisi matematica. — On «power-logarithmic» solutions of the Dirichlet problem
for elliptic systems in Ky X R” =%, where K, is a d-dimensional cone. Nota di VLADIMIR A.
Kozrov e Viapimir G. Maz'va, presentata(*) dal Socio G. Fichera.

Asstract. — A description of all «power-logarithmic» solutions to the homogeneous Dirichlet prob-
lem for strongly elliptic systems in a #-dimensional cone K = K; X R”~¢ is given, where K, is an arbitrary
open cone in R? and »>d > 1.

Key worps: Elliptic systems; Boundary singularities; Asymptotics of solutions.

Ruassunto. — Sulle soluzioni «power-logarithmic» del problema di Dirichlet per sistemi ellittici in Ky X
X R" =4 dove K, é un cono d-dimensionale. Viene data una descrizione di tutte le soluzioni «power-logari-
thmic» del problema omogeneo di Dirichlet per un sistema fortemente ellittico in un cono #-dimensionale
K=K;xR*™¢, dove K; & un qualsiasi cono aperto in R¢ e n>d > 1.

InTRODUCTION

«Power-logarithmic» solutions play an important role in the theory of elliptic
boundary value problems in domains with piecewise smooth boundaries (see [1-3]).
With the help of these special solutions one can describe asymptotic behavior of arbit-
rary solutions of boundary value problems near singularities of the boundary. In this ar-
ticle we consider the Dirichlet problem for strongly elliptic systems in a #-dimensional
cone, which is invariant with respect to shifts along certain directions, ze. in the cone
K =K; X R" ™, where K, is an arbitrary open cone in R¢ and # > d > 1. In particular,
for d = 2, it is the case of a dihedral angle.

We are interested in the solutions of the homogeneous Dirichlet problem which
have the form

lelo&kSK (K _1 k)! (log |x| )K_kuk (x/ le ) ?

where x € K and #, are vector-valued functions with finite Dirichlet integral in a domain
R which is the intersection of the cone K and the (# —1)-dimensional unit
sphere.

The main result is a description of such solutions in terms of similar solutions for the
cone K; (Theorems 1 and 2).

As an example we consider the Laplace operator and obtain all positive homoge-
neous solutions for it (here solutions with logarithmic terms are absent).

(*) Nella seduta del 10 febbraio 1996.
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1. FORMULATION OF THE PROBLEM

We represent the space R”, #» =3, as the Cartesian product R? X R” -4
1 <d <, and use the notation x = (y,2), 9 = (91, ...,92), 2 = (21, ..., 2, — ). We in-
troduce the spherical coordinates (r, ), (0, ¢) and (o, 8) in the spaces R”, R¢ and
R"=4 where r= |x|, e = |y|, 0= |z] and 0w 5" "', p S9!, feS5” 471,

Consider the open d-dimensional cone K; = {y e RY: 0 > 0, ¢ € Q,}, where Q is
a domain on the sphere §971!, Q, = §9°1,

Let K be the #-dimensional cone {x € R” :7 > 0, w € 2} which can be represented
as the product K; X R” ¢, In this case w € Q if and only if

w=(¢pcost,Bsint), where 7e(0,7/2), ¢peQ,, OeS" ¢ 1.
Consider the differential operator
(1.1) ad, = 2 A,DZ,

lal =2m

where D, = 7/ 7! grad and A, are constant / X / matrices. This operator is assumed to be
strongly elliptic which means that for any & e R”, f e C' the following inequality is valid
Re(A(E)f, £) = co|E|*™ | £|?, co > 0, where (,) and |- | are the scalar product and
the norm in C'. .

We shall seek the vector-valued function U in the space (H7,. (K, 0))) = {U:nqU e
e (B (K))' for all neCg (R"\{0})} satisfying the system
(1.2) adb,)U=0 onK.

Our aim is to describe all the solutions of this Dirichlet problem which have the
form

1

o<ks<k (K—F)!

(1.3) Ulx) =7 (log )~ *uy (w),

where %, are vector-valued functions from (Ic-)I”‘(.Q))l.

Remark 1.1. It is easy to see that the distribution (1.3) belongs to the class
(I?Iiﬁc(K, 0)) if and only if #, € (" (Q)).
Let A(A) denote the differential operator on §” ! defined by the equality
A u=r"*aA(D,)(r'u).
By £=£(4), 1€ C, we mean the polynomial operator pencil

[o]

(1.4) L) (H"(2)) - H™(Q)),
defined by £(A)u = A(4)u.
The following assertion can be checked directly.

ProprostmioN 1.1. The vector-valued function (1.3) satisfies the system (1.2) if and
only if
£ ()
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where £7) (1) is the derivative of order j with respect to A. In other words, the exponent A in
(1.3) is an eigenvalue of the pencil £, uy is its eigenvector and u,, ..., u, are generalized
eigenvectors.

RemaRk 1.2. Proposition 1.1 implies that the dimension of the space of solutions of
the form (1.3) coincides with the algebraic multiplicity of the eigenvalue A. The dimen-
sions of spaces of solutions (1.3) for a fixed k are uniquely determined by the geo-
metrical and partial multiplicities of A. For k¥ = 0 the corresponding dimension coin-
cides with the geometrical multiplicity of the eigenvalue A.

The next assertion is generally known and easily verified.

ProposrtrioN 1.2. (i) The spectrum of the operator pencil £ consists of eigenvalues with
finite algebraic multiplicities having only the limit point at infinity.

(ii) The line ReA =m — n/2 contains no eigenvalues of the operator pencil.

Consider the formally adjoint operator of A(D,):
a*(D)= 2 AiDf.

la] =2m
Let A*(4) be the differential operator on the unit sphere defined by the equality
A* (N u=r*a* (D,)(r*u).

The operator pencil

(1.5) £ () = (H" (@)Y > (H " (Q))
is defined by £* (1)« = A* (1) . Proposition 1.1, Remark 1.2 and Proposition 1.2 are

also valid for this operator pencil. Moreover, the operator pencils £ and £* are con-
nected by (L(4))* = £(2m —n — A) (see [2]), which leads to the following asser-

tion.
ProrostrioN 1.3. The number A is an eigenvalue of the operator pencil £ if and only if

2m —n — L is an eigenvalue of the operator pencil £* . The algebraic, geometrical and par-
tial multiplicities of both eigenvalues coincide.

2. SorutioN OF (1.3) FOrR ReA >m —n/2

ProrositioN 2.1. If U is a solution of the system (1.2) of the form (1.3) where A € C
and u, € (IEI ()Y, then the vector-valued functions D} U have the same properties for an
arbitrary multi-index 7.

Proor. Applying the local energy estimate to the derivative d, U, where U, is a
mollification of U in z with radius b, and passing to the limit as 5/ — 0, we obtain 9, U €
e (Ic—)I’” (K, 0)). It is also clear that 3, U is a solution of (1.2) and has the form (1.3).

loc

Using Remark 1.1 we atrive at the desired result for |y| = 1. It remains to apply the
induction in |y|. ™
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Below we need the set of solutions of the system

(2.1) a,,0)=0 onkK,,
which have the form
2.2) U =o' 3 —L— (log o) *u (),

o<k<xk (K—Fk)!

where #, are vector-valued functions from (ﬁI”’(.Qd))Z.
Similarly to Section 1 we associate the operator pencil

£, () (H"(2)) - (H™(2,))
with the equation (2.1). Propositions 1.1 and 1.2 are valid (with obvious changes) for
this operator pencil. In particular, the line Re A = 7 — d/2 contains no eigenvalues of
the operator pencil £;.

Let {4}, z be a sequence of eigenvalue of £; numerated with regard to their alge-
braic multiplicity, and let the eigenvalues, lying in the half-plane Re 4 > m — d/ 2, have
non-negative indices while the remaining eigenvalues have negative indices. We can as-
sume that each eigenvalue y; generates one solution of (2.1), which has the form
v;(y) = 0" Q,(¢, log 0), where Q is a polynomial in the second argument with coeffi-
cients in ( (R)) . Hu;=pj 1= ...=pj+n-1, where N is the algebraic multiplic-
ity, then the polynomials Q;, ..., Q, - are linear independent.

ProrosrtioN 2.2. Let a be a (n — d)-dimensional multi-index and let j be a non-nega-
tive integer. To each pair (j, @) there corresponds a solution of the system (1.2), baving the
Sorm

(2.3) Vig (%) =ﬂ§ 2Potit1e=PlQ 4(¢,log 0),
where Qg are polynomials in logo with coefficients in (IOI”’(Qd))l and Q= Q.

Prook. For the sake of brevity let the coefficient of z# in the right-hand side of
(2.3) be denoted by ¥g(y). The equality A(D,) V;, = 0 is equivalent to the system of
equations

(—7)-71p
y<B<a (,B - )’)’
where y is an arbitrary (# — d)-dimensional multi-index satisfying y < a and
a® (n, &) = (82A4)(n, &). Suppose that all ¥ are constructed for 8 > y. Then ¥, can
be determined by (2.4) using Proposition 7.1 [3].

(24) a(D,, 0¥, = - a®-"(D,,0)¥s(y) onk,,

Remark 2.1. If among the numbers p; + 1,...,4; + |a| there are no eigenvalues
of the operator pencil £, (u) then V}, is uniquely defined. Moreover, the degrees of the
polynomials Q 5, B < a, do not exceed the degree of Q.

Remark 2.2. Suppose that the collection u#; + 1,..., 4, + |a| contains s different
eigenvalues with the maximal partial multiplicities k7, ..., k,. Then the degree of the
polynomial Q ;5in (2.3) does not exceed Kk + k3 + ... + K, where K is the degree of
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the polynomial Q;. Moreover, V}, is unique up to a linear combination of solutions
Vig,a' <aandu; + |a'| =u;+ |a|. Thus, to each pair (7, a) there corresponds a
solution of the form (2.3). Since the coefficients 0*/Q; of z* in (2.3) are linear indepen-
dent, it follows that the same is true for Vj,.

ProrosiTioN 2.3. Let the vector-valued function
(2.5) Ut = ENZ‘ZQA_ a1 Q,(¢,log 0),

where Q, is a polynomial in log @ with coefficients in (F~ (2,)) and ReA — N >m —
— d/2, be a solution of the homogeneous Dirichlet problem for (1.2). Then A = u,; + k for
some s, k=0 and

(2.6) Ulx) = 2 Vi),

it Ial =ut+k
Proor. It is clear that the coefficient of z* with |a| =N in (2.5) satisfies
a,, 0)(e*"N¥Q,) = 0onK,. Hence and from the inequality ReA — N > m — df2it
follows that A — N =pu;, 2 0, and
0" NQu(ploge)= X uVi(y), o= const.
{/:mj=4-N}
Therefore the difference
U(X) - 2 cja‘/ja(x)
{j:uj=2-N}
is a solution of the homogeneous Dirichlet problem (1.2) and can be represented in the
form (2.6) with N — 1 instead of N. Subsequently reducing the order of the multi-
index a we arrive at (2.6). W

Tueorem 1. The vector-valued function U of the form (1.3), where Red >m — n/2
and u, € (E" (R)Y, is a solution of the system (1.2) if and only if A = u, + q for some non-
negative integer s and q, and U is a combination of the vector-valued functions V,, with
uit lal =p,+q.

Proor. By Proposition 2.1 D} U is a solution of the homogeneous Dirichlet prob-
lem for the system (1.2), which can be represented as (1.3) with coefficients in
(H” (R))'. The role of y is played by A — |y|. Hence it follows for an arbitrary multi-

—._index y that

(2.7) DD} U(x) = r*~ el = lvlki (log rVf g (w),
=0
where ¢, e (IOI”"’“‘I (2)) and |a| <m.

Let F(y, ¢) be the Fourier transform with respect to the second variable of the vec-
tor-valued function U(y, z) and let F(y, ) e (S"(R” ~4)) for all y € K. Since for & # 0
and M =0, 1,..., we have

(2.8) F(y, %)= [g|™M f e (=AMuly,2)dz,

R7—4
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it follows that the function {—F(+,{) belongs to the class C*(R"4\{0};
(I?Ii’(’,C (Kz))"). For all £# 0 the system

(2.9) aD,,{)F(y,8) =0

is satisfied on K;. From (2.8) and (2.7) it follows

(2.10) [ IDgE(1916, 011240 < ey (©)ly] 7,
LoF

where |a| Sm and N=0, 1, ....

We show that the function F(+, {) belongs to the space (H” (Ky)) for any & # 0.
Let y € C5° (R" %), x = 0 outside the unit ball and y = 1 for |z| < 1/2. By Fy(y, &)
and F,, (y, ) we denote the Fourier transform in z of the functions yU and (1 — y) U
respectively. For |a| < we have

(2.11) [&v [ IDgFRPde=c[ay [ IDFGU) 124,
C; R4
where C; = {y €eK;: |y| < 1}. The condition ReA > 7 — /2 and (2.7) imply that
the right-hand side in (2.11) is finite.
We represent F., as

b

C; Rrd

Fuly, )= |87 | &9 (=4, MI(1 - x) Uldz,
Rn—d
where M is a sufficiently large integer. By Parseval’s theorem we have

4M a 2 < y _ 2 Ina 2
CdeR”L €1 Dy Pde <e +l§6:| =2Mc!danL ID7 (1 - )| DDLU |2dz .
The boundedness of the right-hand side follows from (2.7).

ThusF(+, &) e (I:I”’ (K,)) for all £ # 0. Since the vector-valued function F(+, &) is a
solution of (2.9) with strongly elliptic operator (D, ), it follows that F(+, ) vanishes
for & # 0. Therefore,

Uly,2)= 2 2°¢.0).
lal N
From this and (1.3) we find that ¢, (y) = 0* 1%/ Q,(¢,log o), where Q, is a polyno-
mial in the second argument with coefficients in (POI’” (£2,)). Since U e ( : 7.(K)Y, it
follows that ReA — N >m —d/2. The reference to Proposition 2.3 completes the
proof. ®

Remark 2.3. From the above theorem and the linear independence of vector-
valued functions V, mentioned in Remark 2.2 it follows that the algebraic multiplicity
of the eigenvalue A of the operator pencil £ with Re A > 7 — n/2 is equal to the num-
ber of pairs (7, a) such that A=pu; + |a|, /= 0.

The theorem just proved gives a description of all solutions of the form (1.3)
to the system (1.2) for Red > m — n/2. According to Proposition 1.2(ii) the line
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ReA =m —n/2 does not contain solutions with the exponent A. It remains to
study the case Red <m —n/2.

3. SoLuTioNs OF THE FORM (1.3) witH Red <m —n/2

ProprosimioN 3.1. Let 7 < 0. There exists a solution of the Dirichlet problem for the
system

(3.1) am, H)W=0 onk,,
which has the form

(3.2) Wiy, &) =yx(ed) > geott19Q (¢, log 0) + R;(y,8).

|a| <m —dj2 —Reu,

Here y € Cg° (R” %), x = 1 in a neighbourhood of the origin, Q ;q are polynomials in log o
with coefficients from (I(-jl’” (22)), Qio = Q,, the vector-valued function R; belongs to the
space C* (R”_’i\{O},I-OI'” (Ky)) and can be expressed in the form

(3.3) R, &) =lel™ 3 Rulyltl &/ 1¢])log [2]),

where N; is the largest degree of the polynomials Q;,, and the vector-valued functions
6 — R, (+, 0) belong to the space C*(S* =~ 1; (H™ (K,))').

Proor. We put 9, (y) = 0" ™ lal (¢, log 0) and seek the vector-valued func-
tions 1, by the equality

aD;, )& wialy)) =0 onKy.
Making the coefficient of {* equal to zero we obtain the equation

Starting with the vector-valued function ¥, =, one can find subsequently all vy,
from (3.4) using Proposition 7.1[3]. Hence the remainder R; in (3.2) satisfies the
system

ae-# (Dy, 0)p;p(y) onK,.

(3.5) a(D,, &)R;(y,8) =F;(y,§) onK;.
The right-hand side admits the representation
(3.6) E(y,8) =2(et) > geon =0l (¢, log @) +

m < |a| +Rep;+d/2<3m

+ > Xa(08) £t * 141 =2 QD (¢ log o),
|a| <3m —d/2 —Reu; :

where x, € C5* (R"~?\{0}), Q\¥, Q2 are polynomials in log @ of degree not higher
than the largest degree of the polynomials Q, and with coefficients from the class
(H™(Q)).
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From (3.6) we obtain F;e C* (R*~4; (H ™ (K,))) and
(3.7) B, 0 = el % 2 Fp[El,&/1¢]og |£] )

where N; is the largest degree of the polynomials Q,, |a| <m —d/2—u;,
and the vectorvalued function 6 -—>F;(-,6) belongs to the class
C=($" 4 L H™(K))). '

By the strong ellipticity of the operator A(D,) we find that the mapping

(A(D,, ) 1 (H™™ (K)) — (H" (K,)Y

is bounded together with all its derivatives uniformly with respect to &, |§| = 1. There-
fore the system (3.5) has a unique solution in

C= (R”~\{0}; (H" (Kp)).
By (3.7) this solution can be expressed in the form (3.3), where
Ri(, 0) = (A(D,, 6)) "Fx (-, 6).
The proof is complete. ®

Remark 3.1. If among the numbers u; + 1, ..., u; + [7 — d/2 — u,] there are no
points of the spectrum of the operator pencil £,(x), then the vector-valued function W;
is uniquely defined. Moreover, the degrees of the polynomials Q,, and the number N,
do not exceed the degree of the polynomial Q;.

RemARk 3.2. Suppose that the collection y; + 1, ..., u; + [7 — d/2 — u,] contains
s different eigenvalues with maximal partial multiplicities k1, ..., k,. Then the degrees
of the polynomials Q;, and the number N; do not exceed k¢ + k; + ... + K, where K,
is the degree of the polynomial Q.

The vector-valued function W, is unique up to a linear combination of solutions
g*W,;, 0 < |a| = u; — u,;. Henceforth we assume that the solutions W}, / < 0, which
have the properties mentioned in Proposition 3.1, are fixed.

Remark 3.3. Since the functions 0%/ Q; are linear independent, it follows that the
functions £*W;, /<0, |a| =0, are also linear independent.

The following two lemmas will be used in the study of the inverse Fourier transform
of the vector-valued function R; with respect to the variable ¢.

Lemma 3.1. Let R; be introduced in Proposition 3.1. Then
DER;(y, &) = [&] ™~ 2 RylyE], ¢/ |E])og [E])F,

where  the  vectorvalued  functions 0 —>R,(+,0) belong to the class
Cc>(s74-1, (H’” (K))) and y is an arbitrary multi-index.
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Proor. Formula (3.6) implies

(8  DIEG, Y=gl 3 Fuy[E], 8/ 18D og [E]),

J

where 6 —F,; (+, ) is a vector-valued function from C~ ($* =41 (H™(R2))).
Using the obvious equality

0k

N

6 =DSF. — 1
a(b,, OI(DgR;) = D¢ F ﬂ§<:y (y = B!

together with (3.8), we complete the proof by induction in |y].

a”=#(D,, £)(DER))

Lemma 3.2. For amy positive integer N the sums

S [(1+edV DRy, O2dy,  k=0,...N;,
Ky

la] <m
are bounded uniformly with respect to 6.
Proor. It is clear that
a(,, 0)(1+ 02 )Ry = (1 + 0*)"F, — [A(D,, 6),(1 +0%)*1R .

From (3.6) and (3.7) it follows that the vector-valued function (1 + QZ)N/ sz/e belongs
to C* (5”779~ 1; (H"(K,))) for all N. Using the boundedness of the operator

[a(D,, 0), (1 + 0)"21:(H" (K,)) — (H ™™ (K,))

and the induction in N we obtain the boundedness of the norm of (1 + ¢?)/2R in
(IC-)I’” (Ky)). The lemma is proved.

Let f denote the inverse Fourier transform of the distribution f= f(L), ie

[ e=or@ar.

-d

fz) =

w—d
(2% .
Then by (3.2) we have

v _ R — pHjta—n az -1 )
(3.9) (W, —R))(y,z) =" ,a,s,,,_zm_m,‘D 10 '2)Qju(9, log 0).

Since y € S(R” ~9), it follows that for |x| <5 < o all components of derivatives in x of
the vector-valued function (3.9) of order not higher than 7 do not exceed

(3.10) rHoM Ao (1 + | logo| Ng(9),

where M is an arbitrary positive number and g is a positive function in L, (L ,).
It is readily verified that (3.10) is a square summable function on the set
{xeK:0<a< |x] <b < »} Therefore the function (3.9) belongs to the space

(Hp (K)Y.




26 V. A. KOZLOV - V. G. MAZ' YA

Since ¢ =rcos 7, z/0 = Otant, (3.9) can be transformed in the following way

(rcos T td=" > (D*%)(0tan7) Q. (9, log (rcost)) =

|a| <m —dj2 —Repy;

! v _ ) (¢, log cos 7)
= (rcosTys 4" 2 (_c_>§'_r)_ > (D*%)(@tanT) Qe (¢, log
v=0 V! |a| <m—df2 - Rey; v!

where Q¥ (¢, ¢) = 0/ Q/a(@, t). Thus, the function (3.9) has the form (1.3) with coef-
ficients from (Io{”’(!)))l.
By Lemma 3.2 we have

IDSR; (v, 8)|?
Iylz(m— |al)

G11) > j

la] sm
Ky

dy Sc|g| Zewi=d+27(1 4 | log |E| | )P x

X max _ II

2
<FEN pesm s Ol grm -

Since. —2Reu; —d +2m >d —n, it follows that the inverse Fourier transform
R (y, ) e (S"(R*~4)) is defined for almost all y € K;. Moreover, by (3.11) the

functlon R; can be considered as an element of the space S'(R”¢; (L’” (K))Y)

where L2 (K;) is the completion of Cy° (K;) with respect to the Dirichlet integral of
order 7. The first term in the right-hand side of (3.2) belongs to the space

(C=NS)R"?; (AP (K))), hence W;eS'(R"~4; (H(K,)). Therefore
W eS'(R" 4 (Hloc(Kd ))
We show that a(D. )W- =0 on K in the sense of the distribution theory. For this

purpose it suffices to verify that A(D,,{)W;=0 on K in the space
S'(R"~4; (Hg (Kz, 0))). Indeed, by (3.11) the function W, belongs to
Lo 1o (R"=4; (EIf2 (D, 0))) andhence AUD, , £) W € Lo, 1. (R*~¢; (EI7L (K4, 0))).
Thus, the equation A(D,, £) W; =0 obtained earlier for £ # 0 can be extended to
all €.

Proposrrion 3.2. Tbe vector-valued function W has the form (1.3) where A = u; +
+d—-n, k<N;, e (" (Q)) and W satz:ﬁes the system (1.2) on K

Proor. We have shown in the proof of Lemma 3.2 that W, — R, has the form (1.3),
where A =pu; +d — n, k < N;, up € (H” (2)), and that W satisfies (1.2). In order to
complete the proof it suffices to use the following assertion.

Lemma 3.3. The vector-valued function R belongs to (Hp 7 (K)) and the representation
(1.3) 45 valid for R with k < N;.

Proor. Let R; =RV + R?, where
RM (5,0 =xR 3,8, RPp,8)=0-2E)R»,0.
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Using Parseval’s theorem we find

dy a1 27 _
(3.12) I W I |Dy Dz Rj (y,z)l dz =

Ki R" ¢

dy
|y |27 = leb) ?

=< [ 1en0F [ IDfR6, OF

R*—4 Ki s

where K; , = {y € K;: |y| <b}, b =const and |a| + |B| <m. From (3.11) it fol-
lows that the right-hand side in (3.12) does not exceed

¢ [ (@2 |g) e dr 22l (1 4 | log |g] |)NdE < .
Rn—d

Now let us estimate the integral
(3.13) j j Iy + |2|*) IDEDER® (5, 2)|2dy da
K4y R4

for |a| + |B| < m and for a sufficiently large N. By Parseval’s theorem this integral is
equal to

(3.14) cj f|(—A§)N(§ﬁ(1—x(C)))Dy"R]-(y,C)|2dydC+

Kd,b R#-d
te f f | 1912 EP (1 = x(8)) DyR; (9, &) | *dydg .
Kd,b Rr—4d
By Lemma 3.2 the first integral on the right does not exceed

(3.15) ¢ [ gl 28-(1 4 [ log [£] |2V X
|&] >a

N

DFR, , 2 v dE
XK;[os/e N; Méml 3 Ry (y C/lCI)l lydC

Since the inner integral is bounded and since N is large, it follows that the value (3.15)
is finite.
The second integral in the right-hand side of (3.14) is not greater than

. I lCl_2,,,.—4N+2|uz|+2I/3I—‘1(1+|log|C||)ZI\I’><
1] >a

ij b1, 2 PR, 8/ 18D dyde
d

This value is also finite because the inner integral is uniformly bounded with respect to
¢/|¢| by Lemma 3.2.
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Since the integrals (3.12) and (3.13) are bounded, it follows that the integral
S |DER;(x)|dx

la| sm
xeK,a<|x| <b

converges.

We verify the zero Dirichlet conditions for R; on 8K\{0}. Put
R;e(y, &) = (1 —x(&/e) x(eQ)R;(y, &),

where ¢ is a small positive number. By Lemma 3.1

Ry e S(R* =4 (H"(Kp)).
Therefore IiﬂeS(R”_d; (I:I”‘ (K;))). Moreover, E,ee (Fr" (K))'. Replacing R; by
R; — R;, in the above argument we obtain that the integrals

dy a D n (1)

| N [ IDFDI®RM ~R{D) 2z,

Ky R4
[ (p1#+ 12| ™) DD R ~ R 2dy e,
Kip R4
tend to zero as ¢ — 0. Consequently, Eje (Hz.(K))Y.
By (3.3) we have
— i +d—n .
R =22 j e {0 | ¢ ~H

- n—d
(2m) .y 0=

y 4 ( 1 )’e
R;|= — |llog =] d
which is equivalent to (1.3) for d =N,. The lemma and Proposition 3.2 are
proved.
The following assertion is an immediate corollary of Proposition 3.2, Remark 3.3
and Proposition 2.1.

ProrosrrionN 3.3. For any multi-index y the vector-valued function DY \«AV] bas the form
(1.3), where A=p; +d —n—|y|, KSN;, € (IO{”’(Q))I, and satisfies the system
(1.2). The vector-valued functions D,W;, j <0, |y| > 0 are lincar independent.

Now we can give a description of all solutions of the form (1.3) for Re A < —
—n/2.

Tueorem 2. The vector-valued function U of the form (1.3), where ReA <m — n/2
and u, € (E” (Q))., is a solution of the system (1.2) if and only if A = u, +d —n — k for
some integers k = 0, s < 0. Moreover U is a linear combination of the vector-valued func-
tions DY W, A =u;,+d—n—|y|.

Proor. Let £* (1) be the operator pencil (1.5) and let 25 (1) be a similar operator
pencil constructed with regard to the operator A* (D, 0) in K;. By Proposition 1.3 the
spectrum of £ (1) consists of the eigenvalues 27 —d — u;,7 =0, 1, ..., numerated
with account taken of their algebraic multiplicity. This and Theorem 1 imply that the
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spectrum of £* (1) consists of the eigenvalues A*, = 2m —d —u; + |y| in the half-
plane ReA > —n/2 (here j < 0 and y is an arbitrary (» — d)-dimensional multi-in-
dex). Applying Proposition 1.3 again we obtain that the spectrum of the operator pencil
£(4) consists of the eigenvalues 2% —n — 1}, = u; +d —n — |y| numerated with
account taken of their algebraic multiplicity and placed in the half-plane Re A <z —
— n/2. Therefore, according to Remark 2.2, the number of linear independent solutions
of the system (1.2), which have the form (1.3) with ReA <m —#/2 and u, €
e (B (Q)),is equal to the number of the representations of Aasu; + d —n — |y | with
7 <0, |y| = 0. It was shown in Proposition 3.3 that the solutions D} W; are linear in-
dependent. Consequently, all solutions of the system (1.2), which have the form (1.3),
are generated by linear combinations of D}’\AVj.

4. Tue Laprace opEraTOR IN K; X R” 7¢

In the case of the Laplace operator in K; X R” ~¢ Theorems 1 and 2 admit a more
explicit interpretation. Here A(D,) = 4,, A(D,, 0) =4,. £,(u) =0 + u(u +d — 2),
where 0 is the Beltrami operator on §¢~!. Let {u,},5, be the sequence of positive
eigenvalues of the operator pencil £;(u) numerated with account taken of their
multiplicities and let {¥,}; ., be the sequence of real eigenfunctions. The number
2 —d —u; is also an eigenvalue and ¥, is the corresponding eigenfunction.

In a similar way we denote by {4,} a sequence of eigenvalues of the operator pencil
£(A) generated by the operator 4, in the cone K and by {#;}; >, a sequence of corre-
sponding eigenfunctions. The same eigenfunction corresponds both to the eigenvalues
A;and 2 —» — A;. In particular, the eigenfunction (cos 7)*/ ¥;(¢) generates two sol-
utions (1.3): 0*¥;(¢) and v;(x) =r? """ 04 W ().

In order to find all eigenfunctions of the operator pencil £(4) and consequently all
solutions of the form (1.3) it suffices to do it for the eigenvalues 2 — 7 — 4,.

First of all we show that one can use v; as the functions \AV] introduced in the preced-
ing section. We have

‘ i 0) gy
(4.1) ¢ 0,(y,2)dz = 0" W (9) ¢ =
B e L

2—dp2— ;o (= d)2
B 21"(#/ - 173- n/2) Q> 4T () o |E| K, —u—ap(e|E]),
where K, is the modified Bessel function.

The function @' ~%?K, _,,,_ 4/2(0) ¥,(¢) satisfies the zero Dirichlet condition on
9K, \{0} and is a solution of the equation Au — » = 0 on K. Since for ¢ — 0 we have
Ky -a2(0) = 0! %~ 42P, (0% + O(p®), & > 0, where P, is a polynomial of degree
k, 2k < pu;— 1+ d/2, then the right-hand side of (4.1) admits the representation (3.2)
and hence it can play the role of W;. This and Proposition (1.3) imply that the linear
combinations of the functions D} v; exhaust the set of solutions of the form (1.3) for
ReA<1-#n/2.
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We introduce the polynomials Q, .(z) of degree |y| by the equality
Q,.«(2) = (|z|>+ D" +52DY (|z]2 + 1)/
and represent them as the sum of the homogeneous polynomials
= ) g (5) — — 2.
Qy,k 0$.\'§|'y|/2 Y, K> eng,K I’V| s
Then
rlc+2|y|Dzyr—/e= Z QZIQ;(/{)K(Z)
0ss< |y|2

and therefore the eigenvalue 2 —# —u; —k, £=0, 1,..., has eigenfunctions

t, (@)= (cos TV ¥,(p) X (cost)*QY, (Osin7),

0<ss< |yl oKy
where kK, =7 — 2+ 2u, and u, + |y| = u; + k. By Theorem 2 there are no other lin-
ear independent eigenfunctions. The same eigenfunctions are generated by the eigen-
value u; + k.
Thus we have proved the following assertion.

Tueorem 3. The function U e Ioﬂ’éc (K, 0) of the form (1.3) is a solution of the equa-
tion A, U =0 in K if and only if

) A=u;+k, j,k=0,1,...,and U is a linear combination of the functions
MW, (9) 2 0*Q) (),

0ss<|y|2
where p, + |y| = u; + 4
() A=2—-n—u;—k, j,k=0,1,..., and U is a linear combination of the
Junctions

0" W, (@)D} (27" M) = o W, (@)r? 7" "M 3 0* QP (),

0<s<|y|2

where p, + |y| =u; +k.
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