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Equaz ion i a derivate parziali. — Regularity properties of solutions of elliptic equa­

tions in R2 in limit cases. N o t a di A N G E L A A L B E R I C O e V I N C E N Z O F E R O N E , p resenta­

ta (*) dal Socio E . Magenes . 

ABSTRACT. — In this paper the Dirichlet problem for a linear elliptic equation in an open, bounded 
subset of R2 is studied. Regularity properties of the solutions are proved, when the data are ^-functions or 
Radon measures. In particular sharp assumptions which guarantee the continuity of solutions are 
given. 

KEY WORDS: Elliptic equations; Lorentz spaces; Continuity properties. 

RIASSUNTO. — Proprietà di regolarità per soluzioni di equazioni ellittiche in R2 in casi limite. In questa No­
ta si studia il problema di Dirichlet per un'equazione lineare ellittica in un insieme aperto, limitato di R2. 
Sono provate proprietà di regolarità per le soluzioni, quando i dati sono funzioni di L1 oppure misure di Ra­
don. In particolare sono date ipotesi ottimali che garantiscono la continuità delle soluzioni. 

1. INTRODUCTION 

Let Q be an open bounded subset of Rn
y n ^ 2, and let u e HQ1 (fi) be solution of 

the problem 

(flij (x) ux. L + cu =f in fi , 

\u = 0 on oQ, 

where a^ are bounded functions satisfying: 

(1.2) * i y ( x ) à É y £ | É | 2 for a.e. x e ^ V ^ r , 

and e satisfies the sign condition: 

(1.3) c(x)&Q. 

In this paper we will give regularity properties of u in the case n = 2, under the hypo­
thesis that / is in L1 (fi) or is a Radon measure with bounded variation. We obtain re­
sults analogous to those valid when n ^ 3. 

I f / e L p ( f i ) , p > n/2, it is well known that u is Holder-continuous. In the case 
n ^ 3 the simple continuity of u is guaranteed under the weaker assumption that / 
belongs to the Lorentz space L{n/2y 1) (see [3,13,14]). In Section 2 we firstly give a 
similar result when n = 2. In particular we prove that i f / e LlogL then u is bounded 
and continuous. 

Using the above result and duality arguments, in Section 3 we prove that if/is a Ra­
don measure with bounded variation, then, denoting by | f i | the measure of Qy 

(1.4) ïe^dx^c\Q\y 

Q 

for some /3 > 0 and c constant. Furthermore we give the optimal constants in (1.4) and 

(*) Nella seduta del 3 ottobre 1995. 
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more precisely we show that if the total variation of/is less or equal to 1, then (1.4) hol­
ds for any fi < 4JV and with c = 4JZ/(4JZ — /?). This result allows us to extend and to im­
prove some properties of the solutions of the equation 

-{aij{x)uXj)Xt = y(x)e\ 

in two dimensions, found for example in [8,10]. 
In Section 4 we study, still in the case n = 2, problem (1.1) when/belongs to inter­

mediate spaces between L1 and L logL. We prove Moser-like estimates similar to those 
in [15,4]. Under the hypothesis 

\a\( s \p 

\ / / * ( ' ) * T ^ 1 * 1<P< 
ds 

I" \t)at\ 

o \o 

where / * is the decreasing rearrangement of / we find fip such that: 

Q 

where c = c(p) is a constant. Such a value /3p is sharp. 
Finally in Section 5 we give analogous estimates when n ^ 3 (see also [15]). 

2. THE CASE fe LlogL 

We briefly recall same notations which will be useful in the following. Let Q be an 
open bounded subset of Rn. If cp\ Q^>R is a measurable function, we denote by 
flcpit) = \{x E Q: \q>(x)\> t}\, the distribution function of cp and by cp* (s) = 
= sup {t > 0: piyit) > s}, the decreasing rearrangement of cp. We say that cp belongs to 
the space L(logL)a, 0 < a ^ 1, if the quantity 

lll(logL)»= J < P * ( / ) ( l o g J y ! ) ° 

is finite (see for example [5]). When a = 1 we will put LlogL = L(logL)1. We remark 
that, introducing the average function of cp*\ 

V(s) = j \cp*(t)dty 

we can write: 

\Q\ 

MlLiogi= J (f(s)ds. 
0 

Finally, we remind a result in [2] which allows us to estimate u by its gradient. 



REGULARITY PROPERTIES OF SOLUTIONS ... 2 3 9 

THEOREM 2.1. If u is compactly supported in Q, then: 

I l o i \ i - i / « 
uHs)^(nCJ-^\\Du\\n(log^j 

where Cn is the measure of the unit sphere in Rn. 

We will consider the case n = 2. Using a well known result in [18] and Theo­

rem 2.1, a solution u GHQ(Q) of (1.1) can be sharply estimated in terms of/. 

THEOREM 2.2. If u GHQÌQ) is the solution of (1.1), with / e L( logL) 1 / 2 , then: 

\Q\_ 

u^s)^(4jtr1 \f{t)dt, se]0,\Q\]. 
s 

PROOF. Theorem 2.1 implies that if / e L( logL) 1 / 2 t h e n / i s in the dual of HQ (Q). 

This means that one can use the arguments of the proof of Theorem 1 

in [18]. • 

An immediate consequence of this result is: 

COROLLARY 2.3. If u EHQ(Q) is the solution of (1.1), with / e L l o g L , then 

u e L °° (Q) and: 

ML^^rl/llLiogL. 
Using arguments similar to those in [3] and [13], by Theorem 2.2 one can obtain a 

continuity result for local solutions of (1.1), that is, for functions u GH\OC(Q) such 

that 

(2.1) \(aijUXj(pXt + cucp) = \fcp, V ^ E C 0 ° ° ( ^ ) . 

Q Q 

THEOREM 2.4. Let u eH\oc(Q) satisfy (2.1), with feLlogL. Then u is continuous 

in Q. in 

PROOF. Let x0 be in Q and let us denote, for Q > 0, BQ(x0) = {x e R2: 

\x - x0\ < Q}. We take Q such that B8Q(XQ) C Q, and we put u =v +w, where 

v GHQ(B8Q(X0)) is the solution of the problem: 

- {ay {x)vXj )x. + cv=fy in BSQ (X0 ) , 

and w is the solution of the problem: 

f - (dij (x) wXj )x. + cw = 0 in BgQ (x0 ) , 

]w=u on 9B8Q{X0) . 

If œ(w, Q) is the oscillation of w(x) in J3^ {x0 ), then a constant rj < 1 exists, such that 

(see [17, Lemma 7.3]) 

(2.2) 7ô{wy Q) ^ rjœ(w, 4Q) . 
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Furthermore by Corollary 2.3, 

œ(v, Q) ^ œ(v, 4Q) ^2 sup \v\ ^ (2JT)"1 | | / | |L l o g L j 5 ( x o ) 
B8QM 

where ||/||LiogL,B8e(x0) *s t n e n ° r m of / restricted to BSQ(X0). Then, we have: 

(2.3) CS(V,Q)^F(Q), 

where F(Q)—*0 as g —» 0. Then from (2.2) and (2.3) we get 

co(u, Q) ^ rjœ(w, 4Q) + F(Q) ^ rjœ{u, 4g) + (77 + l)F(g) 

and theorem follows. • 

If Q is regular enough one can establish the same regularity up to the boundary of 
Q. More precisely one can suppose, for example, that Q is HQ - admissible (*) (see [17, 
Definition 6.2]). Indeed, in such a case inequality (2.2) holds also when x0 e dQ 
(see [17, Lemma 7.4]), where the oscillation is considered on Q fi BQ(x0). Then one 
can state the following: 

THEOREM 2.5. If Q is Hl-admissible and u E H\ (Q) is a weak solution o/( l . l ) , then u 
is continuous in Q. 

REMARK 2.1. The results in Theorems 2.4 and 2.5 are sharp in the sense that if 
in ( 1 . 1 ) / G LlogL but/<£ Lp ,p > 1, then we can only say that the solution u of (1.1) is 
continuous but not Holder-continuous. As an example let us consider the pro­
blem 

(2.4) 
-Au=f(\x\) inBR, 

u = 0 on dBR , 

where f(g) = JC~1Q~2( log ( 1/(JIQ2 ))) ~^, fi > 2, and BR is a ball centered at the origin 
of radius R, such that the function/* (s) = l/(^(log s ~l )& ) is decreasing in ]0, \BR | ] . 
It is easy to recognize that / ' ' (s) is the decreasing rearrangement of/and that the sol­
ution of (2.4) can be written as: 

u(x) = 
4JI(I3 - 1)03 - 2) 

log —7—) ' - [log 
BR\ I \ jc\x 

It follows that u is simply continuous in BR. On the other hand it is easy to verify that 
/ e L l o g L but f$Lp, Vp> 1. 

REMARK 2.2. Theorems 2.4 and 2.5 are sharp also because, at least in the L(logL)a 

scale, the hypothesis/e LlogL cannot be weakened. If one considers again problem 

0) We recall that an open bounded set Q c Rn is HQ1-admissible if there exist two positive constants a 

and £0 such that for 0 < Q < Q0 and x0 e dQ, the following inequality holds, for every u E C1 ( Q f! BQ (x0 ) ) 

vanishing on dQ: 

\u(x)\^a J \ux(t)\ \x-t\l~ndt. 

QnBQ(x0) 
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(2.4) with f(g) — it~l
 Q~2 {\o% (1/(JTQ2)))~2 one can easily check that the solution 

u(x) = — 
An 

1 O S ( 1 O 8 ^ ) - 1 O S ( 1 O 8 ì ì T ) 
is not continuous at the origin. This t ime/ g LlogL, bu t / eL( logL) a , Va such that 
0 < a < 1. 

3. THE CASE / IS A MEASURE 

In the following we suppose that Q c R2 is smooth (for example Ho-admissible) and 
that (1.2), (1.3) hold. If pt is a Radon measure with bounded variation, supported in Q, 
we say (see [17]) that u ELL1{Q) is a weak solution of 

(3.1) -(a0-ux.)Xi + cu=p, 

vanishing on dQ, if 

(3.2) \u[-{ajicpXj)Xi + ccp']dx = \cpdfi 
Q Q 

for any cp e HQ (Q) H C° (Q) such that [ - {afi cpx. )x. + ccp] e C° (Q). Using the results 
of Section 2 we can prove: 

THEOREM 3.1. If pi is a Radon measure of bounded variation and 

\w\ , ^ 1 
Q 

equation (3.1) admits a weak solution u vanishing on dQ, such that 

(3.3) \e^u{x)\dx^ — 1 5 — | f l | , V £ < 4 j r . 
J 4JT - p 

PROOF. By definition, if u e L1 (Q) is a weak solution of (3.1), vanishing on 942, 
then (3.2) holds. Then, for any tp continuous on Q, we have: 

uipdx = G(ip)dpi, 
Q Q 

where çp = G(ip) denotes the solution of the problem: 

•(ajj<pXj\. + c<p = ip in Q , 

[q) = 0 on dQ . 

By Theorem 2.2 we get: 

(3.4) \\urpdx\*^^ \ \df*\< ±h\\LlogL • 
Q 

Taking into account the fact that C°(Q) is dense in LlogL, (3.4) implies that the 

linear functional A(ip) = \uipdx is continuous on LlogL. This means that u belongs 
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-Jexp y 

< 00 [e^dx 

for a certain X > 0. Furthermore (3.4) gives, for any q e N, 

0 

^(^-MMU-i) Jnog(lûlA)]** =(4^)-1(|i3k!)1/1Ml/(?-1). 

Then 

114^(1^1^)^/(4^). 
It follows: 

£ l L I I * * l n l V / / » 
J £ = o £! * = o o\ 4;r 

REMARK 3.1. Theorem 3.1 improves analogous results in [8] (where the case a^ = 
= òjj and jueL1(Q) is considered). For example in [8] the following inequality is 
found: 

| > M * ) | ^ < c 4 j r 2 (diam£) 2 , V i8<4jr . 
Q 

Furthermore (3.3) is sharp because it holds as an equality when fi is a Dirac mass con­
centrated at the origin and Q is a ball centered at the origin. 

In general, under the hypotheses of Theorem 3.1, the integral 

(3.5) je^u{x)Ux 
Q 

does not need to be finite if /? ^ Ait. It is enough to consider the case fi is a Dirac mass 
concentrated at the origin and Q is a ball centered at the origin. On the other hand if// 
is an L ̂ function, proceeding as in the proof of Corollary 1 in [8], one easily 
obtains: 

COROLLARY 3.2. Let u he solution of (3.1), vanishing on dQ, with ju G L1 (Q). Then 
for every fi > 0 we have e^u)[ e L1 (Q). 

SKETCH OF THE PROOF. Let us split fi EL1(Q) as fi = fix + fi2, with \\/t1 \\x < e, 
e > 0, and fi2 e L °° (Q). Obviously u = ux + u2, where ux and &2

 a r e the solutions vani­
shing on dQ of (3.1), with fi substituted by fi x and //2 , respectively. The function u2 is 
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bounded, while, applying Theorem 3.1 to the function «1? we have: 

Q 

Because of the arbitrariness of e the assert follows. • 

REMARK 3.2. As already observed in [8], in the case /â sLl{Q) it is not possible to 
bound the integral (3.5) independently of JU, when /? ^ 4JT. In this respect Theorem 3.1 
extends the result in [8] and improves an analogous result in [10] where only the exi­
stence of /? > 0 such that 

hP\«M\dx^c(diamQ)2, 
Q 

with a suitable constant c, is proved. 

Now we state some corollaries of Theorem 3.1. They can be proved essentially as 
in [8], where the case a^ = ò^ is considered. In particular we can recover all the results 
contained in Section 3 of [10] with the difference that in certain cases we are able to 
make sharp hypotheses. For the sake of brevity we only consider such cases. 

COROLLARY 3.3. Assume (um) cL1{Q) is a sequence of solutions of 

(3.6) - {dij (um )Xj )x. + cum = Vm (x) eUm in Q , 

with um = 0 on dQy c(x) ^ 0, such that 

(3.7) I|VW||LP ^ C for some 1 <p ^ oo 

and 

(3.8) f \Vm\eUmdx^eQ<A7tlp' Mm. 
Q 

Then |kJL» ^ C. 

COROLLARY 3.4. Assume (um ) cL1 (Q) is a sequence of solutions of (3.6) such that, for 
some 1 < p ^ oo f 

IKWu^c, lk+||L^c, 
and (3.8) holds. Then {u* ) is hounded in L{£C{Q). 

As already observed, the proof of the above corollaries follows the arguments 
in [8]. We only sketch the proof of Corollary 3.3. 

PROOF OF COROLLARY 3.3. Let /3 < 4JT be such that /3 > e0(p' + 4tt — p). By 
Theorem 3.1 and (3.8) we have: 

{e<p' + **-f»\"~w\dx^C(p,P).. 
Q 

Therefore eUfH is bounded in LP' + 47C~^(Q) and, because of (3.7), VmeUm is bounded 
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in Lq(Q), for some q > 1. Using standard estimates we obtain that um is bounded 
inL°°(&). • 

REMARK 3.3. Corollaries 3.3 and 3.4 improve similar results in [10]. In fact in [10] it 
is only proven that under hypothesis (3.7) there exists £0 > 0 such that if 

\\Vm\eu™{x)dx<e0y 

Q 

then the boundedness of um or u£ in L °° holds. On the other hand, as already observed 
in [8] (in the case aéj- = d,y), hypothesis (3.8) is optimal. In fact, if aty = ôtJ and 

(3.9) \\Vm\eu»dx = 47z/p' , Vm, 
Q 

then one can construct a sequence (um) of solutions of (3.6) satisfying (3.7) and (3.9) 
such that H^JJIL00-» °° • 

4. THE CASE feL1 

In this section we will consider solutions of (1.1) in the case/e L1 (Q). We still sup­
pose that Q c R2 is a smooth, bounded, open set. As in the previous section, a weak sol­
ution of (1.1), vanishing on dQ, is a function u eL1(Q) such that 

(4.1) \[-{ajicpXj)Xi +ccp~]udx= \cpfdx 
Q Q 

for any cp E HQ (Q) fl C° (J2) such that [ - Uy/ <j9Xy )x. + ccp\ eC°(Q).A comparison re­
sult as Theorem 2.2 can be stated also for solutions of (4.1). 

THEOREM 4.1. Let u e.Ll{Q) he solution of (4.1) under the assumptions (1.2), (1.3), 
and fe.Ll{Q). The following estimate holds: 

\Q\_ 

(4.2) u* (s) ^ (An)-1 J" f{t)dty j e ] 0 , \Q\~\. 
s 

We soon observe that under the hypotheses (1.2) and (1.3) the problem (4.1) ad­
mits a unique solution (see [17]). 

PROOF. Let/^ E L °° (Q) be a sequence of functions such thatfm —>/in Ll(Q) and 
ll/w 111 ^ ll/lli • If «» G #o (£2) is solution of (1.1) with/replaced hy fm, it is well known 
that, passing to a subsequence (still denoted by um), um —>u in L1 and a.e. (see 
e.g., [17]). By Theorem 2.2 the following estimate holds: 

\Q\_ 

u* (s) ^ v* (s) = (AJtr1 J fm (t)dt, V* E]0, |fl |] . 
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The function v* (s) is the decreasing rearrangement of the solution vm of the 
problem: 

where f*(x) =f£ (JC\X\2) is the spherically decreasing rearrangement of fm and Q* 
is the circle centered at the origin such that \Q* | = \Q\. The fact that/» —>/inL1 im­
plies (see for example [11]) thatf* —>/* inL1 (fì* ). Using the arguments above it fol­
lows that (passing to a subsequence) vm —> v in L1 (fl* ) and a.e., where v is the solution 
of the problem 

\-Av=f* in fl* , 

\v = 0 on 3<0* . 

Being 12* a circle, it is possible to write explicitely v and v*: 

\Q\_ \Q\_ 

V(X) = (4JZ)-1 J f(t)dt, v* (s) = (4JT)-1 J/(/)<&. 

n\x\2 

Using, for example, Proposition 4.3 in [12], one deduces: 

u*(s)**v*(s), VJ6]0, | f l | ] , 

that is the assert. • 

REMARK 4.1. Obviously Theorem 4.1 recovers and sharpens Theorem 3.1 in the 
case the right-hand side in (3.1) is in Ll{Q). Indeed, \ff^Ll{Q) and H/lh ^ 1, the 
estimate (4.2) gives 

^ K H ^ - M o g U ^ I A ) , *6]0, | f l | ] , 
that is (3.3). 

REMARK 4.2. It is possible to define a weak solution of (1.1) w h e n / e L1(Q) for 
example as a function u G WQ,1{Q) such that (see, for example, [9,6]): 

WijUX]cpXi + cucp)dx = ycpdx , Mcp G Wfr °° (f l) . 

It is well known (see [16]) that in such a case the solution does not need to be unique. 
This means that Theorem 4.1 cannot be proven for this kind of weak solutions, unless 
the solution itself is obtained as «limit of approximations». A definition of solution ha­
ving this property is contained, for example, in [6,7] and we remind that in our case 
such a solution is unique. 

In the same spirit of Section 4 in [4], the above result can be used to obtain sharp 
Moser-like estimates for solutions of (4.1) when/belongs to spaces which are interme­
diate between L1 ( Q ) and L logL. Let us define the spaces L( l,p), 1 ^ p ^ °° , as the 
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set of the functions cpeLl{Q) such that (see [5]): 

IMk. 
' 7 s V j \1/p 

\ \\cp*{t)dt\ f \ if l ^ p < 00, 

IMIi if p = °° 

is finite. The following inclusions hold: L l o g L = L ( l , 1) cL(l,p) cL(l,q) c 
c L ( l , 00) = L 1 ( f i ) , for 1 < p <q < 00. 

The cases p = 1 and p = 00 have been treated in Sections 2 and 3 respectively. In 
the intermediate cases we have the following: 

THEOREM 4.2. Let u eL1 (Q) be solution of (4.1) under the assumptions (1.2), (1.3), 
with feL(l,p), 1 <p < 00 and \f\\yP ^ 1. T/?e# <z constant c0 = c0(p) exists such 
that: 

[eP\^)\p'dx ^c0\Q\, V/3^PP = (4JT)P' , 
Q 

where, as usual, pf =p/(p — 1). 

Before proving Theorem 4.2 we recall a technical lemma due to Adams [1]. 

LEMMA 4.3. Let 1 <p < co and let a{s,t) be a non-negative measurable function on 
( - 00 y + 00 ) x [0, + 00 ) such that: 

(4.3) a(s,t)^l, for a.e. 0<s<t, 

/ f° r00 V / p ' 
(4.4) sup * ( J , ^)p <& + *U> ^)p ^ = * < °° . 

Then there is a constant c0 = c0(pyb) such that if for 0 ^ 0 , 

+ 00 

(4.5) J (pis)"ds^l, 
— 00 

then 

(4.6) je-^dt^co, 
0 

where 

(4.7) F ( / ) = A - J" *(*,*) 0(*)<&. . 
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PROOF OF THEOREM 4.2. By Theorem 4.1, putting s=\Q\e t in (4.2) we 

have 

(4.8) u*(\Q\e-t)^(4ji)-1fi(\Q\e-r)\Q\e-rdr = (47ir1 J a(s, t) </>(s) ds , 
o -°° 

where 

a(s, t) 

\ 0 if - oo < s < 0 , 

1 iîO^s^t, 

0 if / < s < + oo 

and 

(p(s) = 

fO if - oo <s < 0 , 

]{\Q\e-s)\Q\e~s if 0 ^ ^ ^ / , 

0 i f / < ^ < + o o . 

Now we observe that a{s,t) and (j){s) satisfy conditions (4.3), (4.4), (4.5). Then (4.8) 
and Lemma 4.3 imply that: 

j e(te*(|flk-'))>'-/^<cCo> 

where c0 = c0(p) is a constant. In other words 

\Q\ 

j e«™*W ds^c0\Q\ 
0 

and theorem follows. • 

REMARK 4.3. Theorem 4.1 is sharp because if /? > fip then in general the 
integral 

pi-(*>IP' dx 

is finite but it cannot be bounded by a constant which is independent of/. In other wor­
ds it is possible to find a sequence (fk)k<=N s u c n t n a t A e L ( l , p ) , ||Alli,/> ^ 1> a n d t n e 

corresponding sequence of solutions (^)^e]y of (1.1) is such that, if /? > /?p, 

(4.9) lim f 
- * + oo J 

,/H«*MI'' ix = + oo . 

As an example one can choose 

fkW=f?W = 
0 7r|x|2=S 1, 

| e * ( l / p + £ ) - 1 / ? if 0 ^ TT|X|2 < e 
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in the ball JB̂  centered at the origin and such that \BR\ = 1. The solution u^ of the 
problem 

is given by 

uk(x) 

-Auk=fk i n £ R , 

Uk — 0 on dBR , 

\hg(l/ji\x\2)/(47i(l/p+k)1/p) Jt\x\2^ 1, 

(k + 1 - ek7t\x\2)/(4jz(l/p + Ik)1'?) if 0^Jt\x\2<e~k . 

It is easy to check that |[/&lli,/> = 1- On the other hand, observing that uk(x) 
= u% ( ft \x |2 ), we have: 

l 

(efi\ukW\''dx=fefi<MtW'ds^ 

BR 0 

exp 
0(k+ l-sek)p' Pkp 

,, ids ^ exp — 
(4ft)p (1/p+kY /p J J \ (4a¥'{l/p+k)p''p 

= exp 
kp V'/p 

k + \/p (4JI)P \ pkj 

ids 

IP 

Then, if fi > j3p = (4ft)p\ (4.9) holds. 

5. SOME EXTENSIONS TO HIGHER DIMENSIONS 

Results analogous to those contained in the previous sections can be obtained also 
in the case n ^ 3. First of all we observe that, following the arguments in Section 4, one 
can extend to any dimension Theorem 4.1. In particular we have: 

THEOREM 5.1. Let Q be an open hounded subset o/Rn, n ^ 3, and let u e L1 (Q) be a 
solution of (4.1), vanishing on dQ, under the assumptions (1.2), (1.3), / e L1 (fi). Then 
the following estimate holds: 

\Q\ 

(5.1) u* (s) ** n -2Cn~
2'n J f(t)t2'n y , WS e]0, |fi | ] . 

The above comparison result extends Theorem 1 in [18]. Using it (actually it is 
enough Talenti's version) one can prove Moser-like estimates in the same spirit of Sec­
tion 4. 

If L (/?,#), 1 <p < oo, 1 ^ ^ ^ oo, denotes the set of the measurable functions cp 
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such that (see [5]): 
\i/q 

(Tn(s)sl/P)q— if l^q< » , j (ç(s 

sup ç(s)s 1/p if # = 

is finite, we can prove the following: 

THEOREM 5.2. Le£ Q be an open bounded subset ofRn,n ^ 3, #W let u GHQ(Q) be a 
solution of (1.1) under the assumptions (1.2), (1.3) , /e L(n/2,p), with l^p ^ oo. W<? 

*) / / p = 1, *&?» ueLœ (Q) and y * ^ « 2C„ 2/*||/||*/2, i; 

b) if \<p<™ and | | /L/2,p^ 

]>"«''<fc ^ | f l | , V£ ^ /?„,, = (>i2C2/")>' ; 

»/2,p ^ 1? ^ ^ ^ constant c = cip) exists such that: 

c) if p = oo and ||/||„/2, oo ̂  1, then a constant c = c(py ft) exists such that: 

J e ^ dx^c\Q\, Vj8 < j8„, . = n20n . 
Q 

PROOF. Parts a) and c) are direct consequences of (5.1) (see also [3]). Part b) can 
be proved using arguments similar to those in the proof of Theorem 4.2. One has only 
to put: 

TO if - oo < s < 0 , 

a(s,t) = \l iiO^s^t, 

0 if / < s < + oo 
and 

ro 
<p(s) = 

if - oo < s < 0 , 

f{\Q\e-s){\Q\e-sf/n if O ^ j ^ f , 

0 if t < s < + oo 

REMARK 5.1. Part b) of Theorem 5.2 is sharp in the same sense Theorem 4.1 is. As 
in Remark 4.3 (see also [4]) one can find a sequence (fk)keN °f functions such that 
fkeL(n/2,p), \\fk\\„/2,p^ 1> a n d the corresponding sequence of solutions (uk)ksN 

of (1.1) is such that, if ft > f}„tP> then 

lim [ e^Uk{x)\P' dx = 4-00 . 
• +00 J 

The sharpness of parts a) and c) of Theorem 5.2 has already been exploited 
in [3]. 

Work partially supported by MURST (40%). 
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