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Analisi matematica. — Boundary integral equations of the logarithmic potential the-
ory for domains with peaks. Nota (*) di VLADIMIR Maz'vA e ALEXANDER A. SOLOVIEYV,
presentata dal Socio G. Fichera.

AsstracT. — Integral equations of boundary value problems of the logarithmic potential theory for a
plane domain with several peaks at the boundary are studied. We present theorems on the unique solvabili-
ty and asymptotic representations for solutions near peaks. We also find kernels of the integral operators in
a class of functions with a weak power singularity and describe classes of uniqueness.

Key worps: Boundary integral equation; Logarithmic potential; Asymptotics of solution.

Riassunto. — Equazioni integrali al contorno della teoria del potenziale logaritmico per domini con cuspi-
di. Vengono studiate le equazioni integrali dei problemi al contorno della teoria del potenziale logaritmico
per un dominio piano con diverse cuspidi sul contorno. Vengono presentati teoremi sull’unicita della solu-
zione e sulle rappresentazioni asintotiche delle soluzioni in prossimita delle cuspidi. Vengono anche consi-
derati nuclei di operatori integrali in una classe di funzioni con singolarita debole e descritte le classi per
l'unicita della soluzione.

1. INnTRODUCTION

1.1. A classical method for solving Dirichlet and Neumann boundary value prob-
lems for the Laplace equation is the representation of their solutions in the form of
double layer potentials Wo and simple layer potentials V7. For the internal Dirichlet
problem and for the external Neumann problem the densities of the corresponding po-
tentials can be found from the boundary integral equations

(1) —no+ Wo=g¢g

and

(2) —7n+in=b,
on

respectively, where 0/ is the derivative with respect to the outward normal to the
contour S. Equations (1) and (2) for domains with non-zero angles, 7.e. without peaks,
were studied by many authors in various function spaces by methods of the Fredholm
operator theory. (For a historical survey and a bibliography see[1]).

In this paper we develop a theory of equations (1) and (2) on contours with several
peaks. Since in the presence of peaks the Fredholm theory is not applicable (cf.[2]),
we use another approach proposed by one of the authors (cf.[1]) which is based on
representations of solutions to (1) and (2) by means of solutions to certain auxiliary
boundary value problems. We obtain conditions for solvability of (1) and (2), find
classes of uniqueness, and describe kernels of the integral operators in a certain class 3¢
of functions with a weak power singularity. We also give asymptotic formulae for sol-
utions of (1) and (2) near peaks. Such formulae were obtained in our papers[3, 4] but

(*) Pervenuta all’Accademia il 4 luglio 1995.
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the present proof is independent and simpler. We restrict ourselves to contours with
peaks of first order tangency. This requirement is unimportant for the method, but fa-
cilitates calculations.

We give a short qualitative description of our results concerning equations (1)
and (2).

We show that the number of linearly independent solutions in I of the homoge-
neous equation (1) is equal to the number of outward peaks. We prove that (1) is solv-
able in I provided the right-hand side belongs to a certain class Jt of continuous func-
tions with prescribed asymptotics near peaks. We give an example of equation (1) with
continuous right-hand side on the contour with exterior peak, which is unsolvable in the
class . In the presence of exterior peaks we achieve the unique solvability of (1) re-
ducing both classes of solutions and right-hand sides. These new smaller classes will be
denoted by ... and N, respectively.

We turn to equation (2). It appears that the presence of peaks does not violate the
uniqueness in the class Y. If the contour has no exterior peaks, equation (2) is solvable
in IN for an arbitrary 5 € N with zero mean value. If S has exterior peaks the solvability
in 3¢ holds under the orthogonality of 4 to zeros of (1) from the class J)¢. Therefore for
the contour which contains exterior peaks it is preferable to express a solution of the
exterior Neumann problem as the sum of V7 and a linear combination of explicitly writ-
ten functions. The resulting integral equation proves to be solvable in .

We introduce our basic notation.

We consider a plane simply connected domain £ with compact closure bounded by
the piecewise C *-smooth contour §. Let § have the outward peakse,, 1 <# < N, and
the inward peaks 7,,, 1 <m < M. The set of all peaks will be denoted by T.

To each peak z; we attach a Cartesian coordinate system, in which either £ or its
complementary domain Q¢ are given by the inequalities k_ (x) <y < K, (x),
0 <x <09, where k. are C*-functions on [0, 0] satisfying conditions: k. (0) =
=k (0) =0, k" (0) > k" (0). The arcs {(x, k. (x)): x € [0, 8]} will be denoted by
A + (Zo)-

The above mentioned classes I, M., and N, N.,, of solutions and right-hand sides
respectively are defined as follows.

By I we denote the class of C *-functions on S\ T such that
O(Z)zo((Z_ZO)ﬂ(ZO))y /3(20) > ‘1)

for each peak z;.

The subset M, of N is defined by the additional condition B(e,) > —1/2 for exte-
tior peaks e,, p=1,...,N.

Let 9 denote the class of functions on § admitting the representation

@sx)=x"y.(x) on S.(z)

for each peak z,. Here 9 .. are C *-functions on [0, 61, |y, (0)| + | _(0)| # 0, and
’V(Zo) > 0. i
The subclass of 9 with v(e,) > 1/2, p=1,...,N will be denoted by N..
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Now we are in a position to give a more precise account of our results.
Let #¥ denote the solution of the internal Dirichlet problem ®"
AP =0 inQ, u?=g onS, geN.
If we are seeking #“) in the form of a double layer potential Wo(z) then the density o
will be found from the integral equation (1) valid on S\\T. The kernel of the operator
al — W in the space IN consists of linear combinations of the functions Re (1/§&y),
where £, is the conformal mapping of ¢ onto the upper half-plane subjected to the
conditions
Eule) =0, Relp(0)=0 and Re(1/Z)kz)=xx""2+0(1)

on S (e;) in the local coordinate system (see Theorem 1, Sect. 2.1). The solvability of
(1) with right-hand side g € )t in the class I is proved in Theorem 2 (Sect. 2.2). There
we also study the asymptotic behaviour of the solution near the peak. In the same Sec-
tion we prove Theorem 3 on the unique solvability of equation (1) in the class I, and

with right-hand side from ..
In order to apply the last theorem to the solution of problem @ with g e N we

proceed in the following way. For the function g we construct a special harmonic func-
tion #, such that g — #y|s€ Nex. Then we represent the solution % in the form

1 =uy(z) + Wo(z),
and obtain the equation
—no+Wo=g—uls,

which is uniquely solvable in I, (see Remark in Sect. 2.3).
In the third part we deal with equation (2) and the external Neumann problem

N(e)
M9=0 inQ, (8/#v9=h onS,
v(x) =01+ |z|™H, |z|>+»,

where 5 is a function from . We are looking for the solution v in the form

(3) @ (z) = ) + Z £,0,(z

where 0,(z) =Rel(z —¢,)(z0 —¢,)/ (2 —z)]l/z, 2o is a fixed point in £, and the
branch of the square root has the positive real part in the upper half-plane. The bound-
ary equation corresponding to representation (3) takes the form

2
(4) —m'+—a;Vr+ Zt,ea 0r=h.
Its solution is a pair (7, #), where ¢ = (¢, ..., #y). The uniqueness theorem for equa-

tion (4) in the class of pairs (7, #) with 7 € I and # € RV is proved in Sect. 3.1. Theorem
5 on solvability of (4) is proved in Sect. 3.2, where also asymptotic formulae for sol-
utions near peaks are given. At the end of Sect. 3.2 we obtain the above mentioned in-
formation on equation (2) from our previous results on equation (4). In Theorem 6 we
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prove that (2) is uniquely solvable in I for every b € N subjected to the orthogonality
conditions

jbds=o and JbRe(l/Ck)ds=0, k=1,..,N.
A S

The integral equation for the exterior Dirichlet problem ('’ and that for the interi-
or Neumann problem N are briefly discussed in Sect. 4.1 and 4.2.

1.2. The Dirichlet and Neumann problems for domains with peaks.

In the sequel we need several auxiliary facts concerning the solvability of the
boundary value problems as well as asymptotic formulae for their solutions near

peaks.

Lemma 1. Suppose that Q has an outward peak at the origin. Let u € VoVé(.Q) and
let
Au(z) =0(|z|*), wu>0.
Then u(z) satisfies the relations
u(z) =0(|z|*)  and Vu(z) = O(|z|*~?).

Lemma 2. Suppose that Q has an inward peak at the origin. Let u e VoVé( ) and
let

Au(z) =0(|z|*), wu>0.

Then u(z) admits the representation

2([ul +1)
u(z)= 2 Pm(logz)z’”/2+O(|z|[”]+1),
m=1

where P,, is a polynomial of degree [(m — 1)/2] and € is a small positive number. This
equality can be differentiated at least once.

Proof of these Lemmas can be obtained by conformal mapping from well-known
asymptotic representations for solutions of the Dirichlet problem in the strip (see for
example [5]).

ProrostiioN 1. Let g be infinitely differentiable on S\T. Suppose that g vanishes
outside a small neighbourhood of the peak e, and admits one of the following asymptotic
representations near e,

nt+1

qéi)xv_l_kz qk(i)x/e+v+o(xn+v+2)
-1

forvz0,v=[l/2, leZ and
n+1
(670 + 76 log x)x” + kzlPﬁ)z (log x)x* " + O(x" t2+v~¢)

for v=0, v=1/2, where € is a small positive number and P}*) are polynomials
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of degree j. Suppose that these representations are differentiable at least twice. Then
the problem: @) bas a solution with the following asymptotic properties:

a) In a neighbourhood of e, the following holds

(5) u(z) = Re(p(m () + O(IZ_€p|”+[v]),
where either

(6) P (2) Z Brlz—ef*" "1 forvlf2,
or

2
(1) 9@ = 2 Bo,(loglz =) (=) "'+

+k§::1Q/e+1(log(z—ep))(z_ep)k+v—1 for v=1/2;

here Q; are polynomials of degree j. The coefficient B is given by

2 g —qi”

i R AT R
The coefficients B , are defined differently for v # 1 and v = 1. Namely,

(+) _ (+) _ (=)
B —; 2 90,1 q01 _ 90,0 — 90,0
9,0 v—1 k% (0)— k" (0) " (0)— k" (0)
2 q(()+1)—q01
= -—i s =O
Pos v—1 % (0) — k" (0) Po.2

for v =1, and
(+) (+)

400_900 401_401
ﬂ0,0 > ﬁO,l z +(0) K”_(O) ’ ﬂO,Z z +(0)_KII_(0) )
for v=1.
b) In a neighbourhood of e,, r #p,
(8) #(z) =O(|z e |"*P).
¢) In a neighbourbood of i, we bave
9) #(z) =Rey i) (z) + O]z — 4, |"* 1),

where ™) is given by
2(n + [v])

Sﬂmtfg (z) = Z R, (log(z —i,))(z — z',,,)/"/z '

Here Ry, are polynomials of degree [ — 1)/ 2. The equalities (5), (8), (9) can be differen-
tiated at least once.

Proor. Let
#,(x) =Relx(z —e,) o\, 5(x)], z2€Q.
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Here (p}f’,‘,‘ﬁr; is given by (5) for v # //2 and by (6) for v =17/2, and y is a cut-off C *-

function supported in a small neighbourhood of the point e, . Coefficients of ¢, ; are

chosen to satisfy

(g=u,)2)=0(|z—¢,|""*"), zeS.(e).

We represent the harmonic extension of g — #, as the sum #® + #®) where #? =

=g —u, on S\{0} and
VEu 2 () =O0(z—¢, """ 78, k=0,1,2.
The function #® is found from the boundary value problem
A4 = —A4®  in Q, u4P=0 onS.

It remains to refer to Lemmas 1 and 2.

PropositioN 2. Let g be a C*-function on S\T. Suppose that g vanishes outside a
small neighbourhood of the peak i, and admits one of the following two asymptotic represen-
tations near i,:

n+1
qét)xv_i_ 2 qlsi)x/e+v+o(xn+v+2)

for v>0, and
. . n+1 .
(9570 + g6 log x) + kZ gt xk + O(x"*2)
=1

for v = 0. We assume that both representations are differentiable at least twice. Then prob-
lem D has a solution with the following properties:

a) In a neighbourhood of e,

(10) u(z) =0(|z—¢|"*1).
b) In a neighbourhood of i,,, m #p,
(11) #(z) =Reyp ™ (z2) + O(|z — i, |"* ™).
¢) In a neighbourhood of i, we have
(12) u(z) = Re((p(mt) (mt)(z) +O(]z—z |n+[v])
where either
(13) @5 (2) E cz—0FtY forv=lf2, leZ
or
(14) @i (z) Z ay,,(log(z —4,)) (z—4,)" +

2:: Qurillogz =)z =4, for v=1/2,
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and

2(n + [v])

(int) (z) = g,l Ri (log(z — 4,))(z — ,)0%2.

Here Ry are polynomials of degree [(k — 1)/2] and Q; are polynomials of degree j. The co-
efficient . is equal to

(+)e—2nvi _ (=)

. 40 90
ao =1 N
sin 27y

The coefficients a , are calculated differently for v # 0 and v = 0. Namely,

) g - (=P

_ _(+ —
Reayo=9g0 ', Ao, 1 =1 Py ’ ag,,=0
for v#0, and
(+) (-) (+) (=)
Rean = glt) o = (+)+l.40,0 ~ 40,0 U 90,1 — 90,1
0,0 = 40,0 > 0,1 = 40,1 ——Zn > 0,2 ———_4;1

for v = 0. Egualities (10), (11), (12) can be differentiated at least once.
Proor. Let

#,(x) =Relyz —4,) o™, 1 ()], z2e9.

(int)

Here ¢}, 1 is given by (13) for v # //2 and by (14) for v = //2, and y is a cut-off C *-
function supported in a small neighbourhood of point 7,. Coefficients of ¢ "%, ; are
chosen to satisfy

(g—u))=0(lz—¢|""'*"), z2eS5.(;).

We are seeking the harmonic extension of g — #, as a sum #‘? + #® where #? =

=g—u, on S\{0} and
VEu @ () =O0(|z =4 |"*1*Y k), k=0,1,2.
The function #® is found from the boundary value problem
40P = -M4? in Q, u4P=0 onS.

It remains to apply Lemmas 1 and 2 to complete the proof. ™

We introduce the following notation:

ny=1[2(n+v)+1].

Prorosrrion 3. Let b be a C%function on S\T, vanishing outside a small

neighbourbood of the peak e,, and having the following asymptotic representation
in local coordinates on the arcs S. (e,):

n+1
bét)x"+ S AT L OV, v> =2,
k=1
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Suppose this decomposition can be differentiated at least one time. Assume also that

V.P. j hds=0
s
Then the problem: N bas a solution v, with the following asymptotic properties:

a) In a neighbourbood of e,
(15) o) —v(e) =Re(piy (@) + 9 () + O(|z — g, |"* 1),
where either

(z—e,)(zg—¢,) \e*7
2o — X

(16) ww>=im(
k=1

forv#Ii2, leZ, or

(x—e,)zg—¢,) )’( (z =)z~ ¢,) )”“ N

Zy)— X g — X2

2
(17) @i () = ;Oﬁl,,(log

z (z—e)zo—¢) \[ (x—e)(zg—¢,) \e+?
+k§2Qk+1(10g 20— 2 Zo — 2
for v=1/2. The coefficient 8, equals
_ b+ b§H cos 2av . bt
B = (v + 1)sin 27y "Vr1

Here Q; are polynomials of degree 5. The coefficients B, , are defined in different ways in the
cases v # —1, and v = —1. They are defined by

» e+ (=1)%hy”

- —0— e —
ImpB, o= r 1’ Bi1 27 + 1) s B1,2=0
for v# —1, and
' b(+)+b(—)
ImB,,=0, By:= _lbéH , Bi2= OﬁL
for v=—1.
b) In a neighbourbood of e,, r # p, we have
(18) v(z) —v(e) = Rew(e’“) () +O(|z—e|"* ).
¢) In a neighbourbood of i,
(19) v(z) —v(i,) = 0|z —i,|" ).

Here ¢\ is given by

(z—e)(zg—e) \[ z—e)zo—¢) \¥?
(ext) — r
r,?(z)_ZRk lOg 20— 2 20— 2 ’
r=1,..., N, Ry are polynomials of degree [(k — 1)/ 2], and z, is a fixed point in Q. Equal-
ities (15), (18), (19) can be differentiated at least once.
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Proor. Let
2,(x) =Rely(z —6) o) 1(1)], z€Q°
where @ %%, , is given by (16) with v # //2 and by (17) with v = //2, and y is a smooth

cut-off function supported in a small neighbourhood of point e, . Coefficients of @}, ;

are chosen to satisfy
h,(z) = (h— ,/n)(z) =0(|z—¢,|"*").

Let ® be such that

79() = % [h,()ds  on S.(e)

and
Vkv~(2)(z)=O(‘z—epl”+"+1_k), k=0, 1,2,

in the vicinity of the point e, in 2°. Denote by 2® the solution of the problem

470 = — A5 7O e W@ N {|z] <e)).

Then the function 2'*) = @ + 7*® is harmonic in a small neighbourhood of point ¢, . A
conjugate function » ! satisfies Neumann condition dv") /9% = b, in the same neigh-
bourhood. According to Lemma 2, »'" admits the estimate

2n + V)
v W)= 2 P,(logz—e))z—¢)”?+O0(Jz—¢|"*"*'7¢),
m=1

where P,, are polynomials of degree [(7z — 1)/2] and ¢ is a small positive number. The
last equality is differentiable once. It remains to refer to Lemmas 1 and 2. ®

ProrosrtioN 4. Let b be infinitely differentiable on S\ T, vanishing outside a small
neighbourhood of the peak i, , and having one of the following asymptotic representations in
local coordinates on the arcs S . (i,)

7 7o
2 bk 4 3 T (log x)x T 2 + O(x7)
k=0 k=1
forv>—1,v#[l2 leZ, and
n 7o
(ho7o + ho 7 log x)x* + 2 P} (logx)x**7 + 3 T{* (log x)x 1 *#2 + O(x?)
=1 k=1

forv> —1,v=1/2. Here T’ are polynomials of degree [(k — 1)/21, P}* are polyno-
mials of degree j, and n + v < y < ny. We assume that these representations can be differen-
tiated at least once and that

SJ’/ads=0.
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Then the problem N'©) bas a solution v which can be represented as follows:

a) In a neighbourhood of e, we have
(20) v(z) —v(e,) =Rep W (z) + O(|z — ¢, |"*™).
The function %) in (20) is defined by
(z—e,)(z—e,) )( (z—e,)(z)—¢e,) \¥?

2 — 2 2 — 2 ’

(e’“) = 2 R, |log

Ry are polynomials of degree [(k — 1)/2], and zy is a point in Q.
b) In a neighbourhood of i,, r # p,

(21) v(z) —v(G,) = O(|z —4,|"* 1),
¢) In a neighbourhood of i,
(22) v(z) = (i) =Re @™ (z) + O(|z —4,|"* ™),

where we use the notations

((z—z)(zo ))“"
R e e A +

I M=

(23) @i (z) =

pA 2o — X

+k§0: U, (lOg (z - l;v)(ZO _l.p) )( (z — l},)(zo — lp) )—1+/e/2
=1

for v # /2, and

) (= d)z0 = 7,) \[ (2 =4,)(z0 = 5,) \E*”
+k§1Qk+l(log T2 )( 2~ 2 ) *

20— 2 -2

+ §_°) Ule(log (z—z'p)(zo—z'p))( (z—z'p)(zo_ip))_H,e,2

for v =1/2. Here Uy are polynomials of degree [(k — 1)/2] and Q ; are polynomials of
degree . The coefficient a is equal to
P
TV K (0 -k (0)
The coefficients a,, are defined differently for v # 0 and v = 0. They are defined by
2 b +b00 2v + 1 bé,“—l)+b((),_l)

00T L+ KL (07 = (0 V(v + 17 K5 (0)— k- (0)’

= 2 h(g,l + b =0
%17 y(v+1) k% (0)—&"(0)° 0.2
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for v #0, and
b(()+o + /90 0 /?((),+1) + 17((),_1)
" (0) — k" (0) K" (0) — k" (0)’

Qo 0=0, 00,1:2
ho!) +ho |
a = TN AN
®27 k% (0) — £ (0)
for v =0. The equalities (20), (21), (22) can be differentiated once.

Proor. Let

v,(2) =Rely(z —3,) @y 5(2)], 2eQ°
where @™, 5 is given by (23) with v # //2 and by (24) with v = //2, and  is a2 smooth

cut-off function supported in a small neighbourhood of 7,. Coefficients of @§™), ; are
chosen to satisfy

b, (z) = (h — 3,/ Mm)(z) = O(|z —4,|"***?).

Let a function 7? be such that

7@ (z) =+ Jb,, (s)ds  on §.(3,)

and

V’ezT(Z)(z)=O(|z—z},|”+"+3’k), £E=0,1,2,
in the neighbourhood of point 7, in domain 2¢. Denote by 7** the solution of the
problem

AP = —AV(Z) P eWi(QN{|z| <e}).

Then the function 7' = ® + ) is harmonic in a small neighbourhood of point 7,. A
conjugate function v satisfies Neumann condition 9"/ 8% = b, in the same neigh-
bourhood. According to Lemma 2, »'" admits the estimate

U(l)(Z) = o(lz_l})|”+v+l)-

The last equality is differentiable once. It remains to apply Lemmas 1 and 2 in order to
complete the proof. ®

2. THE INTEGRAL EQUATION OF THE PROBLEM (D(i)

2.1. On the number of solutions to the homogeneous integral equation of the problem M .

Lemma 3. a) Let Q be a domain with outward peak. Then for any o€ I the
representation

d 1, __
ja(q) on, log p ds, mo, (x) +0O(1),

S+
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is valid on the arcs S, . Here r=|q—2z|, 2=x+1dy and 3/3n is the derivative
in the direction of the outward normal.

b) Let Q be a domain with inward peak and let the arcs S . be given by y = K . (x),
x€[0,0]. We set a =max(|k" (0)|, |&”(0)|). Then for any o € IN

3 1, _ _
Ja(q) £ log p ds,= Fmo . (x) + O(1),

+

if K, (x)<y<ax?,

[ ota) a“i‘ log L ds, = +70. () + O(1),
Ss

9

i —ax’ <y <Kk_(x) and

3 1 — 1
ja(epg log +ds, = F Jot(t) ——dr+0(1),
St 0

zf —ax? < y < ax?.

The proof of Lemma 3 is given in[3].

Lemma 4. Let g coincide with the restriction to S of a C ®-function defined on R*.
Then the integral equation of the problem %

—nmo+Wo=g

has a solution in the class I bounded in a neighbourbood of each point e,

k=1,...,N.

Proor. Suppose that ¢, coincides with the origin. Then g has the representation
g2)=cO + Wy +cPx2+ ..

on the arcs S, (0)=S..
By Proposition 1, the potential of the problem @Y can be written in the
form

pR)=a+f+y7+ ...,

where
(2) (2) (2) (2)
e —cb a,cP—a_c¥
Im=-2—-———, Ref=cV, a=c?, Rey=2 .
p < (0)— " (0) P ‘ AT )
The normal derivative 3(Re@)/dn of the solution admits the decomposition
GI;e(p = alg‘p =FImB*dux+...
n

Therefore, the boundary function 4 of the problem N has the representation
h(z) = xImB+d.x+ ...

on the arcs S. .
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By Proposition 3, the holomorphic function ¢ (z), whose real part is a solution of the
problem N has the form

@) =coF ez + (B11logz+ B1 o)z + ...
From the expression for B; ; it is clear that 8, ; =0, ze.
@) =co+t 2+ B ozt ...
Hence the function o = (Re ¢ — g)/27 has the estimate
o(z) = 0(1)
on the arcs S. (e,). According to Propositions 2 and 4 we have
o(z) = 0,,x 2+ 0(1)
on the arcs S.(i,), m=1,...,M.

Therefore the function o is a solution of the integral equation of the problem %
(cf.[1]) with required properties. ®

Tueorem 1. Let o € IN be a solution of the homogeneous integral equation of the prob-
lem DY
—no+ Wo=0.
Then

N

g = ZICkRC(l/C/e).

Proor. (7) Let o be a solution of the homogeneous equation in the class J)t. Consid-
er C*-functions ¥, £ =1,...,N, such that ¥, = 1 in a small neighbourhood of e,
suppy: Nsuppy, =0, k#n, and i, ¢ suppys, m =1,..., M.

Since

(7wl — W)(oy;) = —(al — W)((1 = y;)0)
then, by Lemma 4, the equation
(7l = W)o,= —(al — W)(oy,)
has the solution o; belonging to #)t and bounded in a neighbourhood of each point ¢,
k=1,...,N.

The function 6, = 0, + oy, is a solution of the homogeneous integral equation,
bounded in a neighbourhood of each pointe,, £ =1,...,N, & # ;. By W. 6, we denote
the double layer potential in domains 2 and Q¢ respectively.

According to statement ) of Lemma 3 one has

W.0;(z)=—-n((0;), +(6,)_)x) +O(1), z=x+iy—>e¢,
in the appropriate coordinate system. Since the boundary values of W, 6, are zero on
S\T, then
((6,)4 +(6,))x) =0(1) as z—¢;.
This implies that W, 6, is bounded in a neighbourhood of each ¢,, £#=1,...,N.

() We fix an integer 7z = 1 not exceeding M and choose a coordinate system
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so that in a neighbourhood of 7, the domain Q¢ is defined by {x_(x) <y <
<Kk, (x), 0 <x <3} with functions k. described above. According to statement 5)
of Lemma 3, the potential W, 6;(z) is (up to a sign) #[(6,)+ — (6;)_1(x) + O(1) on
the set
QN {z=x+4: either k, (x) <y <ax? or —ax’<y<k_(x)},

where a = max (|x”, (0)[, |x” (0)|). This implies that W, 6, is bounded on the set
QN {z: —ax’ <y < ax?}.

Further, let y be a cut-off function on the plane with small support which is equal to
unity near the origin. We introduce the function o, on the arcs S. (7,) as

o, (x) =[(6,)+ (x) +(6,)- (x)]/2.
In view of Lemma 3, W, (xo,) and its harmonic conjugate W, (y0,) are bounded on
the set 2 N {z: — ax? <y < ax?}. Besides, using explicit expressions for these func-
tions, one can show that

W, (x0)@) = 0(|z] ™), W, (x0.)(z) = O(|z] 2)
in Q, as |z| = 0.
By the Phragmén-Lindelof principle (cf.[6, p. 262]), the holomorphic function
W, (xo.) +iW, (y0,) is bounded near the origin. Since
(0,)+(x) —(0,)_(x) =0(1) asx—0,

then (W, 6,)(z) is also bounded near the origin. Thus, the potential is bounded in a
neighbourhood of each point 7,,, 7 = 1, ..., M, and hence it is bounded in Q. Since
W, 6, is a harmonic function vanishing on S\ T, then W, 6, = 0 in Q. Therefore its
conjugate W 6, is a constant.

For each #, n < M, according to Lemma 3,

o)
(1481 = (8) )6 + 1) = (6)), = (8) Vx = % = 0(1).
0
Since in ¢ one has
dt
(W_6))(x j[((e 6,)- ) +7) = ((8,)1 — (6) ) = )] Z +0(1)

0

asx — +0, then (W_6 ;) is a bounded function in a neighbourhood of each point 7,
m=1,...,M.

(#i) In a neighbourhood of eache,, £ =1,...,N, & # j, the function (W_ 6,)(z)
is bounded. On the other hand, we have W, 6 ;= const. Therefore, according to Lem-
ma 3, the function (W_6,)(z) is bounded on the set Q°N {z: — ax? <y < ax?}
where a = max (|, (0)], |k" (0)]). Since (W_8,)(z) = O(|z| ~2), the Phragmén-
Lindelsf principle applied to the function W_ 6, + iw_ 6, implies the boundedness of
the potential in each neighbourhood in question. Thus W_ 6 is bounded inside a small
neighbourhood of e;.
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() Let W, 0, be equal to a constant C in 2. Consider the function

W) =W_0,(z) +i(W_0;(z) —C).

It is holomorphic in ¢ and its imaginary part vanishes on S\ T.

Let z = 1;(&) (£ = 5 + 7€) be the conformal mapping of the upper half-plane onto
Q°, the inverse of § = Z; (z). The imaginary part v (&) of W(4;(8)) = u(&) + v (§) van-
ishes at the boundary of the upper half-plane except for the points §;(T).

By v we denote an odd extension of the function v. Clearly, 2 is harmonic on the
punctured complex plane C\\ {0} and bounded at infinity. Therefore v can be expand-
ed as

v(re”) = k§1dkr “*sin ky .
The conjugate function # has the expansion
#(re") = kzod/er ~*cos by .
Since
W) =0(¢]™* as £{—0,

then the function #(re™) + 7w (re”), which is holomorphic in C\ {0}, has a pole at the
origin. At the boundary of the upper half-plane # equals —27(6;04,)(5 +70), 7 € R.
Hence # = O(|n|?#) as # +i0— 0, where > —1. Then

4(g)=dy+dir 'cosy=dy+d;Re(1/8)
and, consequently,
6;(z) = —(27) "' (dy + dy(Re 1/ )(z)), =z€S.

Since a non-zero constant does not satisfy the homogeneous integral equation of the
problem @, then

0,(z) = —(2m)"'d,(Re1/;)(z) = ¢;(Re 1/E,)(z).
(v) We set

N
G=0- 20y
1
and obtain

o=0+

~M=z

N N
o =F= 20+ 26(Re1/E).

N
The density G — X, o, is a solution of the homogeneous equation
j=1
N N
(al - W)(E— 20,-) =(al-W)G - ;(nl -W)o, =
1

N N
=@l—-W)G+ > (al — W)(oy;) = (al — W)(Ef+ Ellaxj) =(al—-W)o=0.
1

N
The function & — 2, 0, is a bounded function in a neighbourhood of each e,
i=1
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N
k£ =1,...,N. Repeating arguments in (z7) and (%) for the function G — E 0; we prove
that, /=1

j=1 ji=1

N N
W+(6— 2 a,)=o in Q and W_(a- > a,-)=o in Q°.
The limit relations for the double layer potential imply

5 ﬁ::loﬁ L[W_(a— s o,)—W+(5— s a,-)]=0.

2n j=1 j=1

Thus,

As a corollary of the Theorem 1 we can state the following result.

CoroLrary. The homogeneous integral equation of the problem % bas only trivial
solution in the class My, .

2.2. The solvability of the integral equation of the problen: M) and asymptotic formulae for
solutions.

TueoReM 2. Let g be a function from N. Then the boundary equation
(25) —no(p) + Wo(p) =g(p), peS\T,

has a solution in the class I with the following representation in local coordinates:

a) on the arcs S (e,)

(26) 0(z) = £(Bo+ Brlogx)x 1) + 0O(1),
b) on the arcs S (i,)
(27) 0(z) = (ag+ alogx) ") + 6x =12 + O(1).

Moreover, the space of solutions of the homogeneous equation is N-dimensional.
Proor. Consider the simple layer potential with the density o

Vo(z) =V.P. J o(g) log 1 ds, .
; |z 4
Let # and # be solutions of the problems @ and @' . By Proposition 1, the
holomorphic function ¢ whose real part is the harmonic extension of # ) admits the
following decomposition in local variables,

() = (Bo,0+ Bo,1logz)z" "1 + B12" + O(2)
in a neighbourhood of ¢,. Here B, ; # 0 only for v = 1. Hence
(all(i)/aﬂ)(z) — iﬁoxv—-z +’B(It)xv—1 + O(l)

on the arcs S. (e,).
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In a neighbourhood of 7,, one has
@?(2) = (ag 0+ g, 1logz)z" + 8022 + O(z)

in the local coordinate system. Here ay ; # 0 only for v =//2, /€ Z (cf. Proposi-
tion 2). This implies the decomposition

(34 [ 3n)(z) = (al5g + ab log x)x” "1+ 0gx ~¥2 + O(1)
on the arcs S. (7,). Here aE,i) # 0 only for v =1[/2. Then
1 V( au(t') B au(e)

glp) = 2n on on

Let v denote a solution of the problem N :
Av=0 inQ°, w/m=0u9/0n on S\T

and v vanishes at infinity.
In a neighbourhood of e, the holomorphic function ¢, whose real part is the sol-
ution v, has the form

)(p)+u(9)(°°), peS\T.

(z—e,)zo—e,) )V‘1+60( (z—e,)(zg—¢,)
2y — 2 2y — 2

-1/2
(;D(z)=ﬁ1( ) +0(1)

for v#//2 and

(P(z) = (ﬂ1)0+)81,110g (z — €n)(Zo - 6,,) )( (z — en)(zo — en) )v—l .

L — 2 p—X
(z —e,)(zy—e,) \ 712
+7/0(——;0—7—) + O(1)
for v = [/2. Therefore, by Proposition 3,
v(z)= £ Box’ T yox 2+ 0(1)
for v#//2 and
v(z) = £(Bo+ Bilogx)x" "1 xyox~ "2+ 0(1)
for v=1/2 in a local coordinate system on the arcs S. (e,).
According to Proposition 4,
(z =1, )z = 2,,) \[ (x = 2,)(zg — £,,) \" 1
@(z) =|ag, o+ ag, log % _Oz )( % _Oz ) +
(z —7,)(zp —i,) \ 712
+(50('—‘ZO_—Z—) + O(1)

in a neighbourhood of 7,,. Hence,
v(z) = (ao+ a;logx)x” 1+ o2+ 0O(1)

in a local coordinate system on the arcs S. (7,,).
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From the integral representation for the harmonic functionw =» — #© + 49 ()
in Q° and from the formula for limit values of the double layer potential one
has

ou' _ Om ©

):2n(u(")(°°)—g) on S\T.

Consequently, the density
o= (21" (w—-u"(0))=(21)" (v -g)

is a solution of equation (25).
In view of Theorem 1, the functions of the form

N
o=2n""! (v —g+ 2cRe 1/€k)
1
are solutions of (25) in the class I. =

Explicit formulae for the coefficients a, a1, 8y, B1, and 0 in (26), (27) were given
in[3].
We can summarize Theorem 1 and Theorem 2 in the following statement.

THEOREM 3. Let g € Ny Then equation (25) is uniquely solvable in M., .

2.3. Remark.

The above considerations allow one to conclude that boundary equation (25) is ap-
plicable to solving the problem ®® in domains with peaks and with boundary data in
the class . ,

We look for the solution #” of the problem @® as the sum of an explicitly written
harmonic function #, and of the double layer potential Wo with unknown density o.

By Propositions 1 the solution of the problem % admits the following representa-
tion:

u(i) (Z) — Re(pf,em) (z) + O |z _ €p|1+[v(ep)])’
in a neighbourhood of ¢,, where
@5 (2) = (Bo,o + Bo,1log(z — e, )z —&,)" P "1 + By (z — g,)" .
We set

N
o (z) = Re Lglpgm’ () i (z)} :

where p{® are interpolation polynomials such that i) (e,) = 1, D pi™ (&) = 0,

n=1,...,1+[v(e)], D! pi*(e,) =0,n=0,..., 1+ [v(e,)], r # & (cf.[7]). Then
(u(z‘) _ uo)(Z) — O( |Z _ ZO|1+[v(zo)])

in a neighbourhood of each outward peak z,. By Theorem 3 the boundary integral
equation (25) with the right-hand side g — #, is uniquely solvable in ., .
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3. INTEGRAL EQUATION OF THE PROBLEM N ©

3.1. The homogeneous integral equation of the problem N .

Tueorem 4. The homogeneous boundary equation of the problem N'©

—azr(p) + 9 Vr(p) + % tki 0r(p)=0
On, E=1 On,

considered on the set of pairs {t,t}, where 1€ M and t € RN, has only the trivial
solution.

Proor. The functions V7(z) and 0, (z),7» =1, ..., N, z € Q° are harmonic, tend to
zero at infinity and are bounded. Hence,

N
Vt(z) — ; t,0,(2)

is a solution of the Neumann problem with the zero boundary condition. By the
uniqueness theorem for the problem N,

N
Vi(z) — 2 £,0,(z) = const .
n=1

Since the solution vanishes at infinity, then

N
Vi(z) = ;1 1,0, (2)

in Q°.

Let 0 (z) denote the bounded harmonic extension of @, (p), p € S, to 2, and let
z = (&) be a conformal mapping of the strip IT = {(7, £): 0 < £ < 1} onto 2 with
Rew ~1(e,) = . Then the function

N
002)=Vr(z) — > t,09(z)

n=1
is bounded in £ and vanishes on §. Therefore the Fourier decomposition of
() = 0g(w(&)) has the form

)

w(z) = 21 i (n) sin 7kE .

The coefficients ¢; (7) have the form a,e™ + B e ~™". Since

1 0
[lwtm o de= 3 2 latn)?
0

1
2 &
and since the left-hand side of this equality is bounded, then a, =0, ,£=1, 2, .... It
follows that @, (z) and gradient Vo (z) exponentially decays as z—e,. We have

N
Vr(z) = ;1 £,09(z) + 0, (2).
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Hence
(@)

_ & de, Y 9o, 900
T(P)_let” P El’" wm PTG, P PES,

where functions (80’ /dr)(p) and (3o, /91)(p) have different orders of singularities,
and (3o, /0n)(p) exponentially decays as p —>e,.

Since 7€ M, the coefficients #,, » =1, ..., N, vanish. Consequently, Vz(z) =0
in Q¢. The potential Vz(z) is continuous in 2 \\ T and bounded in 2, therefore Vz = 0
in 2. The formula for the jump of the simple layer potential implies 7 = 0. Thus the
density 7 vanishes and the vector z e RY is zero. W

3.2. On the solvability of integral equation of the problem N'© .
THEOREM 5. Let b be a function from N and

[hds=o0.
Ky
Then the boundary equation
&) ST _
(28) —wr(p) + = Va(p) + 2t = 0i(p) = h(p)
on k=1 On

considered on the set of pairs {t,t} with v € M and t € RY is uniquely solvable. The density
T has the following representations in local coordinates:
a) on the arcs S (e,)
(29)  t(x)=%(Byo+B11logx)x” " £ (uy o+ uy, 1logx)x >+ O(log x),
b) on the arcs S+ (i,,).
(30) T(z) = (@g, o+ @g 1 logx)x” "1+ pex "2 + O(1).

Proor. By Proposition 3, the holomorphic function whose real part is a solution of
problem N‘¢ with the boundary condition 5 has the decomposition

(= &)z — ) )1/2+  Goe)we) |

CU(Z)ZVO"‘VLO( 20—z %o —2

(z—e)zo—¢,) \[ (z—e,)(zg—¢,) \*?
+(7/3,0+)/3,110g 2 _Oz )( % _Oz ) +

— - - - 1+v
R S

+0(|z—e,|?log |z —e,]|)
in a neighbourhood of ¢,. Here 8, ; # 0 only for v=1//2, /e Z.
We choose the parameter #, to be equal Rey; (. Then the problem N'@ with the
boundary function



BOUNDARY INTEGRAL EQUATIONS OF THE LOGARITHMIC POTENTIAL ... 231

has a solution v with the following representation in local coordinates on the arcs

S+ (e,)
v()=yo+yix+ (y(fo) + y(zil) log x)x*? + (ﬁg’to) + ,88’11) log x)x1*” 4+ O(x?log x) .
On the arcs S. (7,) we have

2(2) = ag + ax’ +ab ' x" 1+ 0(x?)

in corresponding coordinate systems (cf. Proposition 4).
Moreover, from Proposition 1 it follows that the complex potential of the problem
@ with the boundary function v(p), p € S\ T, has the representation

QD(Z')(Z) =Bo+ (ﬁl,o +/31,110g(z —e,))(z—¢,) +
+(y1,0+ 71, 1log(z —¢,))(z — e)?+0(|z—e,| log [z —e,]|)

in a neighbourhood of ¢,. The coefficient B, ; does not vanish only for v =//2.
Therefore

(a”(i)/a”)(Z) = i(,31,0‘*‘ﬂ1,110{‘%95)961’71i (71,0+ yl,llogx)x71/2+ O(log x),
on the arcs S. (¢,), where y; ; #0, only for v =1/2.
For a neighbourhood of 7,, one obtains
() =a+ (ag o+ aglog(z—i,))z—1i,)" + 8,z —i,)"* + O(|z = i,]|)
(cf. Proposition 2) with ag ; # 0 only for v =//2. This implies the decomposi-
tion
(8u? [ 3n)(z) = (@9 o+ g 1logx)x” "1+ dox "2+ O(1)

on the arcs S. (7,). Here ay ; # 0 only for v =//2.
On § we have

N
v = LV(au(’)/an -h+ Ztkagk/an) .
2w 1

Consider the difference

N
vo(2) =v(z) — iV(&u(")/an -bh+ ;tkagk/an)(z), 7€ 2°.

Let z=w({), ¢=n+i5, be a conformal mapping of the strip II=
={(7,6):0<&<1} onto Q° with Rew !(s,) = + ®. The function w({) =
=, (w(g)) is a solution of the Laplace equation in the strip 77, it grows at infinity not
faster than a power function and vanishes on 9II with exception of a finite set of points.
We take the Fourier decomposition of w (&)

o

w(f) = kZICk(ﬂ)Sin TkE .

The coefficients ¢; (1) have the form a,e™" + Bre ~™".
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Since
1

[ 1w, &)12d8 =

0

RS 2

= e (1)

2 /21 lex () |

and since the left-hand side of this equality increases not faster than a power function as
7 tends to infinity, then @, = 0,4 =1, 2, ... . Hence v, (z) is bounded in a neighbour-
hood of 7,,. Thus, v(z) is a bounded harmonic function in £°¢ vanishing on S\ T and

therefore v vanishes in Q°.
From this we conclude that the density
N

v=(2m) 04D [On — b +k2 4,00,/ on
-1

belongs to the class ¢, satisfies the boundary equation of the problem N and has the
required asymptotic representation.

Theorem 4 implies that the solution of equation (28) just constructed is
unique. H

Explicit formulae for the coefficients B o, B1.1, 41,0, #1,1, ®o,0, Qo 1 and pq in
(29), (30) were given in[4].
We apply Theorems 4 and 5 to obtain the following result.

THEOREM 6. Let the function b belong to N. Suppose that
jbds=o and bee(l/C,e)dszo, k=1,...,N.
By s

Then equation (2) is uniquely solvable in IN.

Proor. By {z, ¢}, where T € I and # € RV, denote the unique solution of (4). We
apply the Green formula to the solution »® of the problem N and to the function
Re(1/&:) in 2°N\{|z — .| < €}. Passing to the limit as ¢ — 0 we obtain

tk=(1/n)JbRe(1/C/e)ds=0, k=1,..,N.
S
Therefore 7 is the unique solution of (2). ™

4. ApPENDIX

4.1. The external Dirichlet problem.

Let g be a function from . We look for the solution of the problem @ in the
form of the potential

_ d 1 P T
u(z)—sja(q)[gr—zzlog7+l]dsq, 2eQ°, r=|z—g¢q|,
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with the density o satisfying the equation
(31) na(p)+fa(q)[% log —i— +1]dsq=g(p).
s q

We refer to ¥, 4 as harmonic extensions of g to £ and £¢. By Propositions 1
and 2 we have decompositions

(84 [ 3n)(z) = £Box” "2+ B1Tx" "1+ 0O(1)
on the arcs S. (z,) and
() [3n)(z) = (af’) + ap ) log x)x* ~ 1+ 8gx ™2 + O(1)
on the arcs S. (e,). Let v be the solution of the Neumann problem
=0 inQ, w/on=0u/n onsS,
normalized by the condition
jvds= J-gds—Zu(e)(“’),
S S

where #€) (o) is the limit value of #‘) at infinity. According to Propositions 3 and 4 we
have

v(z) = £Box’ T yox Y2+ 0(1)
for v # /2 and
v(z) = =(Bo+ Brlogx)x" 1 xy,x 2+ 0(1)
for v=1/2 on the arcs S. (7,) and
v(z) = (ag+ a;logx)x” "1+ dx 2+ 0O(1)

on the arcs . (e,). Then 0 = (27) ! (v — g) is a solution of equation (31) in the class
I, and furthermore, o has the following representations

a) 0(z) = *(ag+ a;logx)x ") + O(1)
on the arcs S. (7,),
b) 0(z) = (ag+ ajlogx) ") + 6x "2 + O(1)

on the arcs 5. (7,). As in Theorem 1 solutions of the homogeneous equation (31) in IR
are functions of the form
M

ZlckRe(l/c/‘:U,

where ¢; € R and ¢ is the conformal mapping of 2 onto the upper half-plane, normal-
ized by the conditions

t9G) =0, JRe(1/c;;’)ds= 0, k=1,...,M.
‘ S
4.2. The internal Neumann problem.

For the function 4 from 3 one seeks the solution of the problem N as the sum
of the simple layer potential and of a linear combination of the functions 9d,,
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n=1,...,M, with unknown real coefficients

M
v@ () = Vi(z) + E_:It,,é,,(z),

where
8,(z) =Re(z—4,)"?, zeQ.
The density 7 and the vector # = (¢, ...,#y) satisfy the equation
(32) nt(p)+jt(q)ai log %dsq+ %tkék(p)=b(p)_
§ n k=1

4

Arguing as in Theorems 4 and 5, we prove that equation (32) uniquely solvable on the
set of pairs {7, ¢}, 7 € I, £ € RM™. The only difference is that the harmonic function » )
satisfying the boundary condition

M
811(")/8;1 =/7 _kz t,zék
=1

should be normalized so that the harmonic extension #® of v from § to Q¢ vanishes
at infinity. The density 7 has the following representations

@) T(z) = =(B1 o+ By 1logx)x™™ "1+ (uy o+ uy 1 log x)x "% + O(log x)
on the arcs S. (7,)

b) 1(z) = (ag 0+ ag 1 logx)x™) =1+ pox =12 + O(1)

on the arcs S. (e,).

4.3. Counterexample.

Here we present an equation (1) having no summable solution, although its right-
hand side is continuous.
Consider the function on the contour § with an outward peak at point O defined
by
log (1
w(x)=iw, 0<a<1’
(log(1/x))"
on the arcs S (O) in a certain coordinate system. The normal derivative of the solution
of the problem @ has the decomposition
o cos log(1/x) ~
2 (x,y) = + ——————— + O((log(1/x))™*) on S.(0).
o V) T A eg (1)) 81/
The solution » of the problem N with the boundary data 9/ 8% can be represented in
the form

sin log(1/x) — cos log(1/x)

1 .
= + ble function).
2 T < (log (1/2)° (a summable function)

vix,y)=F
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Then the density
o=2n(v — w)

is a non-summable solution of the integral equation of the problem ®" with the right-
hand side w (the integral in the double layer potential is understood in the sense of the
principal value

lim j 0(q)8/dn,log(1/ |z — q|)ds,
{r:1q] >}
where z e I'\\{O}).
Among solutions of the homogeneous equation (1) there are no densities represent-
ed in the form
sin log(1/x) — cos log(1/x)
x(log(1/x))*

Indeed the potential Wo has a power growth as z — 0, and it vanishes on S\ {O}.
Therefore Wo is equal to zero in Q.

Let #' denote the solution of the problem ¢ with boundary function 0. We
have '

+ (a summable function).

Vg—u(”—Wu(")=2nu(”(0°), zeR.
7

Since Wx'® vanishes in £, it follows that

V—a—u(”(z)=u(e’(°0), zef.
on

It follows from the limit relation for the simple layer potential

Oy 9 @ (e)) _
an(Va”u +au”)(z) =0, zeS\{O}.

So, we have

Va%u(")(z)= =2 (2) +uy(z), ze8°,

where #, is a solution of the problem

(33) Aug=0 in Q°, %u():O on S\ {O}.

We substitute the integral representation of #‘® into (33). Then
Wu' (z) = uy(z) = 2@ (w0), zeQ°.
Since the potential W« (® vanishes at infinity we have
t() =2 ().
The formulas for limit values of the double layer potential imply
o(z) =u (z) = (27) " (ag (z) — 4o () .

The functions %) and W« © have a power growth as z — 0. So, the function %, grows
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not faster than a power function. Since

0(z)=O( 1

x(logx)“)’ ZES\{O}-)

then the function #, (z) concides with Re (1/(z)) where (z) is the conformal mapping
of Q° onto the upper half-plane subjected to the conditions

Z(O)=0, and Rel(xo)=0.

Therefore the equation (1) with right-hand side g coinciding with @ on §.. is unsolvable
in L(S).
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