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Anal i s i matemat ica . — Boundary integral equations of the logarithmic potential the­

ory for domains with peaks. N o t a (*) d i V L A D I M I R M A Z ' Y A e A L E X A N D E R A. S O L O V I E V , 

presen ta ta dal Socio G . Fichera . 

ABSTRACT. — Integral equations of boundary value problems of the logarithmic potential theory for a 
plane domain with several peaks at the boundary are studied. We present theorems on the unique solvabili­
ty and asymptotic representations for solutions near peaks. We also find kernels of the integral operators in 
a class of functions with a weak power singularity and describe classes of uniqueness. 

KEY WORDS: Boundary integral equation; Logarithmic potential; Asymptotics of solution. 

RIASSUNTO. — Equazioni integrali al contomo della teoria del potenziale logaritmico per domini con cuspi­
di. Vengono studiate le equazioni integrali dei problemi al contorno della teoria del potenziale logaritmico 
per un dominio piano con diverse cuspidi sul contorno. Vengono presentati teoremi sull'unicità della solu­
zione e sulle rappresentazioni asintotiche delle soluzioni in prossimità delle cuspidi. Vengono anche consi­
derati nuclei di operatori integrali in una classe di funzioni con singolarità debole e descritte le classi per 
l'unicità della soluzione. 

1. INTRODUCTION 

1.1. A classical method for solving Dirichlet and Neumann boundary value prob­
lems for the Laplace equation is the representation of their solutions in the form of 
double layer potentials Wo and simple layer potentials Vr. For the internal Dirichlet 
problem and for the external Neumann problem the densities of the corresponding po­
tentials can be found from the boundary integral equations 

(1) -7to+Wo = g 

and 

(2) - j r r + | - V T = i , 
an 

respectively, where 3/ dn is the derivative with respect to the outward normal to the 
contour S. Equations (1) and (2) for domains with non-zero angles, i.e. without peaks, 
were studied by many authors in various function spaces by methods of the Fredholm 
operator theory. (For a historical survey and a bibliography see[l]). 

In this paper we develop a theory of equations (1) and (2) on contours with several 
peaks. Since in the presence of peaks the Fredholm theory is not applicable (cf. [2]), 
we use another approach proposed by one of the authors (cf. [1]) which is based on 
representations of solutions to (1) and (2) by means of solutions to certain auxiliary 
boundary value problems. We obtain conditions for solvability of (1) and (2), find 
classes of uniqueness, and describe kernels of the integral operators in a certain class Wl 
of functions with a weak power singularity. We also give asymptotic formulae for sol­
utions of (1) and (2) near peaks. Such formulae were obtained in our papers [3,4] but 

(*) Pervenuta all'Accademia il 4 luglio 1995. 
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the present proof is independent and simpler. We restrict ourselves to contours with 
peaks of first order tangency. This requirement is unimportant for the method, but fa­
cilitates calculations. 

We give a short qualitative description of our results concerning equations (1) 
and (2). 

We show that the number of linearly independent solutions in 3Ji of the homoge­
neous equation (1) is equal to the number of outward peaks. We prove that (1) is solv­
able in 3JI provided the right-hand side belongs to a certain class 31 of continuous func­
tions with prescribed asymptotics near peaks. We give an example of equation (1) with 
continuous right-hand side on the contour with exterior peak, which is unsolvable in the 
class 3JI. In the presence of exterior peaks we achieve the unique solvability of (1) re­
ducing both classes of solutions and right-hand sides. These new smaller classes will be 
denoted by 3)?ext and 3lext respectively. 

We turn to equation (2). It appears that the presence -of peaks does not violate the 
uniqueness in the class 3JI. If the contour has no exterior peaks, equation (2) is solvable 
in Wi for an arbitrary h e 31 with zero mean value. If S has exterior peaks the solvability 
in 3R holds under the orthogonality oih to zeros of (1) from the class 3R. Therefore for 
the contour which contains exterior peaks it is preferable to express a solution of the 
exterior Neumann problem as the sum of Vx and a linear combination of explicitly writ­
ten functions. The resulting integral equation proves to be solvable in Wl. 

We introduce our basic notation. 
We consider a plane simply connected domain Q with compact closure bounded by 

the piecewise C °°-smooth contour S. Let S have the outward peaks e„, 1 ^ n ^ N, and 
the inward peaks im, 1 ^ m ^ M. The set of all peaks will be denoted by T. 

To each peak ZQ we attach a Cartesian coordinate system, in which either Q or its 
complementary domain Qc are given by the inequalities K_ (X) < y < K+ (X), 
0 <x < (5, where K± are C °°-functions on [0, ô] satisfying conditions: K± (0) = 
= K'± (0) = 0, K+ (0) >'K- (0). The arcs {(X,.K± (X)) : x e [0, ô]} will be denoted by 

S±(z0). 
The above mentioned classes Tt, S9îext and 31, 9îext of solutions and right-hand sides 

respectively are defined as follows. 
By Tl we denote the class of C °° -functions on 5 \ T such that 

o(z) = 0((z-Zo)P{zo)), j8(z0)> " I , 

for each peak £0. 
The subset SRext of Ti is defined by the additional condition /3(ep) > - 1/2 for exte­

rior peaks ep, p = 1, . . . ,N. 
Let 31 denote the class of functions on S admitting the representation 

(p±(x)=xv{z°)xp±(x) on S±(z0) 

for each peakz0. Here xp ± are C ^-functions on [0, ô], | ip + (0) | • + | xp _ ( 0) | ^ 0 , and 
vfeo)>0. ' - ' 

The subclass of 31 with v(ep) > 1/2, p = 1,. . . ,N will be denoted by 3te7A. 
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Now we are in a position to give a more precise account of our results. 
Let u{i) denote the solution of the internal Dirichlet problem ®{t) 

Au{i) = 0 in Q , u{{) = g on Sy g e 31. 

If we are seeking u^ in the form of a double layer potential Wo{z) then the density o 
will be found from the integral equation (1) valid on 5 \ T . The kernel of the operator 
7tl — W in the space 3R consists of linear combinations of the functions Re(l/Ç^), 
where ^ is the conformai mapping of Qc onto the upper half-plane subjected to the 
conditions 

£*(**) = 0 , Re£*(oo) = 0 and Re(l/£*)(z) = ± x ~ m + 0 ( 1 ) 

on S± (ej,) in the local coordinate system (see Theorem 1, Sect. 2.1). The solvability of 
(1) with right-hand side g G 31 in the class 3JÌ is proved in Theorem 2 (Sect. 2.2). There 
we also study the asymptotic behaviour of the solution near the peak. In the same Sec­
tion we prove Theorem 3 on the unique solvability of equation (1) in the class Xftext and 
with right-hand side from 5ftext. 

In order to apply the last theorem to the solution of problem 0^l) with g e 31 we 
proceed in the following way. For the function g we construct a special harmonic func­
tion UQ such that g — u0\s e 3lext. Then we represent the solution uS%>* in the form 

uU) = uQ(z) + Wo(z), 

and obtain the equation 

— no + Wo = g — UQ I s , 

which is uniquely solvable in 3Kext (see Remark in Sect. 2.3). 
In the third part we deal with equation (2) and the external Neumann problem 

Av{e) = 0 inQy {d/dn)v{e)=h on S, 

v(z) = 0(l+ M"1), |z| -* + « , 
where h is a function from 31. We are looking for the solution v(e?) in the form 

(3) v{e)(z) = Vr(z)+ 2tnQn(z), 
n = 1 

where Q„(z) - Re [(z - en)(z0 - en)/(z0 — z)]1/2, z0 is a fixed point in Q, and the 
branch of the square root has the positive real part in the upper half-plane. The bound­
ary equation corresponding to representation (3) takes the form 

(4) -Jtr+ -fvr+ ltk-l-Qk = h. 
on k = l on 

Its solution is a pair (r, t), where t = (ti,... ,tx). The uniqueness theorem for equa­
tion (4) in the class of pairs (T, t) with r e 3Jt and t G R N is proved in Sect. 3.1. Theorem 
5 on solvability of (4) is proved in Sect. 3.2, where also asymptotic formulae for sol­
utions near peaks are given. At the end of Sect. 3.2 we obtain the above mentioned in­
formation on equation (2) from our previous results on equation (4). In Theorem 6 we 
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prove that (2) is uniquely solvable in $? for every h e %l subjected to the orthogonality 
conditions 

(hds = 0 and JARe(l/£*)<& = 0, k=l,...,N. 
s s 

The integral equation for the exterior Dirichlet problem ®{e) and that for the interi­
or Neumann problem X{l) are briefly discussed in Sect. 4.1 and 4.2. 

1.2. The Dirichlet and Neumann problems for domains with peaks. 

In the sequel we need several auxiliary facts concerning the solvability of the 
boundary value problems as well as asymptotic formulae for their solutions near 
peaks. 

o 

LEMMA 1. Suppose that Q has an outward peak at the origin. Let u e W\{&) and 
let 

Au(z) = 0(\z\n, /*>0. 
Then u(z) satisfies the relations 

u(z) = 0 ( |z|") and lu{z) = 0 ( | z | ^ " 2 ) . 
o 

LEMMA 2. Suppose that Q has an inward peak at the origin. Let u e W\{Q) and 
let 

Au(z) = 0(\z\n, /*>0. 
Then u(z) admits the representation 

2([/*] + l) 

u(z)= X Pm(hgz)zm/2 + 0(\z\w + 1 ) , 
m= 1 

where Pm is a polynomial of degree [(m — l ) / 2 ] and e is a small positive number. This 
equality can be differentiated at least once. 

Proof of these Lemmas can be obtained by conformai mapping from well-known 
asymptotic representations for solutions of the Dirichlet problem in the strip (see for 
example [5]). 

PROPOSITION 1. Let g be infinitely differentiate on S\T. Suppose that g vanishes 
outside a small neighbourhood of the peak ep and admits one of the following asymptotic 
representations near ep 

^±ixv + "î\l±)xk + v + 0(x'! + v + 2) 
k=l 

for v ^ 0, v * 1/2, le.Z and 

n + 1 

(tfofo + tfofi'log * ) * " + 2 Pk%\ dog x)xk + v + 0(x" + k + v . r . ( n + 2 + v-£\ 

k=l 

for v ^ 0, v = 1/2, where e is a small positive number and Py±) are polynomials 
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of degree j . Suppose that these representations are differentiable at least twice. Then 
the problem 0^l) has a solution with the following asymptotic properties: 

a) In a neighbourhood of ep the following holds 

(5) u(z) = Re(p{;*)(z) + 0(\z-ep\
n + M), 

where either 

(6) <P{£)(z)=tpk{z-ep?
 + v-1 for v* 1/2, 

k = 0 

2 

I 
r = 0 

(7) <p$Hz)= 2Po,r(H(z-ep)Y(z-epy-1 + 

+ 2 Q* + 1 ( l o g ( z - e p ) ) ( z - e / + " - 1 for v = 1/2; 
k = 1 

here Qj are polynomials of degree j . The coefficient fiQ is given by 

v- 1 K"+(0)-K"_(0) ' 

The coefficients j30r are defined differently for v ^ 1 and v = 1. Namely, 

* _ . 2 go,i ~ffo, i ffo, o ~ go, o \ 
^ ° ' ° ~ ' \ v - l < ( 0 ) - * " _ ( 0 ) < ( 0 ) - * " - ( < > ) / ' 

rt _ • 2 ^o, i ~ go, i , _ n 
/ V ~ '7^1 <(o)-^(o) ' ^ 2 ~ ° 

for v ^ 1, <Z/2<i 

„ ( + ) - / , < - > „< + ) „ < - ) 
/> A y o . . #0, 0 #0, 0 #0, 1 ~ #0, 1 

^ 0 , 0 - 0 , I m ^ ^ - 2 , ^ ^ - ^ ^ , ^0>2 = - , _ _ _ _ , 
/or v = 1. 

b) In a neighbourhood of ery r ^ p, 

(8) «(z) = 0 ( | z - e r | * + [ v ] ) . 
c) In a neighbourhood of im we have 

(9) «(*) = R e t a t o + 0 ( | z - 4 | K + W ) , 

z#/>ere Vm?» ^ given by 

k = 1 

Jhfere R^ are polynomials of degree [{k — l ) / 2 ] . T ^ equalities (5), (8), (9) c<2# £e differen­
tiated at least once. 

PROOF. Let 

un (z) = Re [X(z ~ ep) cp{;*\ 3 (z)], z e f l . 
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Here <pffi+ 3 is given by (5) for v ^ 1/2 and by (6) for v = 1/2, and # is a cut-off C °°-
function supported in a small neighbourhood of the point ep. Coefficients of q)p^\ 3 are 
chosen to satisfy 

(g-un)(z) = 0(\z-ep\»
 + 3 + v), zzS±(ep). 

We represent the harmonic extension of g - un as the sum u{2) + ui3) where u{2) = 
= g ~ un on ^ \ { 0 } and 

Vku{2)(z) = 0(\z-ep\
n + 3 + v-k), k = 0, 1 ,2. 

The function &(3) is found from the boundary value problem 

Aui3)=-Au{2) i n f l , u{3) = 0 on S. 

It remains to refer to Lemmas 1 and 2. 

PROPOSITION 2. Le/ g be a C°°-function on S\T. Suppose that g vanishes outside a 
small neighbourhood of the peak ip and admits one of the following two asymptotic represen­
tations near ip: 

? o ^ v + 2 1 ? l ± V + v + o(x*+v+2) 

for v > 0, and 

* = 1 

ybr v = 0. We assume that both representations are differentiahle at least twice. Then prob­
lem (D(z) has a solution with the following properties: 

a) In a neighbourhood of er 

(10) u(z) = 0(\z-er\"
 + [ v ] ) . 

b) In a neighbourhood of im, m^p, 

(11) u(z) = tey™(z) + 0(\z-im\H + i v i ) . 

c) In a neighbourhood of ip we have 

(12) « ( z ) = R e ( ^ ) ( z ) + ^ ) t e ) ) + 0 ( | z - / p | - + [ v ] ) , 

where either 

(13) <p{
P%)(z)= Ï ak(z-ip)

k + v for v* 1/2, leZ 
k = o 

or 

(14) <p$)(z)=ta0i,()ag(z-ip)Y(z-ip)
v + 

r = 0 

+ 2 Qi + i(hg(z-ipMz-ip?
 + v for v = 1/2, 

k = 1 
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and 

tp(t?(z)= 2 Rk(hg(z - ir))(z - irf2 . 

Here R^ are polynomials of degree [(k - l ) /2 ] and Qj are polynomials of degree j . The co­
efficient a0 is equal to 

«o = t — • 
sin ZJtv 

The coefficients a0>r are calculated differently for v ^ 0 and v = 0. Namely, 

R e a 0 , o = go , « o , i = ^ 2 ^ > «o,2 = 0 

for v T^ 0, and 

J + ) _ „ ( - ) „( + ) _ „ ( - ) 
( + ) ( + ) . . go, 0 ^0, o . go, i go, 1 

K e a 0 , o = go, o > a o , î = go, i + * ~ > a°>2 = î 4 

for v = 0. Equalities (10), (11), (12) c#/z &£ differentiated at least once. 

PROOF. Let 

un (z) = Re [X(z - ip) <pffl+ 1 (z)i, z e Q . 

H e r e <pj,m^+1 is given by (13) for v ^ / / 2 and by (14) for v = / / 2 , and % is a cut-off C °°-
function supported in a small neighbourhood of point ip. Coefficients of <pffi+1 are 
chosen to satisfy 

(g-un)(z) = 0(\z-ep\
H + 1 + v ) , zeS±(ip). 

W e are seeking the harmonic extension of g - u„ as a sum u{2) + « ( 3 ) where u{2) = 

- g~~ un o n ^ \ { 0 } and 

V*«(2)(z) = 0 ( | z - i p | , , + 1 + v - * ) , £ = 0, 1 ,2 . 

The function z/(3) is found from the boundary value problem 

Au0)= -Au{2) i n f l , a(3) = 0 on 5 . 

It remains to apply Lemmas 1 and 2 to complete the proof. • 

We introduce the following notation: 

n0= [2(n + v) + 1] . 

PROPOSITION 3. Let h be a C™-function on S\T, vanishing outside a small 
neighbourhood of the peak ep, and having the following asymptotic representation 
in local coordinates on the arcs S±(ep): 

h^x* + *2 h^x*** + 0(xn + v + 2), v> - 2 . 
k = i 
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Suppose this decomposition can be differentiated at least one time. Assume also that 

V.P.I hds = 0. 
s 

Then the problem M^e) has a solution v, with the following asymptotic properties: 

a) In a neighbourhood of ep 

(15) v(z)-v(ep) = Re(cp(;*Hz) + ipi
p™

)(z)) + 0(\z-ep\"
 + M), 

where either 

for v ^ 1/2, / e Z, or 

, x> n L (z-ep)(z0-ep)\l(z-ep)(z0-ep)Y
 + ' 

+à2
Qk+1[ÌOB — ^ — } [ — 7 ^ - z — ) 

for v = 1/2. The coefficient /}x equals 

^ _ ) +j&J + ) cos2wv . h{
0
+) 

(v + 1) sm2jtv v + 1 

Here Qy #re polynomials of degree j . The coefficients j3irare defined in different ways in the 
cases v ^ - 1 , and v — — 1. 7%<?}/ are defined by 

ybr v T* — 1, <z W 

A( + )4-A (_) 

I m / ^ 0 , / J l f l = - i & r , l i , 2 = ° 4 / ° 

ybr v = - 1. 

b) In a neighbourhood of er, r^p, we have 

(18) v(z) - v(er) = Reip^ (z) + 0(\z - er\
n + M). 

c) In a neighbourhood of im 

(19) v(z)-v(im) = 0(\z-im\K + M). 

Here xpffi is given by 

(z - er) (z0-er)\l(z- er)(z0 - er) \k/2 «0 / 

1>iïHz)= lRk log 
ZQ Z j \ ZQ Z 

r = 1 , . . . , N, Rk are polynomials of degree [(k — 1 ) /2], and ZQ is a fixed point in Q. Equal­
ities (15), (18), (19) can be differentiated at least once. 
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PROOF. Let 

vn (z) = Re [X(z - ep) cp{
p% , (z)i, z e QC 

where (Pp%\ i is given by (16) with v ^ 1/2 and by (17) with v = 1/2, and % is a smooth 
cut-off function supported in a small neighbourhood of point ep. Coefficients of cp{

p^\ x 

are chosen to satisfy 

hn (z) = (h ~ dvn/dn){z) = 0 ( \z - ep \
n + v). 

Let v{2) be such that 

z 

v{2)(z)= +.\bH(s)ds onS±(ep) 

and 

Vk?{2)(z) = 0(\z-ep\
n + v + 1-k), A = 0, 1,2, 

in the vicinity of the point ep in Qc. Denote by v{3) the solution of the problem 

A70) = _A-(2) ^ ~(3) e ^1 {Qc n { | z | < £ | ) B 

Then the function £T(1) = z7(2) + tT(3) is harmonic in a small neighbourhood of point ep. A 
conjugate function v(1) satisfies Neumann condition dv^ / dn = h„ in the same neigh­
bourhood. According to Lemma 2, t;(1) admits the estimate 

2(« + [v]) 

^ ( 1 ) U ) = E P w ( l o g ( z - ^ ) ) ( z - ^ r / 2 + 0 ( | z - ^ | « + v + 1 - £ ) , 
w = 1 

where Pw are polynomials of degree [{m — l ) /2 ] and £ is a small positive number. The 
last equality is differentiable once. It remains to refer to Lemmas 1 and 2. • 

PROPOSITION 4. Let h be infinitely differentiable on S\T, vanishing outside a small 
neighbourhood of the peak ip, and having one of the following asymptotic representations in 
local coordinates on the arcs S±{ip) 

n no 

2h{
k
±]xk + v+ E Ti± ) ( logx)x- 1 +^ / 2 + O U n 

for v > — 1, v ^ 1/2, I eZ, and 
n0 

(htf+hff log x)xv+ 2P{
kVi(hgx)xk + v+ E n±Hhgx)x-i+k/2 + 0(xr) 

k=i k=i 

for v > - 1, v = 1/2. Here T^ are polynomials of degree [(k - l ) / 2 ] , PJ±] are polyno­
mials of degree j , and n + v < y < n0. We assume that these representations can be differen­
tiated at least once and that 

lhds = 0. 
s 
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Then the problem N{e) has a solution v which can be represented as follows: 

a) In a neighbourhood of em we have 

(20) v(z) ~ v{em) = R e V ^ (z) + 0(\z ~ em\" + ™). 

The function tpffi in (20) is defined by 

/(ext) V p i\ ( z ~ e™^z<> ~em)\{^~ em)(zp ~ em) \k/2 

Rk are polynomials of degree [(k — l ) / 2 ] , and z0 is a point in Q. 

b) In a neighbourhood of ir, r^p, 

(21) v(z)-v(ir) = 0(\z-ir\
n + [ v i ) . 

c) In a neighbourhood of ip 

(22) v(z) ~ v{ip) = Rec>« (z) + 0(\z ~ ip\
n + [v]), 

z^fere ^e z/œ the notations 

«23, , W W _£ a è (<L^i>p + 

£ = 1 \ z0 — z / \ Zo — Z 

£̂w v ^ //2, ##J 

(24) ^ ( z ) = E o « o „ ( l o g — ) ( z0-z ) + 

(z - ip)(z0 -ip)\t(z- ip)(z0 -iP)\k + v 

"o / (z-ip)(z0-ip)\l{z-ip)Uo-ip)\-
l+H2 

+ , ? 1
U H 1 ° g - ^ ^ l }\-^=-z J 

for v = 1/2. Here U^ are polynomials of degree [ik — l ) /2 ] and Qy are polynomials of 
degree j . The coefficient a0 is equal to 

2 b^+bf' 
a° v ( v + l ) < ( 0 ) - ^ ( 0 ) ' 

The coefficients a0r are defined differently for v ^ O and v = 0. They are defined by 

- 2 °» ° 0> ° _ o 2v + 1 "o, l + # o, l 
v ( v + l ) < (0) - *"_ (0) v2(v+l)2 K"+(0)-K'L(0) ' 

.( + ) J - à ( - ) 2 K T + *Ò.T 
a ° ' 1 _ v(v+l) < ( 0 ) - * ' l ( 0 ) ' a ° ' 2 
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for v ^ 0, and 

A ( + ) + A ( - } A ( + ) î "' 
" 0 , 0 ' " 0 , 0 ^ " 0 , 1 " r " 0 , 1 

l 0 , 0 ~ " U > a 0 , 1 ~~ Z
 ,JI / n \ ~ " ( f\\ Z 

«n 

< ( o ) - ^ ( o ) <(o)-*"_(<>) ' 
A ( + ) 4- A ( - ) 

#0,1 + V i 
°'2 < ( 0 ) - * " _ ( 0 ) ' 

for v = 0. The equalities (20), (21), (22) <;^ ^ differentiated once. 

PROOF. Let 

vn(z) = Re[x(z-ip)(p
{™)

+3(z)l, ZGQC 

where (Ppm„ + 3 is given by (23) with v ^ 1/2 and by (24) with v = 1/2, and % is a smooth 
cut-off function supported in a small neighbourhood of ip. Coefficients of (pffi+ 3 are 
chosen to satisfy 

ha(z) = {h- dvjdn)(z) = 0(\z- ip\
n + v + 2). 

Let a function v{2) be such that 
z 

v{2)(z)= ±\hn{s)ds onS±{ip) 

h 

and 

Vkv{2)(z) = 0(\z-ip\
n + v + 3-k)) k = 0, 1 ,2, 

in the neighbourhood of point ip in domain Qc. Denote by zT(3) the solution of the 
problem 

AfO)= -Av^\ V^BW\{QCÇ\{\Z\<E}). 

Then the jfunction v^l) = zT(2) + z7(3) is harmonic in a small neighbourhood of point ip. A 
conjugate function v(1) satisfies Neumann condition dv{l)/dn = hn in the same neigh­
bourhood. According to Lemma 2, v(1) admits the estimate 

* (1)(z) = 0 ( | z - / p | * + v + 1 ) . 

The last equality is differentiable once. It remains to apply Lemmas 1 and 2 in order to 
complete the proof. • 

2. THE INTEGRAL EQUATION OF THE PROBLEM (D(/) 

2.1. On the number of solutions to the homogeneous integral equation of the problem (D^. 

LEMMA 3. a) Let Q be a domain with outward peak. Then for any oeTt the 
representation 

\o(q)-£- log jdsq= - j ra±(x) + 0 ( l ) , 
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is valid on the arcs S± . Here r = \q — z\, z = x + iy and 3/dn is the derivative 
in the direction of the outward normal. 

h) Let Q be a domain with inward peak and let the arcs S± be given by y = K±(X), 

x G [0 ,ô ] . We set a = max( \K"+ (0 ) | , | J ^ _ ( 0 ) | ) . Then for any asW 

s± q 

if K+ (x) <y < ax2, 

| a(q) -£- log \dsq = ±Jta± (x) + 0 ( 1 ) , 
s± q 

if — ox2 <y < K_ (x) and 
Ô 

\o{q)fs log \dsq= + | a ± ( r ) ^ ? J r + 0 ( l ) , 
S± 0 

// -ax2 <y < ax2. 

The proof of Lemma 3 is given in [3]. 

LEMMA 4. Let g coincide with the restriction to S of a C ™-function defined on R2. 
Then the integral equation of the problem Q^ 

-710+ WO = g 

has a solution in the class $1 bounded in a neighbourhood of each point e^,, 
k= 1,.. . ,N. 

PROOF. Suppose that e^ coincides with the origin. Then g has the representation 

g(z) = c{0) + c{1)x + c{
±

2)x2+... 

on the arcs S± (0) = S± . 
By Proposition 1, the potential of the problem 6^l) can be written in the 

form 

(p{z) = a + /fe + yz2 + ..., 

where 

A2) _ (2) r{2)-a r{2) 

p n:+ (0)—A:^_ (0) ' * + ( 0 ) - i ^ ( 0 ) 

The normal derivative d(Reç)/dn of the solution admits the decomposition 

3 Re cp dim cp _ „ , 

a# os 

Therefore, the boundary function h of the problem M{e) has the representation 

h(z) = ±lm/3±d±x+ ... 

on the arcs S± . 
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By Proposition 3, the holomorphic function <p(z), whose real part is a solution of the 
problem N{e) has the form 

<p(z) = c0 + cxz
m + (j8lf ilog z + filt 0)z + ... . 

From the expression for f}lfl it is clear that /31} ! = 0, />. 

Ç9(z) =^o + ^i^1/2 + i8i,o^ + ... • 

Hence the function o = (Re cp — g)/2jt has the estimate 

o(z) = 0(l) 

on the arcs S±{e„). According to Propositions 2 and 4 we have 

o{z) = omx-l'2 + 0{\) 

on the arcs S±{im), m — 1, . . . ,M. 
Therefore the function a is a solution of the integral equation of the problem Q{t) 

(cf. [1]) with required properties. • 

THEOREM 1. Let o sffli be a solution of the homogeneous integral equation of the prob­

lem ®{i) 

-JCO+WO = 0. 

Then 
N 

o= X<*Re( l /£* ) . 
k = i 

PROOF. (/) Let a be a solution of the homogeneous equation in the class %Jl. Consid­
er C°°-functions %%,, k = 1,... ,N, such that %£ = 1 in a small neighbourhood of e^ 
supp%* H suppx„ = 0, k * ny and im g supp#*, m = 1,. . . ,M. 

Since 

(jtl - W)(aXj) = -(JZI-W)((1-XJ)O) 

then, by Lemma 4, the equation 

(7d-W)oj= -(jtI~W)(aXj) 
has the solution Oj belonging to 93Î and bounded in a neighbourhood of each point e%, 

* = 1 , . . . , N . 
The function 0y = ay 4- cr̂ y is a solution of the homogeneous integral equation, 

bounded in a neighbourhood of each point e^, k = 1 , . . . , N, & ^ / . By UTV 0y we denote 
the double layer potential in domains Q and Qc respectively. 

According to statement a) of Lemma 3 one has 

W+0j(z)= -jr((0y)+ + (0y)_)(x) + O ( l ) , z = x + ry->ey , 

in the appropriate coordinate system. Since the boundary values of W+ Oj are zero on 
S\T, then 

((0y)+ + (0y)_)(x) = O ( l ) as *-*<?,-. 

This implies that W+ 6j is bounded in a neighbourhood of each e^, k = 1 , . . . , N. 

(//) We fix an integer m ^ 1 not exceeding M and choose a coordinate system 
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so that in a neighbourhood of im the domain Qc is defined by {K_ (X) < y < 
< K+(X), 0 <x < 6} with functions K± described above. According to statement b) 
of Lemma 3, the potential W+ 6j(z) is (up to a sign) jr[(0y) + — (0y)_ ](x) + 0 ( 1 ) on 
the set 

Q D {z=x + iy: either K+ (X) < y < ax2 or - ax2 <y < K_ (X)} , 

where a = max ( | K+ ( 0) |, | K"_ ( 0) | ). This implies that W+ 0y is bounded on the set 
Q H {z'- - ax2 <y < ax2}. 

Further, let % be a cut-off function on the plane with small support which is equal to 
unity near the origin. We introduce the function oe on the arcs S±(im) as 

oe(x) = [(0j)+(x) + (dj)-(x)y2. 

In view of Lemma 3, W+ {%oe) and its harmonic conjugate W+ {%oe) are bounded on 
the set Q H {z- — ax2 < y < ax2}. Besides, using explicit expressions for these func­
tions, one can show that 

W+ (Xae)(z) = 0 ( |z| " 2 ) , W+ (Xae)(z) = 0 ( \z\~2) 

in Q, as \z\ —^0. 
By the Phragmén-Lindelòf principle (cf. [6, p. 262]), the holomorphic function 

W+ {%oe) + iW+ [%oe) is bounded near the origin. Since 

( 0 y ) + ( x ) - ( 0 y ) - ( x ) = O( l ) a s x ^ O , 

then (W+ 9j){z) is also bounded near the origin. Thus, the potential is bounded in a 
neighbourhood of each point im, m = 1 , . . . , M, and hence it is bounded in Q. Since 
W+ 6j is a harmonic function vanishing on 5 \ T , then W+ 0j = 0 in Q. Therefore its 
conjugate W+ 6j is a constant. 

For each », n ^M, according to Lemma 3, 

J[((0y)+ - (0y)_)(x + r) - ((0y)+ - (0y)_ )(x - r)] Ç = 0 ( 1 ) . 
o 

Since in ,Oc one has 
ô 

(W- dj)(z) = - \l((ej)+ - (6j).)(x + r) - ((0y)+ - (0y)_)(x - r)] ^ + 0 ( 1 ) 
o 

as x —> +0 , then (TF_ 0y) is a bounded function in a neighbourhood of each point im, 
m = 1,. . . ,M. 

(«/) In a neighbourhood of each ^ , k = 1 , . . . , N, ^ ^ / , the function ( W_ 0y)(z) 
is bounded. On the other hand, we have tT+ 0y '= const. Therefore, according to Lem­
ma 3, the function (W- 0y)(z) is bounded on the set Qc fl {z' - ax2 <y < ax2} 
where a = max( | < (0) | , \K"_ (0) | ). Since (W. 0£(z) = 0 ( |z| " 2 ) , the Phragmén-
Lindelòf principle applied to the function W- Oj + iW- Oj implies the boundedness of 
the potential in each neighbourhood in question. Thus W- 0y is bounded inside a small 
neighbourhood of e^. 
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(w) Let W+ Oj be equal to a constant C in Q. Consider the function 

w(z) = W- ej (z) + t(W- e j (z) - c). 
It is holomorphic in Qc and its imaginary part vanishes on S \ T . 

Let z = Ay (Ç) (Ç = 77 + /'£) be the conformai mapping of the upper half-plane onto 
Qc, the inverse of £ = £,- (z). The imaginary part t>(£) of ÌF(Ay (£)) = # ( £) + iv(£) van­
ishes at the boundary of the upper half-plane except for the points £,(T). 

By v we denote an odd extension of the function v. Clearly, v is harmonic on the 
punctured complex plane C \ { 0 } and bounded at infinity. Therefore zTcan be expand­
ed as 

v{reiy) = 2 dkr~ksinky . 

The conjugate function u has the expansion 

u{rety) = 2 dkr~kcosky . 

Since 

Wr(Ay(£)) = 0 ( | C | - 4 ) as Ç->0 , 

then the function u(rety) + iv{reiy), which is holomorphic in C \ { 0 } , has a pole at the 
origin. At the boundary of the upper half-plane u equals —2jz{0joXj)(rj + /0), rj eR. 
Hence « = 0 ( |?7|2/?) as 77 + /0-> 0, where jS > — 1. Then 

«(£) = i 0 + ^ i ^ _ 1 cos y = J0 + ^iRe ( 1/Ç) 

and, consequently, 

0y(z) = - (2^ ) - 1 Wo + ^i(Rel/Çy)(z)) , zeS. 

Since a non-zero constant does not satisfy the homogeneous integral equation of the 
problem Q{i\ then 

6j(z)= - (2 j r ) -V 1 (Re l /Ç y ) ( z )=9(Re l /Ç y ) ( z ) . 

(v) We set 
N 

a = a - 2 o& 

and obtain 
N N N 

o = a + 2 0%y = a - S o>• + 5>y ( R e 1/Sy) • 
N 

The density a — X ^- is a solution of the homogeneous equation 
J= 1 

(jtl - W)[o - Ì o \ = (jtl -W)a- S(JTJ - W)Oj = 

N j N \ 
= (jd-W)o + 2 (Jtl - W){oxj) = (id -W)[o + 2o%j\ = (JCI-W)O = 0. 

N 

The function a — 2 Oj is a bounded function in a neighbourhood of each e^, 
/ = 1 
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N 

k = 1 , . . . , N. Repeating arguments in (ti) and (Hi) for the function a - ^ ^ we prove 
that, y = 1 

W+ia- ^ GA = 0 in Q sndW-lo- £OJ\ = 0 in Qc. 

The limit relations for the double layer potential imply 

jv \ 
= 0 . 

N 1 
j=\ ATI 

Thus, 

N \ N 

N 

l 

As a corollary of the Theorem 1 we can state the following result. 

COROLLARY. The homogeneous integral equation of the problem 0^l) has only trivial 
solution in the class 3Pîext. 

2.2. The solvability of the integral equation of the problem (&l) and asymptotic formulae for 
solutions. 

THEOREM 2. Let g be a function from 31. Then the boundary equation 

(25) -Jto(p) + Wo(p)=g(p), peS\T, 

has a solution in the class 3K with the following representation in local coordinates: 

a) on the arcs S±(en) 

(26) a(z)= ± ( £ 0 + / M o g x ) x - 1 + v W + O ( l ) , 

b) on the arcs S± (im) 

(27) o(z) = (a0 + « i l o g x ) - 1 4 - ^ + ôx~m + 0 ( 1 ) . 

Moreover, the space of solutions of the homogeneous equation is N-dimensional. 

PROOF. Consider the simple layer potential with the density a 

Va(z) =V.P. \a(q) log -r^— dsq . 
S i l l 

Let uU) and u{e) be solutions of the problems 0){t) and (D{e). By Proposition 1, the 
holomorphic function cp{t) whose real part is the harmonic extension of u^ admits the 
following decomposition in local variables, 

<PV) (z) = (Po, o + /30> i log z)zv~ ' + PlZ
v + O(z) 

in a neighbourhood of e„. Here /30,1 ^ 0 only for v = 1. Hence 

{du{i) I dn){z) = ±/30* , '"2 + M ± y - 1 + O(l) 
on the arcs S± (e„). 
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In a neighbourhood of im one has 

cp{i) (z) = (a0f o + «o, i log z)zv + ôo zm + O(z) 

in the local coordinate system. Here a0> i ^ 0 only for v = / /2, / e Z (cf. Proposi­
tion 2). This implies the decomposition 

{du{i) I dn){z) = ( a ^ + a ^ l o g * ) * * " 1 + ó0x_1/2 + 0(1) 

on the arcs S± (im). Here a0fl ^ 0 only for v = 1/2. Then 

2JT \ <9/z 3# 

Let f denote a solution of the problem N{e) : 

Jz; = 0 in 12e, dv / dn = du{i) / dn on S\T 

and i; vanishes at infinity. 
In a neighbourhood of en the holomorphic function <p, whose real part is the sol­

ution v, has the form 

/ ( Z - g , ) ( Z o - g , ) \ v - l / ( z - 0 ( Z | ) - g | t ) \ - V 2 

^ = / ^ z^~z J + ô ° i z^~z J + 0 ( 1 ) 

for v ^ 1/2 and 

, , (a , a , (z - e„)(z0 ~ e„) \( (z - e„)(z0 - en) Y'1 

yfa) = ^ i , , + /?i,iiog Z o _ z H — j + 

+ ^ ^ ) + 0 ( 1 ) 

for v = 1/2. Therefore, by Proposition 3, 

v(z)= ± j 8 0 * v - 1 ± y 0 * ~ ^ + O(l) 

for v 5* 1/2 and 

v(z)= ±(I30 + pihgx)xv-1 ±y0x-l/2 + 0(1) 

for v = 1/2 in a local coordinate system on the arcs S±(e„). 
According to Proposition 4, 

V(z) = ^ 0 f o + a M l og ^~z ^ ^ ^ j + 

in a neighbourhood of 4,. Hence, 

v(z) = (a0 + o^log*)*1"1 + (5x"1/2 + 0(1) 

in a local coordinate system on the arcs S±(im). 
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From the integral representation for the harmonic function w = v — uie) + u{e) ( °° ) 
in Qc and from the formula for limit values of the double layer potential one 
has 

nu>-Ww= -v(^- - ^—\ =27t{u{e){^)-g) on S \ T . 
\ on on j 

Consequently, the density 

a= {2JI)-\{W - u{e){*>)) = {27t)-l{v-g) 

is a solution of equation (25). 
In view of Theorem 1, the functions of the form 

are solutions of (25) in the class ffl. • 

Explicit formulae for the coefficients a0, au fi0, fily and ô in (26), (27) were given 
in [3]. 

We can summarize Theorem 1 and Theorem 2 in the following statement. 

THEOREM 3. Let g G $lext- Then equation (25) is uniquely solvable in 93?ext. 

2.3. Remark. 

The above considerations allow one to conclude that boundary equation (25) is ap­
plicable to solving the problem Q^ in domains with peaks and with boundary data in 
the class ?î. 

We look for the solution u{t) of the problem <3)(,) as the sum of an explicitly written 
harmonic function u0 and of the double layer potential Wo with unknown density o. 

By Propositions 1 the solution of the problem <D(/) admits the following representa­
tion: 

«(,")(z) = Re^ Œ t ) (z ) + 0 ( | z - ^ | 1 + [ v (^ ) ]) , 

in a neighbourhood of ep, where 

<p£*Hz) = (Po,o + Po,ilog(z-ep mz-e^-'+PAz-e^ . 

We set 

u0(z) = Re lpiext)(z)(p^t)(z) 
k = l * 

where /?iext) are interpolation polynomials such that pie x t )(^) = 1, D*/?iext) (ek) = 0, 
» = l , . , . , l + [v(**)], Dz>iext) (er) = 0, » = 0 , . . . , l + [v(er)], r * * (cf. [7]). Then 

(u{é)-u0)(z) = 0(\z-zo\1 + [vizo)]) 

in a neighbourhood of each outward peak z0. By Theorem 3 the boundary integral 

equation (25) with the right-hand side g — u0 is uniquely solvable in 3KeXf 
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3. INTEGRAL EQUATION OF THE PROBLEM N^ 

3.1. The homogeneous integral equation of the problem N{e). 

THEOREM 4. The homogeneous boundary equation of the problem M^ 

A N A 
-jtz(p)+ -^Vr(p) + Itk^-Qk(p) = 0 

onp k = i onp 

considered on the set of pairs {r, t}, where x e 3R and teRN, has only the trivial 
solution. 

PROOF. The functions Vr(z) and Qn{z),n = 1 , . . . , N, z e Qc are harmonic, tend to 
zero at infinity and are bounded. Hence, 

N 

Vr(z) - E tnQn{z) 
n = 1 

is a solution of the Neumann problem with the zero boundary condition. By the 
uniqueness theorem for the problem M{e), 

N 

Vr(z) - li, tnQn (z) = const. 
n = 1 

Since the solution vanishes at infinity, then 

N 

Vr(z) = E tnQn(z) 
n = \ 

in Qc. 
Let ç ^ (z) denote the bounded harmonic extension of Qn (p), p e S, to ,Q, and let 

z = û>(Ç) be a conformai mapping of the strip U — {(r/, §): 0 < £ < 1} onto £? with 
Rea> - 1 (^ ) = oo. Then the function 

QO(Z) = VT(Z)- 2 ^eì°fe) 
« = ì 

is bounded in Q and vanishes on S. Therefore the Fourier decomposition of 
<*>(£) = Qo (<*>(£)) has the form 

00 

w{z) = "Z ck(rj) sin jtkC . 
k = i 

The coefficients ck(rj) have the form a ^ ^ + Z ^ é ? - ^ . Since 

/ ' • 1 °° 
\\w{r1^)\2d^=\ E k ( > / ) | 2 

J z k = 1 

o 
and since the left-hand side of this equality is bounded, then a^, = 0, k = 1, 2, ... . It 
follows that £0(2) and gradient VQ0{Z) exponentially decays as z—>e„. We have 

Vr(z)= 2tnQ^(z) + Qo(z). 
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Hence 

T(P)= Ît„^-{p)- ïtn^(P)+^(p), pzS, 
n = \ on n = \ on on 

where functions (dg^/'dn)(p) and (dç„/dn)(p) have different orders of singularities, 
and (dg0/dn)(p) exponentially decays as p —>e„. 

Since zeffl, the coefficients t„9 n = 1,...,N, vanish. Consequently, Vr(z) = 0 
in Qc. The potential Vz(z) is continuous in Q\T and bounded in Q, therefore Vr = 0 
in Q. The formula for the jump of the simple layer potential implies r = 0. Thus the 
density r vanishes and the vector t e R N is zero. • 

3.2. O/z ^ solvability of integral equation of the problem M{e). 

THEOREM 5. L^/ h be a function from 31 and 

lhds = 0. 

s 
Then the boundary equation 

(28) -Jit(p)+ -?-VT(p)+ 2tk-H-Qk(p)=h(p) 
on k = i on 

considered on the set of pairs {t,t} with r e Ti and t e RN is uniquely solvable. The density 
T has the following representations in local coordinates: 

a) on the arcs S± {en) 

(29) T(Z)= ±(/31>o + Pi,ifogx)xv-1±(vi,o+Vi,ilogx)x-1/2 + 0(logx), 

b) on the arcs S± (im). 

(30) z(z) = («o, o + «o, i log x)xv~ 1 + JU0X ~m + 0 ( 1 ) . 

PROOF. By Proposition 3, the holomorphic function whose real part is a solution of 
problem H^ with the boundary condition h has the decomposition 

, * , / (z - e„)(z0 ~ en ) \
1/2 (z- en)(z0 ~ en ) 

cp(z) = yo + ri,o[ ^ ) +ï2,o — + 

, / , , (z - en){zQ - en ) \l (z - e„)(z0 - en ) \
3/2 

+ r3 ,o + r3,iiog — — + 

+ £i,o + £i , i log 
(z - e„)(z0 - en) \( (z - en)(z0 - en) \1 + v 

Zo Z J\ ZQ z 

+ 0 ( | z - ^ | 2 l o g |z - ^ I ) 

in a neighbourhood of e„. Here j8i, i ^ 0 only for v = 1/2, I eZ. 
We choose the parameter tn to be equal Rey 1} 0 . Then the problem N{e) with the 

boundary function 

h ~ S tn-z- Q„ 
n = \ on 
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has a solution v with the following representation in local coordinates on the arcs 
S±(eH) 

viz) = y0 + y i * + (ïifo + 7271 log x)x3/2 + (0$ +P{
0;ilogx)x1 + V + 0 (x 2 l ogx ) . 

On the arcs S±(tm) we have 

*(z) = a 0 + « i* v + a{
2
±]xv + l + 0(x2) 

in corresponding coordinate systems (cf. Proposition 4). 
Moreover, from Proposition 1 it follows that the complex potential of the problem 

®{t) with the boundary function vip), p eS\T, has the representation 

cp{i) (z) =/30+ (Pi, o + j8lf ! log(z - O X * - ej + 

+ (yi,o + y i , i i o g U - ^ ) ) ( z - ^ ) 1 / 2 + 0 ( | z - ^ | log I*-*»!) 

in a neighbourhood of en. The coefficient /?! ! does not vanish only for v = 1/2. 
Therefore 

OuU)/dn)(z)= ±(/31>0 + l3hlhgx)xv-1±(y1>0+yhlhgx)x-1/2+O(hgx)y 

on the arcs S± (e„), where ylf x 5* 0, only for v = / / 2 . 
For a neighbourhood of /OT one obtains 

cp{i)iz) = a + (a0,o + «o, i logfe - 4) )U - 4 ) v + ô0(z - tm)m + 0 ( |z - 4 I ) 

(cf. Proposition 2) with a0 ( 1 ^ 0 only for v = 1/2. This implies the decomposi­
tion 

(duU) /3n)(z) = (a0,o + a0}lhgx)xv-1 + ô0x~1/2 + 0 (1 ) 

on the arcs S+ (/w). Here a0, i ^ 0 only for v = / / 2 . 
On £ we have 

0 = J-v[du{i) /'dn - h + ^tk3Qk /'dn\. 
2JZ \ i / 

Consider the difference 

vo(z) = v(z) - -^ V\du{i)/dn -h + hkd6k/dn\ (z), z e Q< . 

Let Z = CD(Ç), Ç = 77 + /£ , be a conformai mapping of the strip 77 = 
= {irj, £ ) : 0 < £ < 1} onto £ c with Reo>_ 1(4) = + oo. The function u>(£) = 
= VQ (&>(£)) is a solution of the Laplace equation in the strip 77, it grows at infinity not 
faster than a power function and vanishes on 0*77 with exception of a finite set of points. 
We take the Fourier decomposition of w(£) 

00 

#>(£) = X Ckiv)sìnjik£;. 
* = i 

The coefficients ^(17) have the form a***** + f}^'"**. 
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Since 

\\w{r,,ï)\2dï=\ ï \ck(rj)\2 

J 2 k = \ 
0 

and since the left-hand side of this equality increases not faster than a power function as 

rj tends to infinity, then ak = 0, k = 1> 2, ... . Hence vQ(z) is bounded in a neighbour­
hood of im. Thus, v(z) is a bounded harmonic function in Qc vanishing on 5 \ T and 
therefore v vanishes in Qc. 

From this we conclude that the density 

r=(2jz)-1lduU)/dn-h+ 2 tkdgk/dn) 

belongs to the class Wl, satisfies the boundary equation of the problem M^ and has the 
required asymptotic representation. 

Theorem 4 implies that the solution of equation (28) just constructed is 
unique. • 

Explicit formulae for the coefficients /? i, o > )81, ï > /* I, o > /* ï, ï > ao, o > ao, ï a n d Po in 
(29), (30) were given in [4]. 

We apply Theorems 4 and 5 to obtain the following result. 

THEOREM 6. Let the function h belong to 31. Suppose that 

lhds = 0 and IhRe(l/f;k)ds = 0 , k=l,...,N. 
s s 

Then equation (2) is uniquely solvable in %R. 

PROOF. By {r, t}, where r e $R and / e RN, denote the unique solution of (4). We 
apply the Green formula to the solution v{e) of the problem M{e) and to the function 
Re(l/Ç^) in Qc\{\z — ek\ < e}. Passing to the limit as E —> 0 we obtain 

tk = {l/n) U R e ( 1 / ^ ) ^ = 0, k = 1 , . . . ,N. 
s 

Therefore r is the unique solution of (2). • 

4. APPENDIX 

4.1. The external Dirichlet problem. 

Let g be a function from 31. We look for the solution of the problem ®{e) in the 
form of the potential 

u(z) = J o{q) — log y + 1 L/^, z e f l c , r = | z - t f | , 
c ^ J 
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with the density a satisfying the equation 

(31) 7€0(p) + jo(q) 
S 

dsq=g{p). 

We refer to uil\ u^e) as harmonic extensions of g to Q and Qc. By Propositions 1 
and 2 we have decompositions 

(du{e)/dn)(z) = ±P0x
v-2 + P[±)xv~1 + O(l) 

on the arcs S±(im) and 

(du{e)/dn)(z) = («ofo + a(o71
)logx)xv-1 + ôox"1/2 + 0 (1 ) 

on the arcs S±(e„). Let v be the solution of the Neumann problem 

Av = 0 in Qy dv/dn = du{e) / dn on 5 , 

normalized by the condition 

lvds= lgds-2u{e)(«>), 
s s 

where u(e) ( o° ) is the limit value of u(é>) at infinity. According to Propositions 3 and 4 we 
have 

v(z)= ±l30x
v-i±y0x-l/2 + O(l) 

for v 5* 1/2 and 

v(z)= ±(I30 + /3lhgx)xv~1 ± y0x-m + 0(1) 

for v = 1/2 on the arcs S±(im) and 

*(z) = (a 0 + «i log x)x v " 1 + òx~m + 0 (1 ) 

on the arcs S± (e„). Then a = ( 2 JT) _ 1 (t> — g) is a solution of equation (31) in the class 

9PÏ, and furthermore, a has the following representations 

a) a(z)= ± ( a 0 + « i l o g x ) x - 1 + v(/-) + O( l ) 

on the arcs S± {im)y 

b) a(z) = («o + «i hgx)~1 + vM + Ôx-V2 + 0 ( 1 ) 

on the arcs S+ (4J. As in Theorem 1 solutions of the homogeneous equation (31) in Wl 
are functions of the form 

M 

E^Red/^), 
where ^ e l ? and £/ is the conformai mapping of Q onto the upper half-plane, normal­
ized by the conditions 

£f(4) = 0 , J R e d / ^ ' V ^ O , £=1,...,M. 
5 

4.2. Tfe internal Neumann problem. 

For the function /? from 31 one seeks the solution of the problem N ( / ) as the sum 
of the simple layer potential and of a linear combination of the functions ôn, 
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n = 1, . . . ,M, with unknown real coefficients 

M 

v{e)(z) = Vr(z) + 2tHôH(z), 
n = \ 

where 

ô„(z) = Re(z-i„)V2> zeQ. 

The density r and the vector t = (^, . . . ytM) satisfy the equation 

(32) OT(p) + x{q) fr- log i - ^ + 2 tkôk(p)=h(p). 

Arguing as in Theorems 4 and 5, we prove that equation (32) uniquely solvable on the 
set of pairs {r, t}, x G M, t G R M . The only difference is that the harmonie function v(/) 

satisfying the boundary condition 

M 

dv{i)/dn=h- E /*<5* 
* = l 

should be normalized so that the harmonic extension &(<?) of v(/) from 5 to £?c vanishes 
at infinity. The density r has the following representations 

a) r(z)= ±(y31,o + ^ i , i l o g x ) x v ( / - ) - 1 ± ( / / 1 > 0 + ^ i , i l ogx)x - 1 / 2 + 0(logx) 

on the arcs S±{im) 

b) r{z) = (a0> o + «o, i log x)xvM~ 1 + fi0x"1/2 + 0 (1 ) 

on the arcs S±(en). 

4.3. Counterexample. 

Here we present an equation (1) having no summable solution, although its right-
hand side is continuous. 

Consider the function on the contour £ with an outward peak at point O defined 
by 

/ x cos log( l /x) 
(o(x)=±— ,' , 0<a<l, 

( log( l /x)) n 

on the arcs S± (O) in a certain coordinate system. The normal derivative of the solution 
of the problem (D(^ has the decomposition 

f U ^ ) = ± C
2

O ; i
l O g / 1

l
/

/ l + 0 ( ( l o g ( l / x ) ) - ) o n 5 ± ( 0 ) . 
on x 2 ( log ( l /x ) ) a 

The solution v of the problem X^ with the boundary data dujdn can be represented in 
the form 

/ , - 1 / x sin l o g ( l / x ) - c o s log(l /x) 
v(x, y) — -+- — (jr) ;—-^—;—T — + (a summable function). 

2 *( log( i /*))° 
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Then the density 

o = 2JZ(V — co) 

is a non-summable solution of the integral equation of the problem 0^l) with the right-
hand side co (the integral in the double layer potential is understood in the sense of the 
principal value 

lim I o(q) d/dnq log( 1/ \z -q\)dsq , 

{r:\q\>E} 

where z e r \ { 0 } ) . 
Among solutions of the homogeneous equation (1) there are no densities represent­

ed in the form 

SUI log ( I /* ) -COS log (1/*) . i l r • N 
±c + (a summable function). 

* ( log( l /x ) ) a 

Indeed the potential Wo has a power growth as z —» 0, and it vanishes on 5 \ { 0 } . 
Therefore Wo is equal to zero in Q. 

Let u{e) denote the solution of the problem G^e) with boundary function o. We 
have 

V 4~ u{e) -Wu{e) = 2m{e){*>)y ZEQ. 
on 

Since Wu{e) vanishes in Q, it follows that 

v4-u{e){z)=u{e){^), zeQ. 
on 

It follows from the limit relation for the simple layer potential 

~k(v~kuie) + Jtuie)){z) = 0' ze^MO}-
So, we have 

V - | - u{e) (z) = -2m{e) (z) + «o(z), z s Qc, 
on 

where u0 is a solution of the problem 

(33) Au0 = 0 in Qc, 4~^o = 0 on S \ { 0 } . 
on 

We substitute the integral representation of u{e) into (33). Then 

Wu{e)(z)=u0(z)-27iuie)(™), zeQc. 

Since the potential Wu^ vanishes at infinity we have 

0O(°°) = 2 ^ ^ ( 0 0 ) . 

The formulas for limit values of the double layer potential imply 

o(z) = u{e){z) = (27t)-1(u0(z) - «o( °° )) . 

The functions u^ and Wu{e) have a power growth as z —> 0. So, the function u0 grows 
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not faster than a power function. Since 

°{!,'°(^)' ^MOK 

then the function u0 (z) concides with Re (l/t(z)) where £(z) is the conformai mapping 
of Qc onto the upper half-plane subjected to the conditions 

£(O) = 0, and Re£(oo) = o. 

Therefore the equation (1) with right-hand side g coinciding with co on S± is unsolvable 

in L(S). 
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