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5. 9, v. 6:201-209 (1995)

Teoria dei gruppi. — On absolutely-nilpotent of class k groups. Nota (*) di PaTrizia
Loncosarpi, TRuEMAN MacHENRY, MErCEDE Maj e James WiEGOLD, presentata dal
Socio G. Zappa.

AsstracT. — A group G in a variety V is said to be absolutely-V, and we write G € AV, if central
extensions by G are again in V. Absolutely-abelian groups have been classified by F. R. Beyl. In this paper
we concentrate upon the class AJ, of absolutely-nilpotent of class £ groups. We prove some closure
properties of the class A7, and we show that every nilpotent of class £ group can be embedded in an
Ady-group. We describe all metacyclic AJ-groups and we characterize 2-generator and infinite 3-genera-
tor AJT,-groups. Finally we study extensions 1 > N —-H — G — 1, with N < §, (H), the n-centre of H,
with # > 1.

Key worps: Variety; Central extension; Nilpotent group.

Ruassunto. — Gruppi assolutamente-nilpotenti di classe k. Un gruppo G in una varieta ¥ vien detto asso-
lutamente-¥ (e si scrive G € AV) se ogni estensione centrale mediante G appartiene ancora a V. I gruppi as-
solutamente-abeliani sono stati caratterizzati da F. R. Beyl. In questa Nota si studiano i gruppi assoluta-
mente-nilpotenti di classe £. Si provano alcune proprieta di chiusura della classe A9, e si mostra che ogni
gruppo nilpotente di classe & si pud immergere in un AJ7-gruppo. Si descrivono i gruppi metaciclici assolu-
tamente-nilpotenti di classe £ ed i gruppi 2-generati e quelli infiniti 3-generati nella classe A9T,. Infine si
esaminano estensioni 1 >N —->H —>G — 1, con N < §,(H), ’ennesimo centro di H.

1. INTRODUCTION

A group G in a variety V is said to be absolutely-V if central extensions by G are
again in V. We denote the class of absolutely-¥ groups by A9.

Special cases of such groups have been considered by several authors, e.g. Varada-
rajan [9], Evens[5] and Beyl[1-3].

In this paper we concentrate upon the class A9, of absolutely-nilpotent of class &
groups. In[1] Beyl has classified all absolutely abelian groups; they are just those abe-
lian groups having trivial multipliers. Conditions sufficient to ensure that groups in nil-
potent varieties are absolute are studied in Passi and Vermani[7].

In sect. 2 of this paper we collect some general results about AJ7,-groups. Obviou-
sly the class A9, is not a variety, for example, it is not necessarily subgroup-closed, but
it does have some interesting closure properties: for instance, it is closed under some
nilpotent products (see 2.1). We do not know if A7, is closed under Cartesian produc-
ts, the best we can say here is that Cartesian powers of finite AJ(,-groups are AJ,-
groups (see 2.3). We have not been able to recognize if epimorphic images of an A9J7,-
group G are always A9, , we have only proved that this is true if G is finitely generated
(see 2.4).

Every nilpotent #-generator group of class £ can be embedded in a 2x#-generator
Ady-group (see 2.2), in particular the class of #-generator AJ(;-groups is not a small
class. In sect. 3, 4 and 5 we concentrate upon J(;-groups with 2 or 3 generators.

(*) Pervenuta all’Accademia il 5 luglio 1995.
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We describe all metacyclic A9t-groups (see [4], for £ = 2). Moreover we characte-
rize the 2-generator and the infinite 3-generator class 2 groups which are absolute-there
are no infinite 2-generator non abelian AJ7,-groups, and, in a sense, very few infinite 3-
generator AJT0,-groups.

Finally, in sect. 6 we study extensions 1 >N —>H -G —1 with N <, (H),
n>1.

Notation is as in[8].

If » =1 is an integer, x, y elements of a group G, H a subgroup of G, we put

[x’ﬂy] = [x’y7 ';2'>y]) [H>nG] = [H> G) AR G].

If F=(x,y) is a free group, we write

d;i =[x, 9,%,..,x,9,...,9], foranyn=0, 0<i<n.
1 n-—1i

Obviously [d; ,,x1=d;1 ,+, (modF") and [d; ,,y1=d; , ., (modF").
Moreover the set {d; ,|#eNy,i€ {0, 1,...,n}} is a basis for F' mod F”.
The following result will be used frequently:

1.1. (see[7,Theorem 5.1]) Let © be a variety of exponent 0. Then G € AV if and
only if V(F) < [R, F] for all free presentations 1 > R—>F —>G — 1.

2. GENERAL RESULTS

It is easy to see that A7, is closed under restricted direct products. In fact the re-
sult holds even for generalized nilpotent products.

2.1. Let {A;:i e} be any set of class £ groups.
If A; e A9, for any 7 € I and / < k, then the /-th nilpotent product of the A4, is in
A, .

Proor. Let G be such a group, and let 1 - R — F -5 G — 1 be a free presentation
of G. By 1.1 we have to prove that y,,,F < [R, Fl.

Write X;=m"'(A;), for any 7el; obviously it suffices to prove that
1,92, «-sye+11 € [R, Flforanyy;,ys, .o, Yo+ 1 EiUI X;. If thereexistr,s S k,r #s,
such thaty, € X, ,y; € X, for some b,; < k, then [yl,y:, onlelX, X FNy,F<R
and [y1,92, .., ¥, %:+11 € [R, F1. If 31,95, ..., 9; are in one and the same X;, and
Wer1€X;, then [y1,92, .o, 9, Ve +11 € [RN(X), (X)) c[R, Fl, since A, eAN,.
Now assume that y;,...,9.€X, and y.,,€X,, for suitable r#5s. Then
1,92, s V8> Vi1l € [ye X, , X, 1. But, for any j <k, [X,, X, .:.,X,, Yie—j1X 1<
<y FNIX, X <R and [X,, X, ... %, 74—, 1X, X, <R, Fl.

7
Hence, by induction on 7, using the three subgroups lemma, it is easy to verify that
[y,-X,,[Xx,X,,k...) X J1<I[R,F] for 1<i<k. Hence with i=F% we have

[y.X,,X,1<I[R,F], as required. ™
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For some nilpotent products we can drop the condition that the factors be
absolute.

2.2. Let {A;:i eI} be any set of class £ groups such that y, A, = y,A;, 7, jel.
Then, with / < &, the /-th nilpotent product of all A; with y,A; amalgamating is in
Ad,.

Proor. Similar to the proof of 2.1. W
For Cartesian products we have:

2.3. Let A be a finite AJ-group. Then every Cartesian power of A is in
A,

Proor. Let A’ be the Cartesian power of A with index set I, and G a group having
a central subgroup N such that G/N = A'.

To show that G is in 7, it is enough to show that every finitely generated subgroup
of G is in .

Thus, let H be a finitely generated subgroup of G. Then HN/N is a finitely genera-
ted subgroup of A, and the finiteness of A now implies that HN /N is a subgroup of
the direct product X of finitely many groups isomorphic to A, namely of diagonals of
powers A’ with J ¢ I. (The reader will recognize the genesis of this type of argument in
B. H. Neumann’s proof [6] that Cartesian products of finite groups are locally finite).
Note next that X is in A9, . Thus, if K is the subgroup of G such that K/N = X, it follo-
ws that K is in 7, and thus H is in 97, since K = H.

Therefore G is in 9, and A is in A%, as required. W

It would be nice to know if epimorphic images of A9(,-groups are always A7, . We
have not been able to confirm or deny this. For finitely generated groups, we
have:

2.4. If G is a finitely generated AJ7-group and N is a normal subgroup of G, then

Proor. Let G be a finitely generated nilpotent group. Then M(G) is finitely genera-
ted and so Hopf. Write © = 7.

Obviously it suffices to show that G is in AV if and only if ©(F) < [R, F] for some
free presentation 1 - R —F — G — 1 of G. For, let 1 >R, — F; - G — 1 any free
presentation of G. Then (R;NF{)/([R,,F,1V(F))) = My(G) = M(G) = (R, N
N F{)/[R,, F,], so that ©(F;) < [Ry, F;]. Then the result follows from 1.1. ®

We end this section with the following theorem, which in some sense reduces the
study of finitely generated AJ7,-groups to the cases of torsion-free groups and finite
groups (see also[1, Theorem 2.1]).
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2.5. Let G e AJ,. If G is finitely generated, then G can be embedded as a sub-
group of finite index in an AJY,-group which is the direct product of a finite AJ7,-group
and a finitely generated torsion-free AJ7,-group.

Proor. Let G be the torsion subgroup of G. Then 7G is finite and G /7G is a fini-
tely generated torsion-free AJ7.-group by 2.4. Since G is residually finite, there exists a
normal subgroup N in G such that NN G =1 and G/N is a finite group in A9,
again by 2.4. Then y:x e G~ (xN,x7G) € G/N X G/1G is an embedding. By 2.1
H=G/N x G/1G e A%, if £ > 1. Moreover G* has finite index in H since N* has fi-
nite index in G/7G. If £ =1, the result is trivial. ™

3. Meracycric AJG-GROUPS
Tueorem 3.1. Let G be a metacyclic p-group of class £. Then
(@) Ge A, if and only if one of the following holds:
(1) G = (x,9] || =p”,pr =", [x,y] =x"d‘">, with (p,s)=1, a<b+d,
b<c,and b<(k—-1)d, d>0;
) p=2, £>2 and G=(x,9||x| =292 " =x? = 1,8 =x"1+2"),
with 0 <m <k —1;
() p=2, k>2 and G={x,y||x| = 2%, %% =92 x* =x"1*7) with
SE02),0<m<k—-1,k—1-m<c<k-1;
() p=2,k>2and G = (x, 9| |x| = 2¢,x2" ' =42
<k-1.

b,xy=x_1>,with0<b <

(B) For any # = 2 there exists a group H, with a normal subgroup M < §,H such
that H/M =G and dH=Zn+k — 1.

Proor. Since G is metacyclic, G = (x,y), with |x| =p*, x?’ =y, [x,] = x?%
a<b+d, (p,s)=1,d=1.

Let 1R —>F—G—1 be a free presentation of G, with F = (x, y).

Assume first that p # 2. Then (xy)" ' =x?""'3*" ", and we may suppose |x| < |y|

and b < ¢ (replacing eventually y by xy). Then [R, F1=(d, ,, dg,b;, ,do.rs dof,l,dg,m;’m)F ",
withl<n 1<i<n,1<m<k-1,0sh<k—-1,r=s5s.Fromy,, ;F<I[R Flit
follows that dy ;€ [R, F] and
doi—1=(dok 1dfy " P o P

since the dj ; are independent modF".

Hence B —py —1=10,p% " V4* =18 + pba = 0 and that happens if and only if
bs(k—1)d.

Therefore if G is in A, then b < (£ — 1)d.

Conversely it is easy to see that G is in AJ, if () holds.
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Furthermore, for any / = 2 we have
mdm
[N, F1< F'{d; ,, d§ly 1, do, 41, do s 1din”")

1<u, k<r,1s<sms<k-1, 1<,
From ’)//e+1_2F= [N,,_,Flit follows dO b-24+1-1€ [N,,_,F] and
dosrios =ik 2va-ndbs 3" P @D s o)
and from that 5 < (b —2)d. Thusa <b+d<(k—1)dand Gisof class<k—1,a
contradiction.

Then, with T = [N,;_F], the group H = F/T has class =s+/— 1 and N/T <
< ¢;H, hence ($) holds.

Now assume that p = 2.

If |x| < |y|, arguing as before we can prove that G has the structure in () and that
(8) holds. Now let |x| > |y|; then we can assume x? = x'* % with ¢ odd (if [x,y] =
=x*%, then (x)*" = x2* " # 1 and, replacing y by xy, we get |x| < |y|).

Then [x,,y] =x%", for every 7, and |x| = 2* since G has class &, also b=k —1.

First suppose that # # —1; thens= —1 + 2”5 w1th5-,=é 0(2). By induction on 5 it is
easy to prove that, for every » € N, we have [x, y 1= [x, y]zbm/g B#0(2). Thus

2k-m—1, and [N,Fl=(d;,,d2%",d2,,dy,,d}dZ)F" with neN,
1Sz'$n, osbsk— 1,r2k 1<I<k-1.Ib>c+m andGeAf)Zkthenc+
+m<k—1,andsoc+m=k—1,c=k—m—1,b=Fkand (7)) holds. Ifb < c + m
and Ge Ay, then b <k —1, thus b=k — 1 and (7z) holds.

As in the prev1ous case we prove that (8) holds and that G € A, if either (i7) or
(777) hold.

Finally suppose x” =x ~'. Then, if 5 =k — 1, we get

G=(xylx*=1,x"=y" w=x1), 1<h<k-1,

and [N, F] d;,,d2y " do,,do wdZ o) F", with neN, 1<i<n, 0<Sh<k-I,
2k, 1sm<k—1. Thus dy,_;€[N,F] and arguing as in the previous case

dok” 3¢[N,; \F1.Ifb =k, then G = (x) X(y), with |x| =28, x? =x"1, |y| =

0 < h < k. Then, with G, = (a) x(b), |a| = Zk”’,ab—a"l |b|—2b wehavea €

€¢,G,,and G, has classk + #. From G, /(a 2 } = G it follows that G is not in A97;, and

that (B) holds. ®

4. 2.GENERATOR AJ(,-GROUPS

We give a complete description of 2-generator A9J(,-groups.
We start with an easy Lemma:

Lemma 4.1. Let G be a 2-generator finite p-group and 1 - R —F — G — 1 a free
presentation of G, with F 2-generator. Then either G is metacyclic or R < F?[F', F]
and, if p =2, R < (x%,9%)(F'")*[F', F], with F = {x, ).
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Proor. There exist free generators x, y of F such that

R =(x“[x,91,y°[x,y1°,[x,y}*) [F', F1,
where a, B, ¥, 6, u € Z. Obviouslyp |a and p | B; if p & u, then G is abelian. If eitherp + y
orp 4 6, then either (x)[G', Gl or (y)[G', Glis normal in G/[G', G] and G/[G', G]
is metacyclic; so G is metacyclic.
Finally if p|y, plu, pld, then R<FP[F' F], and, if p=2, R<
< (x?,9?)(F')’[F',F]. =

Tueorem 4.2. Let G be a 2-generator finite p-group.
Then G € A3, if and only if G is metacyclic and

G ={a,b||a| =p°,a®" = b ,[a,b] = a®’),
where (k,p) =1, B<y, a<f+0 and B<0.

Proor. Such a group is in AJ, (see Theorem 3.1).

Now assume that G = (a, b) is a p-group in AJ,.

If G is metacyclic, then G has the required structure (see Theorem 3.1).

Assume for a contradiction that G is non-metacyclic, and let 1 >R -F -G — 1
be a free presentation of G. Thus we have R < F?[F’, F] by Lemma 4.1; hence if
p#2,[R,Fl=[FF, FI[F',F,F1=(F'P[F',F,F] and [F', F] < [R, F], contradic-
ting 1.1.

Now let p =2; then for some free generators x, y of F we have R <
< (x?,9?)F')?[F',Fland [R, F1 < ([x?, 521, [y?, x])(y3F)?y4,F = ([x, y)* [x, , x],
[x, y1?[x,9,9y)(y3F)y,F. From [x,y,x]1e[R,F] it follows [x,y,x]= [x,y]*-
Ix,y,xP [x, y1%[x, 9, x)*a, witha e (y; F)*y,F and 2h + 2k = 0,k =0(2), h =1(2),
contradiction. M

A finite group is in AJT, if and only if its Sylow subgroups are. Furthermore the fol-
lowing result shows that there are no infinite 2-generator non abelian AJT,-groups.
Hence Theorem 4.2 gives a complete description of 2-generator AJ(,-groups.

Tueorem 4.3. There are no 2-generator infinite non-abelian AJ7,-groups.

Proor. Assume for a contradiction that G is an infinite 2-generator non-abelian
Ad,-group. Then G/G' is again infinite and 2-generator; we may write G/G' =
= (xG') X (yG'), withyG' of infinite order. Then G = (x, y) and (x) N (y) = 1. By 2.4
we can assume |[x,y]| =p. Thus x?, y?» € {G and we can assume that x is a
p-element,

If (x) N G' = 1, then the group (x, y)/{x?, y?) is isomorphic to D, if p = 2 and is
not metacyclic if p # 2, in any case it is not in AJ,.

If (x) NG’ =(x*") # 1, then |x| =p%* ' and the group (x,y)/(y*""") is not in
AJ, by Theotem 4.2. ®

By contrast
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Trueorem 4.4. Every infinite 2-generator nil-2 group is residually A9, .

Proor. Let G be a 2-generator infinite nil-2 group. Then G/ G is 2-generator and
infinite; we can assume that G/G' = (aG') X (bG'), with bG' of infinite order. Thus
G =(a,b) and (a) N (b) = 1. Let T be the torsion subgroup of G, then T is finite and
we can assume T to be a p-group (p a prlme)

Assume first that |[a b1| =p*. Then 2", b*" € £G. I 4 is torsion-free, then, for
any y =k, with N, = (a?"[b, a], bP (6, al), we have G/N, € A9, ; obviously NN, = 1
and G is residua]ly A,

If |a| =p?, then h=k; for any y =h + 1, with N, =(b*"[b,a]), we have
G/N, = (b,ab|b*""" =1,b"" = (ab¥’,[b,ab] =4?"), h<y and G/N,eAN, by
Theorem 4.2; moreover NN, =1 as required.

Now let [4, 5] be torsion- free then, with M, = ([a, by ), we have NM, = 1 and
G/M, residually A, by the previous case, thus G is residually A, as requi-
red. =

5. INFINITE 3-GENERATOR AJ(,-GROUPS

By 2.1 the direct product of an infinite cyclic group with a finite 2-generator AJT,-
group is in AJT,. The aim of this section is to prove that there are no other infinite 3-ge-
nerator AJl,-groups.

TuEOREM 5.1. A non-abelian infinite 3-generator group is in AJ, if and only if it is
isomorphic to C,, X H, with H € AJ,, H finite.

Proor. As remarked above, such groups are in AJY,.

Conversely, assume that G € AJ, is a 3-generator infinite group, neither 2-genera-
tor nor abelian. Then G/G’ is again a 3-generator infinite group and we can write
G/G'=(aG") x (bG") X (¢G"), with ¢G' of infinite order. Then {a,5) N{c) = 1.
We prove that G/([4, b]) is abelian, and from that it follows [2, ¢] = [4,6%], [/, c] =
= [4#,b] for some a, BeZ and [a,ca?b '1=1[b,caPb™*1=1, so G ={a, b) X
X {cab~), as required.

G/(la, bl)is in AT, so we may assume [, 5] = 1, (a) N (b) = 1 and prove that G
is abelian.

It suffices to show that (*) if [4,c] =1, then [, c] = 1.

In fact then G/([a,c]) is abelian, so [b,c]=[a®,c] for some a e Z, hence
[ba=%,c]l=1 and by (¥)[a,c] =1.

Then assume [@, ¢c] = [4,5] = 1. Since G/(a) is a 2-generator infinite A,-group,
it follows that G/(a) is abelian, by Theorem 4.3, hence [4, c] = a” for some y € Z.
Then G = ({a) X (b)) ¥{(c) and G =(a,b,c|[a,b] = [a,c]=1,[b,c] =a",a" =1,
b# =1) for some a, BeN, (@ or B=0 if a or b torsion-free).

Let 15 N—>F—>G—1 be a free presentation of G with F =(x,y,z),
N={(x%y? [z,y1x",[x,y],[x,2]ff. Then N=(x% 9% [z,91x?,[x, 9], [x, 2], [y, 21%)-
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J[F', F1and [N, F] = ([x,y1%,[x,2]*, [y, x), [y, 20, [z, 9, z]lx, 2", [z, 9, y1[x, 17,
[x,z,x]), [x,2,9], [x,2,2], [x,9,%], [x,9,9], [x,9,2], [z,9,%]) [F', F, Fl.

From [z, 9, z] € [N, F1 it follows easily that [z, y,z] = ([z, y, z1[x, 21" }* ([x, z]*)",
and from that u =1, y =av, so a divides y, [6,c]=1 and G is abelian, as
required. ®

6. HIGHER NILPOTENT EXTENSIONS

Let G be an absolutely nilpotent of class # and H a group possessing a normal sub-
group N contained in the #-th term {, H of the upper central seties such that H/N =
= G, then H/[H, N]is a central extension by G so has class £, and thus H has class at
most £ + 7 — 1, one less than is granted by general dispensation. In section 4 we sho-
wed that if G is a metacyclic p-group of class £ and # any integer = 2, then there exists
an extension 1 > N—>H—>G — 1, with N<{,H and H of class s =#» + &£ — 1.

We believe that for most constellations of £ and #, every nilpotent group G of class
k has an «z-th central extensions 1 > N—-H —>G —1,N<¢{,H,» > 1, such that H
is of class at least £+ — 1.

We have been able to prove this only for class 2 finite p-groups and for 2-generator
p-groups of class < 3. We start with the following remark:

Tueorem 6.1. Let G be a finite p-group of class £ = 2. Then for any # = & there
exists a group H of class = # + 1 with a normal subgroup M such that M < ¢, H and
H/M=G.

Proor. Let 1 >R —F — G — 1 be a free presentation of G, with d(F) = d(G),
where d(G) is the minimum number of generators of the group G. Then R < F'F?,
so [R,F1<[F'F? F]l=[F' FI[F?,F]l< (F'Py;F and, by induction on 7, for
every i =1, [R,;F1<(F'Vy,;,.F. Therefore, with N =[R,,F], we get R/N <
<y,(F/N), (F/N)/(R/N)=G, and the group F/N has class=#» + 1 since
Vo 1FE(F' Py, F. W

Tueorem 6.2. Let G be a 2-generator p-group of class < 3. Then for every integer
n > 1 there exists a group H of class #» + 2 with a normal subgroup M such that M <
<y,H and H/M =G.

Proor. If G is metacyclic, the result follows from Theorem 3.1. Otherwise, by
Lemma 4.1, there exists a free presentation of G 1 >R —-F — G — 1, F = (x, y) such
that R < F'F? and R < (x?,92) (F')’[F',Flif p = 2.

Obviously v, +3F <[R,,_F], since y,F <R. We show that, for every » = 1,

(6.1) vn+2F %£[R,,F].
From this the result follows. In fact, if y,,;F ¥£[R,,F], then the group H =
=F/[R,,_F] has class » + 2 and, with M = R/[R,,_F], we have M <y, H<
<y,Hand H/M =F/R=G.Ify,,;F < [R,,F], then the group H = F/[R, ,F] has
class # + 2 and, with M = R/[R, ,F] we have M <y,H and H/M =G.
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To establish (6.1) assume first p# 2. Then [R,F]<[F’[F',F],F]l=
=[F?,Fly,F=(F'Vy4F and, for every n=21, [R,,F1<(y,+:F¥y,+sF.
Then Vn+2Fn[R)nF]Syn+2F0(7/”+lF)pyn+3F=Vn+3F(yn+2Fn(Vn+1F)p):
=y, +3F(y,+,FP. Therefore y, . ,F £[R,,F], since y,.2F €y, .+3F(y,+.Fy.

Assume now p=2. Then [R,F]<{lx?9],[y% 1) (y;F)y,F=(lx,y]*
“[x,9,x],[x, 91 [x, y, y]) (75 F)*y 4 F, and, by induction on 7, it is easy to show that, for
every n 21, [R,,F1<(y,4,F)y,4sFF"<d,; ,d?,_1,d;,d7-1,-1|0<i<n—1,

1</7<n).
Assume by contradiction y,,,F <[R, ,F] for some »=1. Then d, , €[N, ,F] and
n—1 7
(62) dO, n= il;IO diljiﬂ dt%}izi— 1]'];[1 d//?n djzfil, n— 1d

for some integers b;, k; and a € F"(y, 4 ,F)?y, s F.
The elements d; ,,d; ,—1,7€{0, ...,n = 1},7€ {0, ..., n}, are free generators of
Y,+1Fmody, s FF", thus from (6.2) it follows
1=5hy(2), 0=k, (2), b;+k=002), forlsisn-—1,
2b+ 2k, ,=0(2), for0<i<n—1,
and that is impossible. ®
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