ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

PATRIZIA LONGOBARDI, TRUEMAN MACHENRY, MERCEDE MAJ, JAMES WIEGOLD

On absolutely-nilpotent of class k groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 6 (1995), n.4, p. 201–209.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1995_9_6_4_201_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1995.

Teoria dei gruppi. — On absolutely-nilpotent of class k groups. Nota (*) di Patrizia Longobardi, Trueman MacHenry, Mercede Maj e James Wiegold, presentata dal Socio G. Zappa.

ABSTRACT. — A group G in a variety ∇ is said to be absolutely- ∇ , and we write $G \in A \nabla$, if central extensions by G are again in ∇ . Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class $A \mathcal{R}_k$ of absolutely-nilpotent of class k groups. We prove some closure properties of the class $A \mathcal{R}_k$ and we show that every nilpotent of class k group can be embedded in an $A \mathcal{R}_k$ -group. We describe all metacyclic $A \mathcal{R}_k$ -groups and we characterize 2-generator and infinite 3-generator $A \mathcal{R}_2$ -groups. Finally we study extensions $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$, with $N \leq \zeta_n(H)$, the *n*-centre of H, with n > 1.

KEY WORDS: Variety; Central extension; Nilpotent group.

RIASSUNTO. — Gruppi assolutamente-nilpotenti di classe k. Un gruppo G in una varietà \mathfrak{V} vien detto assolutamente- \mathfrak{V} (e si scrive $G \in A \mathfrak{V}$) se ogni estensione centrale mediante G appartiene ancora a \mathfrak{V} . I gruppi assolutamente-abeliani sono stati caratterizzati da F. R. Beyl. In questa Nota si studiano i gruppi assolutamente-nilpotenti di classe k. Si provano alcune proprietà di chiusura della classe $A\mathfrak{N}_k$, e si mostra che ogni gruppo nilpotente di classe k si può immergere in un $A\mathfrak{N}_k$ -gruppo. Si descrivono i gruppi metaciclici assolutamente-nilpotenti di classe k ed i gruppi 2-generati e quelli infiniti 3-generati nella classe $A\mathfrak{N}_2$. Infine si esaminano estensioni $1 \to N \to H \to G \to 1$, con $N \leq \zeta_n(H)$, l'ennesimo centro di H.

1. INTRODUCTION

A group G in a variety \mathfrak{V} is said to be *absolutely*- \mathfrak{V} if central extensions by G are again in \mathfrak{V} . We denote the class of absolutely- \mathfrak{V} groups by $A\mathfrak{V}$.

Special cases of such groups have been considered by several authors, *e.g.* Varada-rajan [9], Evens [5] and Beyl [1-3].

In this paper we concentrate upon the class $A\mathcal{H}_k$ of absolutely-nilpotent of class k groups. In [1] Beyl has classified all absolutely abelian groups; they are just those abelian groups having trivial multipliers. Conditions sufficient to ensure that groups in nilpotent varieties are absolute are studied in Passi and Vermani [7].

In sect. 2 of this paper we collect some general results about $A\mathcal{N}_k$ -groups. Obviously the class $A\mathcal{N}_k$ is not a variety, for example, it is not necessarily subgroup-closed, but it does have some interesting closure properties: for instance, it is closed under some nilpotent products (see 2.1). We do not know if $A\mathcal{N}_k$ is closed under Cartesian products, the best we can say here is that Cartesian powers of finite $A\mathcal{N}_k$ -groups are $A\mathcal{N}_k$ -groups (see 2.3). We have not been able to recognize if epimorphic images of an $A\mathcal{N}_k$ -group G are always $A\mathcal{N}_k$, we have only proved that this is true if G is finitely generated (see 2.4).

Every nilpotent *n*-generator group of class *k* can be embedded in a 2*n*-generator $A\mathcal{N}_k$ -group (see 2.2), in particular the class of *n*-generator $A\mathcal{N}_k$ -groups is not a small class. In sect. 3, 4 and 5 we concentrate upon \mathcal{N}_k -groups with 2 or 3 generators.

(*) Pervenuta all'Accademia il 5 luglio 1995.

We describe all metacyclic $A\mathfrak{N}_k$ -groups (see [4], for k = 2). Moreover we characterize the 2-generator and the infinite 3-generator class 2 groups which are absolute-there are no infinite 2-generator non abelian $A\mathfrak{N}_2$ -groups, and, in a sense, very few infinite 3-generator $A\mathfrak{N}_2$ -groups.

Finally, in sect. 6 we study extensions $1 \to N \to H \to G \to 1$ with $N \leq \zeta_n(H)$, n > 1.

Notation is as in [8].

If $n \ge 1$ is an integer, x, y elements of a group G, H a subgroup of G, we put $[x, {}_{n}y] = [x, y, ..., y], [H, {}_{n}G] = [H, G, ..., G].$

If $F = \langle x, y \rangle$ is a free group, we write

 $d_{i,n} = [x, y, x, ..., x, y, ..., y],$ for any $n \ge 0, 0 \le i \le n$.

Obviously $[d_{i,n}, x] \equiv d_{i+1,n+1} \pmod{F'}$ and $[d_{i,n}, y] \equiv d_{i,n+1} \pmod{F'}$.

Moreover the set $\{d_{i,n} | n \in \mathbb{N}_0, i \in \{0, 1, ..., n\}\}$ is a basis for $F' \mod F''$. The following result will be used frequently:

1.1. (see [7, Theorem 5.1]) Let \mathfrak{V} be a variety of exponent 0. Then $G \in A \mathfrak{V}$ if and only if $\mathfrak{V}(F) \leq [R, F]$ for all free presentations $1 \to R \to F \to G \to 1$.

2. General results

It is easy to see that $A\pi_k$ is closed under restricted direct products. In fact the result holds even for generalized nilpotent products.

2.1. Let $\{A_i : i \in I\}$ be any set of class k groups.

If $A_i \in A\mathcal{H}_k$ for any $i \in I$ and l < k, then the *l*-th nilpotent product of the A_i is in $A\mathcal{H}_k$.

PROOF. Let G be such a group, and let $1 \to R \to F \xrightarrow{\pi} G \to 1$ be a free presentation of G. By 1.1 we have to prove that $\gamma_{k+1}F \leq [R, F]$.

Write $X_i = \pi^{-1}(A_i)$, for any $i \in I$; obviously it suffices to prove that $[y_1, y_2, \dots, y_{k+1}] \in [R, F]$ for any $y_1, y_2, \dots, y_{k+1} \in \bigcup_{i \in I} X_i$. If there exist $r, s \leq k, r \neq s$, such that $y_b \in X_r, y_j \in X_s$, for some $b, j \leq k$, then $[y_1, y_2, \dots, y_k] \in [X_r, X_s]^F \cap \gamma_k F \leq R$ and $[y_1, y_2, \dots, y_k, y_{k+1}] \in [R, F]$. If y_1, y_2, \dots, y_k are in one and the same X_i , and $y_{k+1} \in X_i$, then $[y_1, y_2, \dots, y_k, y_{k+1}] \in [R \cap \langle X_i \rangle, \langle X_i \rangle] \subseteq [R, F]$, since $A_i \in A \mathcal{H}_k$. Now assume that $y_1, \dots, y_k \in X_r$ and $y_{k+1} \in X_s$, for suitable $r \neq s$. Then $[y_1, y_2, \dots, y_k, y_{k+1}] \in [\gamma_k X_r, X_s]$. But, for any j < k, $[X_s, X_r, \dots, X_r, \gamma_{k-j-1}X_r] \leq \gamma_k F \cap [X_s, X_r]^F \leq R$ and $[X_s, X_r, \dots, X_r, \gamma_{k-j-1}X_r, X_r] \in [R, F]$.

Hence, by induction on *i*, using the three subgroups lemma, it is easy to verify that $[\gamma_i X_r, [X_s, X_r, \dots, X_r]] \leq [R, F]$ for $1 \leq i \leq k$. Hence with i = k we have $[\gamma_k X_r, X_s] \leq [R, F]$, as required.

For some nilpotent products we can drop the condition that the factors be absolute.

2.2. Let $\{A_i : i \in I\}$ be any set of class k groups such that $\gamma_k A_i \cong \gamma_k A_j$, $i, j \in I$. Then, with l < k, the *l*-th nilpotent product of all A_i with $\gamma_k A_i$ amalgamating is in $A \mathcal{N}_k$.

PROOF. Similar to the proof of 2.1.

For Cartesian products we have:

2.3. Let A be a finite $A\mathcal{R}_k$ -group. Then every Cartesian power of A is in $A\mathcal{R}_k$.

PROOF. Let A^I be the Cartesian power of A with index set I, and G a group having a central subgroup N such that $G/N \cong A^I$.

To show that G is in \mathcal{N}_k , it is enough to show that every finitely generated subgroup of G is in \mathcal{N}_k .

Thus, let H be a finitely generated subgroup of G. Then HN/N is a finitely generated subgroup of A^I , and the finiteness of A now implies that HN/N is a subgroup of the direct product X of finitely many groups isomorphic to A, namely of diagonals of powers A^J with $J \subseteq I$. (The reader will recognize the genesis of this type of argument in B. H. Neumann's proof [6] that Cartesian products of finite groups are locally finite). Note next that X is in $A\pi_k$. Thus, if K is the subgroup of G such that K/N = X, it follows that K is in π_k , and thus H is in π_k since $K \ge H$.

Therefore G is in \mathfrak{N}_k and A^I is in $A\mathfrak{N}_k$, as required.

It would be nice to know if epimorphic images of $A\mathcal{N}_k$ -groups are always $A\mathcal{N}_k$. We have not been able to confirm or deny this. For finitely generated groups, we have:

2.4. If G is a finitely generated $A\mathfrak{N}_k$ -group and N is a normal subgroup of G, then G/N is in $A\mathfrak{N}_k$.

PROOF. Let G be a finitely generated nilpotent group. Then M(G) is finitely generated and so *Hopf*. Write $\mathfrak{V} = \mathfrak{N}_k$.

Obviously it suffices to show that G is in $A \mathfrak{V}$ if and only if $\mathfrak{V}(F) \leq [R, F]$ for some free presentation $1 \to R \to F \to G \to 1$ of G. For, let $1 \to R_1 \to F_1 \to G \to 1$ any free presentation of G. Then $(R_1 \cap F'_1)/([R_1, F_1]V(F_1)) \cong M_V(G) \cong M(G) \cong (R_1 \cap F'_1)/[R_1, F_1]$, so that $\mathfrak{V}(F_1) \leq [R_1, F_1]$. Then the result follows from 1.1.

We end this section with the following theorem, which in some sense reduces the study of finitely generated $A\mathcal{N}_k$ -groups to the cases of torsion-free groups and finite groups (see also [1, Theorem 2.1]).

2.5. Let $G \in A\mathcal{N}_k$. If G is finitely generated, then G can be embedded as a subgroup of finite index in an $A\mathcal{N}_k$ -group which is the direct product of a finite $A\mathcal{N}_k$ -group and a finitely generated torsion-free $A\mathcal{N}_k$ -group.

PROOF. Let τG be the torsion subgroup of G. Then τG is finite and $G/\tau G$ is a finitely generated torsion-free $A\mathcal{H}_k$ -group by 2.4. Since G is residually finite, there exists a normal subgroup N in G such that $N \cap \tau G = 1$ and G/N is a finite group in $A\mathcal{H}_k$, again by 2.4. Then $\chi: x \in G \mapsto (xN, x \tau G) \in G/N \times G/\tau G$ is an embedding. By 2.1 $H = G/N \times G/\tau G \in A\mathcal{H}_k$ if k > 1. Moreover G^{χ} has finite index in H since N^{χ} has finite index in $G/\tau G$. If k = 1, the result is trivial.

3. Metacyclic $A\mathfrak{N}_k$ -groups

THEOREM 3.1. Let G be a metacyclic p-group of class k. Then

(\mathfrak{a}) $G \in A\mathfrak{N}_k$ if and only if one of the following holds:

(i) $G = \langle x, y | |x| = p^a, x^{p^b} = y^{p^c}, [x, y] = x^{p^d s} \rangle$, with $(p, s) = 1, a \le b + d, b \le c$, and $b \le (k-1)d, d > 0$;

(*ii*) p = 2, k > 2 and $G = \langle x, y | |x| = 2^k$, $y^{2^{k-m-1}} = x^{2^k} = 1$, $x^y = x^{-1+2^m} \rangle$, with 0 < m < k - 1;

(*iii*) p = 2, k > 2 and $G = \langle x, y | |x| = 2^k, x^{2^{k-1}} = y^{2^c}, x^y = x^{-1+2^m s} \rangle$, with $s \neq 0(2), 0 < m < k-1, k-1-m \le c \le k-1$;

(*iv*) p = 2, k > 2 and $G = \langle x, y | |x| = 2^k, x^{2^{k-1}} = y^{2^k}, x^y = x^{-1} \rangle$, with 0 < h < k - 1.

(B) For any $n \ge 2$ there exists a group H, with a normal subgroup $M \le \zeta_n H$ such that $H/M \cong G$ and $clH \ge n + k - 1$.

PROOF. Since G is metacyclic, $G = \langle x, y \rangle$, with $|x| = p^a$, $x^{p^b} = y^{p^c}$, $[x, y] = x^{p^{d_s}}$, $a \le b + d$, (p, s) = 1, $d \ge 1$.

Let $1 \to R \to F \to G \to 1$ be a free presentation of *G*, with $F = \langle \bar{x}, \bar{y} \rangle$. Assume first that $p \neq 2$. Then $(xy)^{p^{a-1}} = x^{p^{a-1}}y^{p^{a-1}}$, and we may suppose $|x| \leq |y|$

Assume first that $p \neq 2$. Then $(xy)^p = x^p \quad y^p$, and we may suppose $|x| \leq |y|$ and $b \leq c$ (replacing eventually y by xy). Then $[R, F] = \langle d_{i,n}, d_{0,k}^{p^b}, d_{0,r}, d_{0,m}^{-1} d_{0,0}^{p^{md}} \rangle F''$, with $1 \leq n, 1 \leq i \leq n, 1 \leq m \leq k-1, 0 \leq b \leq k-1, r \geq s$. From $\gamma_{k+1}F \leq [R, F]$ it follows that $d_{0,k-1} \in [R, F]$ and

$$d_{0,k-1} = (d_{0,k-1}^{-1} d_{0,0}^{p^{(k-1)d_s^{k-1}}})^{\beta} d_{0,0}^{p^{b_\alpha}} (d_{0,k-1})^{p^{b_\gamma}}$$

since the $d_{b,l}$ are independent mod F''.

Hence $\beta - p^b \gamma - 1 = 0$, $p^{(k-1)d} s^{k-1} \beta + p^b \alpha = 0$ and that happens if and only if $b \leq (k-1)d$.

Therefore if G is in $A\mathfrak{N}_k$ then $b \leq (k-1)d$.

Conversely it is easy to see that G is in $A\mathfrak{N}_k$ if (i) holds.

ON ABSOLUTELY-NILPOTENT OF CLASS k groups

Furthermore, for any $l \ge 2$ we have

$$[N, {}_{l}F] \leq F'' \langle d_{i,n}, d_{0,b+l}^{p^{b}}, d_{0,r+l}, d_{0,m+l}^{-1}, d_{0,l}^{p^{md,m}} \rangle$$

 $1 \leq n, k \leq r, 1 \leq m \leq k-1, 1 \leq i.$

From $\gamma_{k+l-2}F = [N, l-1F]$ it follows $d_{0,k-2+l-1} \in [N, l-1F]$ and

$$d_{0,k+l-3} = (d_{0,k-2+(l-1)}^{-1} d_{0,l-1}^{p^{(k-2)d_sk-2}})^{\beta} (d_{0,l}^{p^{b}})^{\alpha} (d_{0,k+l-2}^{p^{b}})^{\gamma}$$

and from that $b \leq (k-2)d$. Thus $a \leq b + d \leq (k-1)d$ and G is of class $\leq k - 1$, a contradiction.

Then, with T = [N, l-1]F, the group H = F/T has class $\ge s + l - 1$ and $N/T \le \le \zeta_l H$, hence (B) holds.

Now assume that p = 2.

If $|x| \le |y|$, arguing as before we can prove that G has the structure in (*i*) and that (B) holds. Now let |x| > |y|; then we can assume $x^y = x^{1+2t}$, with t odd (if $[x, y] = x^{4s}$, then $(yx)^{2^{s-1}} = x^{2^{s-1}} \ne 1$ and, replacing y by xy, we get $|x| \le |y|$).

Then $[x_{i},y] = x^{2^{i}t}$, for every *i*, and $|x| = 2^{k}$ since G has class k, also $b \ge k-1$.

First suppose that $t \neq -1$; then $t = -1 + 2^m s$ with $s \neq 0(2)$. By induction on b it is easy to prove that, for every $b \in \mathbb{N}$, we have $[x, y^{2^b}] = [x, y]^{2^{b+m}\beta}$, $\beta \neq 0(2)$. Thus $c \ge k - m - 1$, and $[N, F] = \langle d_{i,n}, d_{0,b}^{2^{c+m}}, d_{0,b}^{2^b}, d_{0,r}, d_{0,l}^{-1} d_{0,0}^{2^{l}t} \rangle F''$ with $n \in \mathbb{N}$, $1 \le i \le n, 0 \le b \le k - 1, r \ge k, 1 \le l \le k - 1$. If b > c + m and $G \in A\mathfrak{N}_k$ then $c + m \le k - 1$, and so c + m = k - 1, c = k - m - 1, b = k and (*ii*) holds. If $b \le c + m$ and $G \in A\mathfrak{N}_k$, then $b \le k - 1$, thus b = k - 1 and (*iii*) holds.

As in the previous case we prove that (\mathcal{B}) holds and that $G \in A\mathcal{N}_k$ if either (ii) or (iii) hold.

Finally suppose $x^{y} = x^{-1}$. Then, if b = k - 1, we get

$$G = \langle x, y | x^{2^{k}} = 1, x^{2^{k-1}} = y^{2^{k}}, x^{y} = x^{-1} \rangle, \qquad 1 \le b < k-1,$$

and $[N, F] = \langle d_{i,n}, d_{0,b}^{2^{k-1}}, d_{0,r}, d_{0,m} d_{0,0}^{2^m} \rangle F''$, with $n \in \mathbb{N}$, $1 \le i \le n$, $0 \le b \le k-1$, $r \ge k$, $1 \le m \le k-1$. Thus $d_{0,k-1} \in [N, F]$ and arguing as in the previous case $d_{0,k+l-3} \notin [N,_{l-1}F]$. If b = k, then $G = \langle x \rangle \rtimes \langle y \rangle$, with $|x| = 2^k, x^y = x^{-1}, |y| = 2^b$, 0 < b < k. Then, with $G_n = \langle a \rangle \rtimes \langle b \rangle$, $|a| = 2^{k+b}, a^b = a^{-1}$, $|b| = 2^b$, we have $a^{2^k} \in \zeta_n G_n$, and G_n has class k + n. From $G_n / \langle a^{2^k} \rangle \cong G$ it follows that G is not in $A\mathcal{H}_k$ and that (\mathcal{B}) holds.

4. 2-Generator $A\mathfrak{N}_2$ -groups

We give a complete description of 2-generator $A\mathfrak{N}_2$ -groups. We start with an easy Lemma:

LEMMA 4.1. Let G be a 2-generator finite p-group and $1 \to R \to F \to G \to 1$ a free presentation of G, with F 2-generator. Then either G is metacyclic or $R \leq F^p[F', F]$ and, if p = 2, $R \leq \langle x^2, y^2 \rangle (F')^2[F', F]$, with $F = \langle x, y \rangle$.

PROOF. There exist free generators x, y of F such that

$$R = \left\langle x^{\alpha} [x, y]^{\gamma}, y^{\beta} [x, y]^{\delta}, [x, y]^{\mu} \right\rangle [F', F],$$

where $\alpha, \beta, \gamma, \delta, \mu \in \mathbb{Z}$. Obviously $p | \alpha$ and $p | \beta$; if $p \nmid \mu$, then G is abelian. If either $p \nmid \gamma$ or $p \nmid \delta$, then either $\langle x \rangle [G', G]$ or $\langle y \rangle [G', G]$ is normal in G/[G', G] and G/[G', G] is metacyclic; so G is metacyclic.

Finally if $p|\gamma$, $p|\mu$, $p|\delta$, then $R \leq F^p[F', F]$, and, if p = 2, $R \leq \langle x^2, y^2 \rangle (F')^2[F', F]$.

THEOREM 4.2. Let G be a 2-generator finite p-group.

Then $G \in A\mathfrak{N}_2$ if and only if G is metacyclic and

$$G = \langle a, b \mid |a| = p^{a}, a^{p^{\beta}} = b^{p^{\gamma}}, [a, b] = a^{kp^{\delta}} \rangle,$$

where (k, p) = 1, $\beta \leq \gamma$, $\alpha \leq \beta + \delta$ and $\beta \leq \delta$.

PROOF. Such a group is in $A\mathcal{N}_2$ (see Theorem 3.1).

Now assume that $G = \langle a, b \rangle$ is a *p*-group in $A\mathfrak{N}_2$.

If G is metacyclic, then G has the required structure (see Theorem 3.1).

Assume for a contradiction that *G* is non-metacyclic, and let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a free presentation of *G*. Thus we have $R \leq F^p[F', F]$ by Lemma 4.1; hence if $p \neq 2$, $[R, F] = [F^p, F][F', F, F] = (F')^p[F', F, F]$ and $[F', F] \leq [R, F]$, contradicting 1.1.

Now let p = 2; then for some free generators x, y of F we have $R \le \le \langle x^2, y^2 \rangle (F')^2 [F', F]$ and $[R, F] \le \langle [x^2, y^2], [y^2, x] \rangle (\gamma_3 F)^2 \gamma_4 F = \langle [x, y]^2 [x, y, x], [x, y]^2 [x, y, y] \rangle (\gamma_3 F)^2 \gamma_4 F$. From $[x, y, x] \in [R, F]$ it follows $[x, y, x] = [x, y]^{2b} \cdot [x, y, x]^b [x, y]^{2k} [x, y, x]^k a$, with $a \in (\gamma_3 F)^2 \gamma_4 F$ and 2b + 2k = 0, $k \equiv 0(2)$, $b \equiv 1(2)$, contradiction.

A finite group is in $A\pi_2$ if and only if its Sylow subgroups are. Furthermore the following result shows that there are no infinite 2-generator non abelian $A\pi_2$ -groups. Hence Theorem 4.2 gives a complete description of 2-generator $A\pi_2$ -groups.

THEOREM 4.3. There are no 2-generator infinite non-abelian $A\mathcal{N}_2$ -groups.

PROOF. Assume for a contradiction that G is an infinite 2-generator non-abelian $A\mathfrak{N}_2$ -group. Then G/G' is again infinite and 2-generator; we may write $G/G' = \langle xG' \rangle \times \langle yG' \rangle$, with yG' of infinite order. Then $G = \langle x, y \rangle$ and $\langle x \rangle \cap \langle y \rangle = 1$. By 2.4 we can assume |[x, y]| = p. Thus x^p , $y^p \in \zeta G$ and we can assume that x is a *p*-element.

If $\langle x \rangle \cap G' = 1$, then the group $\langle x, y \rangle / \langle x^p, y^p \rangle$ is isomorphic to D_4 if p = 2 and is not metacyclic if $p \neq 2$, in any case it is not in $A\mathcal{H}_2$.

If $\langle x \rangle \cap G' = \langle x^{p^{\alpha}} \rangle \neq 1$, then $|x| = p^{\alpha+1}$ and the group $\langle x, y \rangle / \langle y^{p^{\alpha+1}} \rangle$ is not in $A\mathcal{H}_2$ by Theorem 4.2.

By contrast

THEOREM 4.4. Every infinite 2-generator nil-2 group is residually $A\pi_2$.

PROOF. Let G be a 2-generator infinite nil-2 group. Then G/G' is 2-generator and infinite; we can assume that $G/G' = \langle aG' \rangle \times \langle bG' \rangle$, with bG' of infinite order. Thus $G = \langle a, b \rangle$ and $\langle a \rangle \cap \langle b \rangle = 1$. Let T be the torsion subgroup of G, then T is finite and we can assume T to be a p-group (p a prime).

Assume first that $|[a, b]| = p^k$. Then a^{p^k} , $b^{p^k} \in \zeta G$. If a is torsion-free, then, for any $\gamma \ge k$, with $N_{\gamma} = \langle a^{p^{\gamma}}[b, a], b^{p^{\gamma}}[b, a] \rangle$, we have $G/N_{\gamma} \in A\mathcal{R}_2$; obviously $\cap N_{\gamma} = 1$ and G is residually $A\mathcal{R}_2$.

If $|a| = p^b$, then $b \ge k$; for any $\gamma \ge b + 1$, with $N_{\gamma} = \langle b^{p^{\gamma}}[b, a] \rangle$, we have $G/N_{\gamma} = \langle b, ab | b^{p^{k+\gamma}} = 1, b^{p^b} = (ab)^{p^b}, [b, ab] = b^{p^{\gamma}} \rangle$, $b \le \gamma$ and $G/N_{\gamma} \in A\mathcal{H}_2$ by Theorem 4.2; moreover $\bigcap N_{\gamma} = 1$ as required.

Now let [a, b] be torsion-free; then, with $M_k = \langle [a, b]^{p^k} \rangle$, we have $\cap M_k = 1$ and G/M_k residually $A\mathcal{R}_2$ by the previous case, thus G is residually $A\mathcal{R}_2$ as required.

5. Infinite 3-generator $A\mathfrak{N}_2$ -groups

By 2.1 the direct product of an infinite cyclic group with a finite 2-generator $A\mathcal{H}_2$ -group is in $A\mathcal{H}_2$. The aim of this section is to prove that there are no other infinite 3-generator $A\mathcal{H}_2$ -groups.

THEOREM 5.1. A non-abelian infinite 3-generator group is in $A\mathcal{N}_2$ if and only if it is isomorphic to $C_{\infty} \times H$, with $H \in A\mathcal{N}_2$, H finite.

PROOF. As remarked above, such groups are in $A\mathcal{N}_2$.

Conversely, assume that $G \in A\mathcal{H}_2$ is a 3-generator infinite group, neither 2-generator nor abelian. Then G/G' is again a 3-generator infinite group and we can write $G/G' = \langle aG' \rangle \times \langle bG' \rangle \times \langle cG' \rangle$, with cG' of infinite order. Then $\langle a, b \rangle \cap \langle c \rangle = 1$. We prove that $G/\langle [a, b] \rangle$ is abelian, and from that it follows $[a, c] = [a, b^{\alpha}], [b, c] = [a^{\beta}, b]$ for some $\alpha, \beta \in \mathbb{Z}$ and $[a, ca^{\beta}b^{-1}] = [b, ca^{\beta}b^{-\alpha}] = 1$, so $G = \langle a, b \rangle \times \langle cab^{-\alpha} \rangle$, as required.

 $G/\langle [a, b] \rangle$ is in $A\mathcal{H}_2$, so we may assume $[a, b] = 1, \langle a \rangle \cap \langle b \rangle = 1$ and prove that G is abelian.

It suffices to show that (*) if [a, c] = 1, then [b, c] = 1.

In fact then $G/\langle [a, c] \rangle$ is abelian, so $[b, c] = [a^{\alpha}, c]$ for some $\alpha \in \mathbb{Z}$, hence $[ba^{-\alpha}, c] = 1$ and by (*)[a, c] = 1.

Then assume [a, c] = [a, b] = 1. Since $G/\langle a \rangle$ is a 2-generator infinite $A\mathfrak{N}_2$ -group, it follows that $G/\langle a \rangle$ is abelian, by Theorem 4.3, hence $[b, c] = a^{\gamma}$ for some $\gamma \in \mathbb{Z}$. Then $G = (\langle a \rangle \times \langle b \rangle) \rtimes \langle c \rangle$ and $G = \langle a, b, c | [a, b] = [a, c] = 1, [b, c] = a^{\gamma}, a^{\alpha} = 1$, $b^{\beta} = 1 \rangle$ for some $\alpha, \beta \in \mathbb{N}_0$ (α or $\beta = 0$ if a or b torsion-free).

Let $1 \to N \to F \to G \to 1$ be a free presentation of G with $F = \langle x, y, z \rangle$, $N = \langle x^{\alpha}, y^{\beta}, [z, y] x^{\gamma}, [x, y], [x, z] \rangle^{F}$. Then $N = \langle x^{\alpha}, y^{\beta}, [z, y] x^{\gamma}, [x, y], [x, z], [y, z]^{\beta} \rangle$.

 $\cdot [F', F] \text{ and } [N, F] = \langle [x, y]^{\alpha}, [x, z]^{\alpha}, [y, x]^{\beta}, [y, z]^{\beta}, [z, y, z][x, z]^{\gamma}, [z, y, y][x, y]^{\gamma}, [x, z, x], [x, z, y], [x, y, x], [x, y, y], [x, y, z], [z, y, x] \rangle [F', F, F].$

From $[z, y, z] \in [N, F]$ it follows easily that $[z, y, z] = ([z, y, z][x, z]^{\gamma})^{\mu} ([x, z]^{\alpha})^{\nu}$, and from that $\mu = 1$, $\gamma = \alpha \nu$, so α divides γ , [b, c] = 1 and G is abelian, as required.

6. Higher Nilpotent extensions

Let G be an absolutely nilpotent of class k and H a group possessing a normal subgroup N contained in the *n*-th term $\zeta_n H$ of the upper central series such that $H/N \cong G$, then H/[H, N] is a central extension by G so has class k, and thus H has class at most k + n - 1, one less than is granted by general dispensation. In section 4 we showed that if G is a metacyclic *p*-group of class k and n any integer ≥ 2 , then there exists an extension $1 \to N \to H \to G \to 1$, with $N \le \zeta_n H$ and H of class $s \ge n + k - 1$.

We believe that for most constellations of k and n, every nilpotent group G of class k has an «n-th central extension» $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$, $N \leq \zeta_n H$, n > 1, such that H is of class at least k + n - 1.

We have been able to prove this only for class 2 finite *p*-groups and for 2-generator *p*-groups of class \leq 3. We start with the following remark:

THEOREM 6.1. Let G be a finite p-group of class $k \ge 2$. Then for any $n \ge k$ there exists a group H of class $\ge n + 1$ with a normal subgroup M such that $M \le \zeta_n H$ and $H/M \cong G$.

PROOF. Let $1 \to R \to F \to G \to 1$ be a free presentation of G, with d(F) = d(G), where d(G) is the minimum number of generators of the group G. Then $R \leq F'F^p$, so $[R, F] \leq [F'F^p, F] = [F', F][F^p, F] \leq (F')^p \gamma_3 F$ and, by induction on i, for every $i \geq 1$, $[R, {}_iF] \leq (F')^p \gamma_{i+2}F$. Therefore, with $N = [R, {}_nF]$, we get $R/N \leq \leq \gamma_n(F/N)$, $(F/N)/(R/N) \cong G$, and the group F/N has class $\geq n + 1$ since $\gamma_{n+1}F \nleq (F')^p \gamma_{i+2}F$.

THEOREM 6.2. Let G be a 2-generator p-group of class ≤ 3 . Then for every integer n > 1 there exists a group H of class n + 2 with a normal subgroup M such that $M \leq \leq \gamma_n H$ and $H/M \cong G$.

PROOF. If *G* is metacyclic, the result follows from Theorem 3.1. Otherwise, by Lemma 4.1, there exists a free presentation of $G \ 1 \to R \to F \to G \to 1$, $F = \langle x, y \rangle$ such that $R \leq F' F^p$ and $R \leq \langle x^2, y^2 \rangle (F')^2 [F', F]$ if p = 2.

Obviously $\gamma_{n+3}F \leq [R,_{n-1}F]$, since $\gamma_4F \leq R$. We show that, for every $n \geq 1$, (6.1) $\gamma_{n+2}F \nleq [R,_nF]$.

From this the result follows. In fact, if $\gamma_{n+3}F \notin [R, {}_{n}F]$, then the group $H = F/[R, {}_{n-1}F]$ has class n+2 and, with $M = R/[R, {}_{n-1}F]$, we have $M \leq \gamma_{n-1}H \leq \gamma_{n}H$ and $H/M \cong F/R \cong G$. If $\gamma_{n+3}F \leq [R, {}_{n}F]$, then the group $H = F/[R, {}_{n}F]$ has class n+2 and, with $M = R/[R, {}_{n}F]$ we have $M \leq \gamma_{n}H$ and $H/M \cong G$.

To establish (6.1) assume first $p \neq 2$. Then $[R, F] \leq [F^p[F', F], F] = [F^p, F] \gamma_4 F = (F')^p \gamma_4 F$ and, for every $n \geq 1$, $[R, {}_nF] \leq (\gamma_{n+1}F)^p \gamma_{n+3}F$. Then $\gamma_{n+2}F \cap [R, {}_nF] \leq \gamma_{n+2}F \cap (\gamma_{n+1}F)^p \gamma_{n+3}F = \gamma_{n+3}F(\gamma_{n+2}F \cap (\gamma_{n+1}F)^p) = = \gamma_{n+3}F(\gamma_{n+2}F)^p$. Therefore $\gamma_{n+2}F \notin [R, {}_nF]$, since $\gamma_{n+2}F \notin \gamma_{n+3}F(\gamma_{n+2}F)^p$.

Assume now p = 2. Then $[R, F] \leq \langle [x^2, y], [y^2, x] \rangle^F (\gamma_3 F)^2 \gamma_4 F = \langle [x, y]^2 \cdot [x, y, x], [x, y]^2 [x, y, y] \rangle (\gamma_3 F)^2 \gamma_4 F$, and, by induction on *i*, it is easy to show that, for every $n \geq 1$, $[R, {}_nF] \leq (\gamma_{n+2}F)^2 \gamma_{n+3}FF'' < d_{i,n}d_{i,n-1}^2, d_{j,n}d_{j-1,n-1}^2 | 0 \leq i \leq n-1, 1 \leq j \leq n \rangle$.

Assume by contradiction $\gamma_{n+2}F \leq [R, F]$ for some $n \geq 1$. Then $d_{0,n} \in [N, F]$ and

(6.2)
$$d_{0,n} = \prod_{i=0}^{n-1} d_{i,n}^{b_i} d_{i,n-1}^{2b_i} \prod_{j=1}^n d_{j,n}^{k_j} d_{j-1,n-1}^{2k_i} a_{j,n-1}^{2k_i} d_{j,n-1}^{2k_i} d_$$

for some integers b_i , k_j and $a \in F''(\gamma_{n+2}F)^2 \gamma_{n+3}F$.

The elements $d_{i,n}$, $d_{j,n-1}$, $i \in \{0, ..., n-1\}$, $j \in \{0, ..., n\}$, are free generators of $\gamma_{n+1}F \mod \gamma_{n+3}FF''$, thus from (6.2) it follows

$$1 \equiv b_0(2), \quad 0 \equiv k_n(2), \quad b_i + k_i \equiv 0(2), \quad \text{for } 1 \le i \le n-1, \\ 2b_i + 2k_{i+1} \equiv 0(2), \quad \text{for } 0 \le i \le n-1, \end{cases}$$

and that is impossible.

References

- [1] F. R. BEYL, Abelian groups with a vanishing homology group. J. Pure Appl. Algebra, 7, 1976, 175-193.
- [2] F. R. BEYL, Isoclinisms of Group Extensions and the Schur Multiplicator. Groups-St. Andrews 1981, London Math. Soc. Lecture Note Ser., vol. 71, Cambridge 1982, 169-185.
- [3] F. R. BEYL, Commutator properties of extension groups. C.R. Math. Rep. Acad. Sci. Canada, 2, 1986, 27-30.
- [4] F. R. BEYL J. TAPPE, Group Extensions, Representations, and the Schur Multiplicator. Lecture Notes in Mathematics, vol. 958, Springer-Verlag, 1982.
- [5] L. EVENS, Terminal p-groups. Illinois J. Math., 12, 1968, 682-699.
- [6] B. H. NEUMANN, On amalgams of periodic groups. Proc. Roy. Soc. London, Ser. A 255, 1960, 477-489.
- [7] I. B. S. PASSI L. R. VERMANI, The inflation homomorphism. J. London Math. Soc., II Ser., 6, 1972, 129-136.
- [8] U. STAMMBACH, Homology in Group Theory. Lecture Notes in Mathematics, vol. 359, Springer-Verlag, 1973.
- [9] K. VARADARAJAN, Groups for which Moore spaces $M(\pi, 1)$ exist. Ann. of Math., 84 (2), 1966, 368-371.

P. Longobardi, M. Maj: Dipartimento di Matematica e Applicazioni «R. Caccioppoli» Università degli Studi di Napoli «Federico II» Complesso Monte S. Angelo Via Cintia - 80126 NAPOLI T. MacHenry: York University DOWNSVIEW (12), Ontario (Canada) J. Wiegold: School of Mathematics University of Wales - College of Cardiff CARDIFF CF2 4AG (Gran Bretagna)