Rendiconti Lincei Matematica e Applicazioni

Patrizia Longobardi, Trueman MacHenry, Mercede Maj, James Wiegold

On absolutely-nilpotent of class k groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 6 (1995), n.4, p. 201-209.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1995_9_6_4_201_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI \& UMI
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1995.

Teoria dei gruppi. - On absolutely-nilpotent of class k groups. Nota (*) di Patrizia Longobardi, Trueman MacHenry, Mercede Maj e James Wiegold, presentata dal Socio G. Zappa.

Abstract

A group G in a variety \mathfrak{V} is said to be absolutely- \mathfrak{V}, and we write $G \in A \mathcal{V}$, if central extensions by G are again in \mathfrak{V}. Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class $A \pi_{k}$ of absolutely-nilpotent of class k groups. We prove some closure properties of the class $A \Re_{k}$ and we show that every nilpotent of class k group can be embedded in an $A \Re_{k}$-group. We describe all metacyclic $A \Re_{k}$-groups and we characterize 2 -generator and infinite 3 -generator $A \mathscr{N}_{2}$-groups. Finally we study extensions $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$, with $N \leqslant \zeta_{n}(H)$, the n-centre of H, with $n>1$.

Key words: Variety; Central extension; Nilpotent group.
Ruassunto. - Gruppi assolutamente-nilpotenti di classe k . Un gruppo G in una varietà $\mathfrak{\mathcal { V }}$ vien detto asso-lutamente- \mathcal{V} (e si scrive $G \in A$ ๆ) se ogni estensione centrale mediante G appartiene ancora a ϑ. I gruppi as-solutamente-abeliani sono stati caratterizzati da F. R. Beyl. In questa Nota si studiano i gruppi assoluta-mente-nilpotenti di classe k. Si provano alcune proprietà di chiusura della classe $A \mathscr{T}_{k}$, e si mostra che ogni gruppo nilpotente di classe k si può immergere in un $A \mathscr{\pi}_{k}$-gruppo. Si descrivono i gruppi metaciclici assolu-tamente-nilpotenti di classe k ed i gruppi 2 -generati e quelli infiniti 3 -generati nella classe $A \mathscr{T}_{2}$. Infine si esaminano estensioni $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$, con $N \leqslant \zeta_{n}(H)$, l'ennesimo centro di H.

1. Introduction

A group G in a variety \mathcal{V} is said to be absolutely- \mathcal{V} if central extensions by G are again in ϑ. We denote the class of absolutely- $\mathcal{\vartheta}$ groups by $A \vartheta$.

Special cases of such groups have been considered by several authors, e.g. Varadarajan [9], Evens [5] and Beyl [1-3].

In this paper we concentrate upon the class $A \mathscr{N}_{k}$ of absolutely-nilpotent of class k groups. In [1] Beyl has classified all absolutely abelian groups; they are just those abelian groups having trivial multipliers. Conditions sufficient to ensure that groups in nilpotent varieties are absolute are studied in Passi and Vermani [7].

In sect. 2 of this paper we collect some general results about $A \mathscr{N}_{k}$-groups. Obviously the class $A \mathscr{N}_{k}$ is not a variety, for example, it is not necessarily subgroup-closed, but it does have some interesting closure properties: for instance, it is closed under some nilpotent products (see 2.1). We do not know if $A \mathscr{J}_{k}$ is closed under Cartesian products, the best we can say here is that Cartesian powers of finite $A \overbrace{k^{-}}$-groups are $A \mathscr{N}_{k^{-}}$ groups (see 2.3). We have not been able to recognize if epimorphic images of an $A \mathscr{T}_{k^{-}}$ group G are always $A \Re_{k}$, we have only proved that this is true if G is finitely generated (see 2.4).

Every nilpotent n-generator group of class k can be embedded in a $2 n$-generator $A \overbrace{k}$-group (see 2.2), in particular the class of n-generator $A \overbrace{k}$-groups is not a small class. In sect. 3, 4 and 5 we concentrate upon \mathscr{N}_{k}-groups with 2 or 3 generators.
(*) Pervenuta all'Accademia il 5 luglio 1995.

We describe all metacyclic $A \Re_{k}$-groups (see [4], for $k=2$). Moreover we characterize the 2 -generator and the infinite 3 -generator class 2 groups which are absolute-there are no infinite 2-generator non abelian $A \mathscr{N}_{2}$-groups, and, in a sense, very few infinite 3generator $A \mathscr{N}_{2}$-groups.

Finally, in sect. 6 we study extensions $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ with $N \leqslant \zeta_{n}(H)$, $n>1$.

Notation is as in [8].
If $n \geqslant 1$ is an integer, x, y elements of a group G, H a subgroup of G, we put $[x, n y]=[x, y, \ldots, y],\left[H,{ }_{n} G\right]=[H, G, \ldots, G]$.

If $F=\langle x, y\rangle$ is a free group, we write

$$
d_{i, n}=[x, y, x, \ldots, x, y, \ldots, y], \quad \text { for any } n \geqslant 0, \quad 0 \leqslant i \leqslant n .
$$

Obviously $\left[d_{i, n}, x\right] \equiv d_{i+1, n+1}\left(\bmod F^{\prime \prime}\right)$ and $\left[d_{i, n}, y\right] \equiv d_{i, n+1}\left(\bmod F^{\prime \prime}\right)$.
Moreover the set $\left\{d_{i, n} \mid n \in \mathbb{N}_{0}, i \in\{0,1, \ldots, n\}\right\}$ is a basis for $F^{\prime} \bmod F^{\prime \prime}$.
The following result will be used frequently:
1.1. (see [7, Theorem 5.1]) Let \mathcal{O} be a variety of exponent 0 . Then $G \in A \mathcal{V}$ if and only if $\mathcal{V}(F) \leqslant[R, F]$ for all free presentations $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$.

2. General results

It is easy to see that $A \mathscr{N}_{k}$ is closed under restricted direct products. In fact the result holds even for generalized nilpotent products.
2.1. Let $\left\{A_{i}: i \in I\right\}$ be any set of class k groups.

If $A_{i} \in A \mathscr{N}_{k}$ for any $i \in I$ and $l<k$, then the l-th nilpotent product of the A_{i} is in $A \mathscr{N}_{k}$.

Proof. Let G be such a group, and let $1 \rightarrow R \rightarrow F \xrightarrow{\pi} G \rightarrow 1$ be a free presentation of G. By 1.1 we have to prove that $\gamma_{k+1} F \leqslant[R, F]$.

Write $X_{i}=\pi^{-1}\left(A_{i}\right)$, for any $i \in I$; obviously it suffices to prove that $\left[y_{1}, y_{2}, \ldots, y_{k+1}\right] \in[R, F]$ for any $y_{1}, y_{2}, \ldots, y_{k+1} \in \bigcup_{i \in I} X_{i}$. If there exist $r, s \leqslant k, r \neq s$, such that $y_{b} \in X_{r}, y_{j} \in X_{s}$, for some $b, j \leqslant k$, then $\left[y_{1}, y_{2}, \ldots, y_{k}\right] \in\left[X_{r}, X_{s}\right]^{F} \cap \gamma_{k} F \leqslant R$ and $\left[y_{1}, y_{2}, \ldots, y_{k}, y_{k+1}\right] \in[R, F]$. If $y_{1}, y_{2}, \ldots, y_{k}$ are in one and the same X_{i}, and $y_{k+1} \in X_{i}$, then $\left[y_{1}, y_{2}, \ldots, y_{k}, y_{k+1}\right] \in\left[R \cap\left\langle X_{i}\right\rangle,\left\langle X_{i}\right\rangle\right] \subseteq[R, F]$, since $A_{i} \in A \Re_{k}$. Now assume that $y_{1}, \ldots, y_{k} \in X_{r}$ and $y_{k+1} \in X_{s}$, for suitable $r \neq s$. Then $\left[y_{1}, y_{2}, \ldots, y_{k}, y_{k+1}\right] \in\left[\gamma_{k} X_{r}, X_{s}\right]$. But, for any $j<k,\left[X_{s}, X_{r}, \ldots, X_{r}, \gamma_{k-j-1} X_{r}\right] \leqslant$ $\leqslant \gamma_{k} F \cap\left[X_{s}, X_{r}\right]^{F} \leqslant R$ and $\left[X_{s}, X_{r}, \underset{j}{j}, X_{r}, \gamma_{k-j-1} X_{r}, X_{r}\right] \leqslant\left[\begin{array}{l}j \\ R\end{array}, F\right]$.

Hence, by induction on i, using the three subgroups lemma, it is easy to verify that $\left[\gamma_{i} X_{r},\left[X_{s}, X_{r}, \ldots, X_{r-i}\right]\right] \leqslant[R, F]$ for $1 \leqslant i \leqslant k$. Hence with $i=k$ we have $\left[\gamma_{k} X_{r}, X_{s}\right] \leqslant[R, F]$, as required.

For some nilpotent products we can drop the condition that the factors be absolute.
2.2. Let $\left\{A_{i}: i \in I\right\}$ be any set of class k groups such that $\gamma_{k} A_{i} \cong \gamma_{k} A_{j}, i, j \in I$. Then, with $l<k$, the l-th nilpotent product of all A_{i} with $\gamma_{k} A_{i}$ amalgamating is in $A \mathscr{N}_{k}$.

Proof. Similar to the proof of 2.1 .
For Cartesian products we have:
 $A \mathscr{N}_{k}$.

Proof. Let A^{I} be the Cartesian power of A with index set I, and G a group having a central subgroup N such that $G / N \cong A^{I}$.

To show that G is in π_{k}, it is enough to show that every finitely generated subgroup of G is in \mathscr{N}_{k}.

Thus, let H be a finitely generated subgroup of G. Then $H N / N$ is a finitely generated subgroup of A^{I}, and the finiteness of A now implies that $H N / N$ is a subgroup of the direct product X of finitely many groups isomorphic to A, namely of diagonals of powers A^{J} with $J \subseteq I$. (The reader will recognize the genesis of this type of argument in B. H. Neumann's proof [6] that Cartesian products of finite groups are locally finite). Note next that X is in $A \Re_{k}$. Thus, if K is the subgroup of G such that $K / N=X$, it follows that K is in \mathscr{N}_{k}, and thus H is in \Re_{k} since $K \geqslant H$.

Therefore G is in \Re_{k} and A^{I} is in $A \Re_{k}$, as required.
It would be nice to know if epimorphic images of $A \mathscr{N}_{k}$-groups are always $A \mathscr{N}_{k}$. We have not been able to confirm or deny this. For finitely generated groups, we have:
2.4. If G is a finitely generated $A \mathscr{T}_{k}$-group and N is a normal subgroup of G, then G / N is in $A \Re_{k}$.

Proof. Let G be a finitely generated nilpotent group. Then $M(G)$ is finitely generated and so Hopf. Write $\mathcal{V}=\mathfrak{N}_{k}$.

Obviously it suffices to show that G is in $A \mathcal{O}$ if and only if $\mathcal{O}(F) \leqslant[R, F]$ for some free presentation $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ of G. For, let $1 \rightarrow R_{1} \rightarrow F_{1} \rightarrow G \rightarrow 1$ any free presentation of G. Then $\left(R_{1} \cap F_{1}^{\prime}\right) /\left(\left[R_{1}, F_{1}\right] V\left(F_{1}\right)\right) \cong M_{V}(G) \cong M(G) \cong\left(R_{1} \cap\right.$ $\left.\cap F_{1}^{\prime}\right) /\left[R_{1}, F_{1}\right]$, so that $\vartheta\left(F_{1}\right) \leqslant\left[R_{1}, F_{1}\right]$. Then the result follows from 1.1.

We end this section with the following theorem, which in some sense reduces the study of finitely generated $A \mathscr{\pi}_{k}$-groups to the cases of torsion-free groups and finite groups (see also [1, Theorem 2.1]).
2.5. Let $G \in A \pi_{k}$. If G is finitely generated, then G can be embedded as a subgroup of finite index in an $A \overbrace{k}$-group which is the direct product of a finite $A \mathscr{I}_{k}$-group and a finitely generated torsion-free $A \overbrace{k}$-group.

Proof. Let τG be the torsion subgroup of G. Then τG is finite and $G / \tau G$ is a finitely generated torsion-free $A \Upsilon_{k}$-group by 2.4. Since G is residually finite, there exists a normal subgroup N in G such that $N \cap \tau G=1$ and G / N is a finite group in $A \pi_{k}$, again by 2.4. Then $\chi: x \in G \mapsto(x N, x \tau G) \in G / N \times G / \tau G$ is an embedding. By 2.1 $H=G / N \times G / \tau G \in A \mathscr{N}_{k}$ if $k>1$. Moreover G^{χ} has finite index in H since N^{χ} has finite index in $G / \tau G$. If $k=1$, the result is trivial.

3. Metacyclic $A \overbrace{k}$-Groups

Theorem 3.1. Let G be a metacyclic p-group of class k. Then
(a) $G \in A \Re_{k}$ if and only if one of the following holds:
(i) $\left.G=\langle x, y||x|=p^{a}, x^{p^{b}}=y^{p^{c}},[x, y]=x^{p^{d} s}\right\rangle$, with $(p, s)=1, a \leqslant b+d$, $b \leqslant c$, and $b \leqslant(k-1) d, d>0$;
(ii) $p=2, k>2$ and $\left.G=\langle x, y||x|=2^{k}, y^{2^{k-m-1}}=x^{2^{k}}=1, x^{y}=x^{-1+2^{m}}\right\rangle$, with $0<m<k-1$;
(iii) $p=2, k>2$ and $\left.G=\langle x, y||x|=2^{k}, x^{2^{k-1}}=y^{2^{c}}, x^{y}=x^{-1+2^{m s}}\right\rangle$, with $s \not \equiv 0(2), 0<m<k-1, k-1-m \leqslant c \leqslant k-1$;
(iv) $p=2, k>2$ and $\left.G=\langle x, y||x|=2^{k}, x^{2^{k-1}}=y^{2^{b}}, x^{y}=x^{-1}\right\rangle$, with $0<b<$ $<k-1$.
$(ß)$ For any $n \geqslant 2$ there exists a group H, with a normal subgroup $M \leqslant \zeta_{n} H$ such that $H / M \cong G$ and $c l H \geqslant n+k-1$.

Proof. Since G is metacyclic, $G=\langle x, y\rangle$, with $|x|=p^{a}, x^{p^{b}}=y^{p^{c}},[x, y]=x^{p^{d s}}$, $a \leqslant b+d,(p, s)=1, d \geqslant 1$.

Let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a free presentation of G, with $F=\langle\bar{x}, \bar{y}\rangle$.
Assume first that $p \neq 2$. Then $(x y)^{p^{a-1}}=x^{p^{a-1}} y^{p^{a-1}}$, and we may suppose $|x| \leqslant|y|$ and $b \leqslant c$ (replacing eventually y by $x y$). Then $[R, F]=\left\langle d_{i, n}, d_{0, b}^{p^{b}}, d_{0, r}, d_{0, m}^{-1} d_{0,0}^{p^{m d} d^{m}}\right\rangle F^{\prime \prime}$, with $1 \leqslant n, 1 \leqslant i \leqslant n, 1 \leqslant m \leqslant k-1,0 \leqslant b \leqslant k-1, r \geqslant s$. From $\gamma_{k+1} F \leqslant[R, F]$ it follows that $d_{0, k-1} \in[R, F]$ and

$$
d_{0, k-1}=\left(d_{0, k-1}^{-1} d_{0,0}^{p^{(k-1)} d_{s^{k-1}}}\right)^{\beta} d_{0,0}^{p^{b} \alpha}\left(d_{0, k-1}\right)^{p^{b} \gamma}
$$

since the $d_{b, l}$ are independent $\bmod F^{\prime \prime}$.
Hence $\beta-p^{b} \gamma-1=0, p^{(k-1) d} s^{k-1} \beta+p^{b} \alpha=0$ and that happens if and only if $b \leqslant(k-1) d$.

Therefore if G is in $A \pi_{k}$ then $b \leqslant(k-1) d$.
Conversely it is easy to see that G is in $A \mathscr{\tau}_{k}$ if (i) holds.

Furthermore, for any $l \geqslant 2$ we have

$$
[N, l F] \leqslant F^{\prime \prime}\left\langle d_{i, n}, d_{0, b+l}^{p^{b}}, d_{0, r+l}, d_{0, m+l}^{-1} d_{0, l}^{p^{m d_{s}} s^{m}}\right\rangle
$$

$1 \leqslant n, k \leqslant r, 1 \leqslant m \leqslant k-1,1 \leqslant i$.
From $\gamma_{k+l-2} F=[N, l-1 F]$ it follows $d_{0, k-2+l-1} \in[N, l-1 F]$ and

$$
d_{0, k+l-3}=\left(d_{0, k-2+(l-1)}^{-1} d_{0, l-1}^{p^{(k-2)} d_{d^{k-2}}}\right)^{\beta}\left(d_{0, l}^{p^{b}}\right)^{\alpha}\left(d_{0, k+l-2}^{p^{b}}\right)^{\gamma}
$$

and from that $b \leqslant(k-2) d$. Thus $a \leqslant b+d \leqslant(k-1) d$ and G is of class $\leqslant k-1$, a contradiction.

Then, with $T=[N, l-1 F]$, the group $H=F / T$ has class $\geqslant s+l-1$ and $N / T \leqslant$ $\leqslant \zeta_{l} H$, hence (\mathscr{B}) holds.

Now assume that $p=2$.
If $|x| \leqslant|y|$, arguing as before we can prove that G has the structure in (i) and that (\mathfrak{B}) holds. Now let $|x|>|y|$; then we can assume $x^{y}=x^{1+2 t}$, with t odd (if $[x, y]=$ $=x^{4 s}$, then $(y x)^{2^{a-1}}=x^{2^{a-1}} \neq 1$ and, replacing y by $x y$, we get $\left.|x| \leqslant|y|\right)$.

Then $[x, y]=x^{2^{i} t}$, for every i, and $|x|=2^{k}$ since G has class k, also $b \geqslant k-1$.
First suppose that $t \neq-1$; then $t=-1+2^{m} s$ with $s \not \equiv 0(2)$. By induction on b it is easy to prove that, for every $b \in \mathbb{N}$, we have $\left[x, y^{2^{b}}\right]=[x, y]^{2^{b+m}} \beta, \beta \not \equiv 0(2)$. Thus $c \geqslant k-m-1, \quad$ and $\quad[N, F]=\left\langle d_{i, n}, d_{0, h}^{2^{c+m}}, d_{0, b}^{2^{b}}, d_{0, r}, d_{0, l}^{-1} d_{0,0}^{2^{l} t^{l}}\right\rangle F^{\prime \prime}$ with $n \in \mathbb{N}$, $1 \leqslant i \leqslant n, 0 \leqslant b \leqslant k-1, r \geqslant k, 1 \leqslant l \leqslant k-1$. If $b>c+m$ and $G \in A \Re_{k}$ then $c+$ $+m \leqslant k-1$, and so $c+m=k-1, c=k-m-1, b=k$ and (ii) holds. If $b \leqslant c+m$ and $G \in A \Re_{k}$, then $b \leqslant k-1$, thus $b=k-1$ and (iii) holds.

As in the previous case we prove that (\mathcal{B}) holds and that $G \in A \mathscr{H}_{k}$ if either (ii) or (iii) hold.

Finally suppose $x^{y}=x^{-1}$. Then, if $b=k-1$, we get

$$
G=\left\langle x, y \mid x^{2^{k}}=1, x^{2^{k-1}}=y^{2^{b}}, x^{y}=x^{-1}\right\rangle, \quad 1 \leqslant b<k-1
$$

and $[N, F]=\left\langle d_{i, n}, d_{0, b}^{2^{k-1}}, d_{0, r}, d_{0, m} d_{0,0}^{2^{m}}\right\rangle F^{\prime \prime}$, with $n \in \mathbb{N}, 1 \leqslant i \leqslant n, 0 \leqslant b \leqslant k-1$, $r \geqslant k, 1 \leqslant m \leqslant k-1$. Thus $d_{0, k-1} \in[N, F]$ and arguing as in the previous case $d_{0, k+l-3} \notin[N, l-1 F]$. If $b=k$, then $G=\langle x\rangle \rtimes\langle y\rangle$, with $|x|=2^{k}, x^{y}=x^{-1},|y|=2^{b}$, $0<b<k$. Then, with $G_{n}=\langle a\rangle \rtimes\langle b\rangle,|a|=2^{k+b}, a^{b}=a^{-1},|b|=2^{b}$, we have $a^{2^{k}} \in$ $\in \zeta_{n} G_{n}$, and G_{n} has class $k+n$. From $G_{n} /\left\langle a^{2^{k}}\right\rangle \cong G$ it follows that G is not in $A \mathscr{N}_{k}$ and that (\mathcal{B}) holds.

4. 2-generator $A \mathscr{T}_{2}$-groups

We give a complete description of 2-generator $A \mathscr{N}_{2}$-groups.
We start with an easy Lemma:

Lemma 4.1. Let G be a 2-generator finite p-group and $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ a free presentation of G, with $F 2$-generator. Then either G is metacyclic or $R \leqslant F^{p}\left[F^{\prime}, F\right]$ and, if $p=2, R \leqslant\left\langle x^{2}, y^{2}\right\rangle\left(F^{\prime}\right)^{2}\left[F^{\prime}, F\right]$, with $F=\langle x, y\rangle$.

Proof. There exist free generators x, y of F such that

$$
R=\left\langle x^{\alpha}[x, y]^{\gamma}, y^{\beta}[x, y]^{\delta},[x, y]^{\mu}\right\rangle\left[F^{\prime}, F\right]
$$

where $\alpha, \beta, \gamma, \delta, \mu \in \mathbb{Z}$. Obviously $p \mid \alpha$ and $p \mid \beta$; if $p \nmid \mu$, then G is abelian. If either $p \nless \gamma$ or $p \not x \delta$, then either $\langle x\rangle\left[G^{\prime}, G\right]$ or $\langle y\rangle\left[G^{\prime}, G\right]$ is normal in $G /\left[G^{\prime}, G\right]$ and $G /\left[G^{\prime}, G\right]$ is metacyclic; so G is metacyclic.

Finally if $p|\gamma, p| \mu, p \mid \delta$, then $R \leqslant F^{p}\left[F^{\prime}, F\right]$, and, if $p=2, \quad R \leqslant$ $\leqslant\left\langle x^{2}, y^{2}\right\rangle\left(F^{\prime}\right)^{2}\left[F^{\prime}, F\right]$.

Theorem 4.2. Let G be a 2 -generator finite p-group.
Then $G \in A \mathscr{r}_{2}$ if and only if G is metacyclic and

$$
\left.G=\langle a, b||a|=p^{\alpha}, a^{p^{\beta}}=b^{p^{\gamma}},[a, b]=a^{k p^{\delta}}\right\rangle,
$$

where $(k, p)=1, \beta \leqslant \gamma, \alpha \leqslant \beta+\delta$ and $\beta \leqslant \delta$.
Proof. Such a group is in $A \mathscr{N}_{2}$ (see Theorem 3.1).
Now assume that $G=\langle a, b\rangle$ is a p-group in $A \mathcal{N}_{2}$.
If G is metacyclic, then G has the required structure (see Theorem 3.1).
Assume for a contradiction that G is non-metacyclic, and let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a free presentation of G. Thus we have $R \leqslant F^{p}\left[F^{\prime}, F\right]$ by Lemma 4.1; hence if $p \neq 2,[R, F]=\left[F^{p}, F\right]\left[F^{\prime}, F, F\right]=\left(F^{\prime}\right)^{p}\left[F^{\prime}, F, F\right]$ and $\left[F^{\prime}, F\right] \leqslant[R, F]$, contradicting 1.1.

Now let $p=2$; then for some free generators x, y of F we have $R \leqslant$ $\leqslant\left\langle x^{2}, y^{2}\right\rangle\left(F^{\prime}\right)^{2}\left[F^{\prime}, F\right]$ and $[R, F] \leqslant\left\langle\left[x^{2}, y^{2}\right],\left[y^{2}, x\right]\right\rangle\left(\gamma_{3} F\right)^{2} \gamma_{4} F=\left\langle[x, y]^{2}[x, y, x]\right.$, $\left.[x, y]^{2}[x, y, y]\right\rangle\left(\gamma_{3} F\right)^{2} \gamma_{4} F$. From $[x, y, x] \in[R, F]$ it follows $[x, y, x]=[x, y]^{2 b}$. $\cdot[x, y, x]^{b}[x, y]^{2 k}[x, y, x]^{k} a$, with $a \in\left(\gamma_{3} F\right)^{2} \gamma_{4} F$ and $2 b+2 k=0, k \equiv 0(2), b \equiv 1(2)$, contradiction.

A finite group is in $A \mathscr{N}_{2}$ if and only if its Sylow subgroups are. Furthermore the following result shows that there are no infinite 2 -generator non abelian $A \Re_{2}$-groups. Hence Theorem 4.2 gives a complete description of 2-generator $A \Re_{2}$-groups.

Theorem 4.3. There are no 2 -generator infinite non-abelian $A \mathscr{r}_{2}$-groups.
Proof. Assume for a contradiction that G is an infinite 2-generator non-abelian $A \Re_{2}$-group. Then G / G^{\prime} is again infinite and 2-generator; we may write $G / G^{\prime}=$ $=\left\langle x G^{\prime}\right\rangle \times\left\langle y G^{\prime}\right\rangle$, with $y G^{\prime}$ of infinite order. Then $G=\langle x, y\rangle$ and $\langle x\rangle \cap\langle y\rangle=1$. By 2.4 we can assume $|[x, y]|=p$. Thus $x^{p}, y^{p} \in \zeta G$ and we can assume that x is a p-element.

If $\langle x\rangle \cap G^{\prime}=1$, then the group $\langle x, y\rangle /\left\langle x^{p}, y^{p}\right\rangle$ is isomorphic to D_{4} if $p=2$ and is not metacyclic if $p \neq 2$, in any case it is not in $A \Re_{2}$.

If $\langle x\rangle \cap G^{\prime}=\left\langle x^{p^{\alpha}}\right\rangle \neq 1$, then $|x|=p^{\alpha+1}$ and the group $\langle x, y\rangle /\left\langle y^{p^{\alpha+1}}\right\rangle$ is not in $A \mathscr{N}_{2}$ by Theorem 4.2.

By contrast

Theorem 4.4. Every infinite 2-generator nil-2 group is residually $A \mathscr{N}_{2}$.
Proof. Let G be a 2-generator infinite nil-2 group. Then G / G^{\prime} is 2-generator and infinite; we can assume that $G / G^{\prime}=\left\langle a G^{\prime}\right\rangle \times\left\langle b G^{\prime}\right\rangle$, with $b G^{\prime}$ of infinite order. Thus $G=\langle a, b\rangle$ and $\langle a\rangle \cap\langle b\rangle=1$. Let T be the torsion subgroup of G, then T is finite and we can assume T to be a p-group (p a prime).

Assume first that $|[a, b]|=p^{k}$. Then $a^{p^{k}}, b^{p^{k}} \in \zeta G$. If a is torsion-free, then, for any $\gamma \geqslant k$, with $N_{\gamma}=\left\langle a^{p^{y}}[b, a], b^{p^{y}}[b, a]\right\rangle$, we have $G / N_{\gamma} \in A \mathcal{N}_{2}$; obviously $\cap N_{\gamma}=1$ and G is residually $A \Re_{2}$.

If $|a|=p^{b}$, then $b \geqslant k$; for any $\gamma \geqslant b+1$, with $N_{\gamma}=\left\langle b^{p^{\gamma}}[b, a]\right\rangle$, we have $G / N_{\gamma}=\left\langle b, a b \mid b^{p^{k+\gamma}}=1, b^{p^{b}}=(a b)^{p^{b}},[b, a b]=b^{p^{\gamma}}\right\rangle, b \leqslant \gamma$ and $G / N_{\gamma} \in A \mathscr{N}_{2}$ by Theorem 4.2; moreover $\cap N_{\gamma}=1$ as required.

Now let $[a, b]$ be torsion-free; then, with $M_{k}=\left\langle[a, b]^{k}\right\rangle$, we have $\cap M_{k}=1$ and G / M_{k} residually $A \mathscr{N}_{2}$ by the previous case, thus G is residually $A \mathscr{N}_{2}$ as required.

5. Infinite 3-generator $A \mathscr{T}_{2}$-Groups

By 2.1 the direct product of an infinite cyclic group with a finite 2 -generator $A \mathscr{T}_{2}$ group is in AN_{2}. The aim of this section is to prove that there are no other infinite 3-generator $A \mathscr{I}_{2}$-groups.

Theorem 5.1. A non-abelian infinite 3-generator group is in $A \mathscr{T}_{2}$ if and only if it is isomorphic to $C_{\infty} \times H$, with $H \in A$ Ir $_{2}, H$ finite.

Proof. As remarked above, such groups are in $A \mathscr{N}_{2}$.
Conversely, assume that $G \in A \mathscr{N}_{2}$ is a 3-generator infinite group, neither 2-generator nor abelian. Then G / G^{\prime} is again a 3 -generator infinite group and we can write $G / G^{\prime}=\left\langle a G^{\prime}\right\rangle \times\left\langle b G^{\prime}\right\rangle \times\left\langle c G^{\prime}\right\rangle$, with $c G^{\prime}$ of infinite order. Then $\langle a, b\rangle \cap\langle c\rangle=1$. We prove that $G /\langle[a, b]\rangle$ is abelian, and from that it follows $[a, c]=\left[a, b^{a}\right],[b, c]=$ $=\left[a^{\beta}, b\right]$ for some $\alpha, \beta \in \mathbb{Z}$ and $\left[a, c a^{\beta} b^{-1}\right]=\left[b, c a^{\beta} b^{-a}\right]=1$, so $G=\langle a, b\rangle \times$ $\times\left\langle c a b^{-\alpha}\right\rangle$, as required.
$G /\langle[a, b]\rangle$ is in $A \mathscr{N}_{2}$, so we may assume $[a, b]=1,\langle a\rangle \cap\langle b\rangle=1$ and prove that G is abelian.

It suffices to show that $(*)$ if $[a, c]=1$, then $[b, c]=1$.
In fact then $G /\langle[a, c]\rangle$ is abelian, so $[b, c]=\left[a^{\alpha}, c\right]$ for some $\alpha \in \mathbb{Z}$, hence $\left[b a^{-a}, c\right]=1$ and by $(*)[a, c]=1$.

Then assume $[a, c]=[a, b]=1$. Since $G /\langle a\rangle$ is a 2-generator infinite $A \mathscr{N}_{2}$-group, it follows that $G /\langle a\rangle$ is abelian, by Theorem 4.3, hence $[b, c]=a^{\gamma}$ for some $\gamma \in \mathbb{Z}$. Then $G=(\langle a\rangle \times\langle b\rangle) \times\langle c\rangle$ and $G=\langle a, b, c|[a, b]=[a, c]=1,[b, c]=a^{\gamma}, a^{\alpha}=1$, $\left.b^{\beta}=1\right\rangle$ for some $\alpha, \beta \in \mathbb{N}_{0}$ (α or $\beta=0$ if a or b torsion-free).

Let $1 \rightarrow N \rightarrow F \rightarrow G \rightarrow 1$ be a free presentation of G with $F=\langle x, y, z\rangle$, $N=\left\langle x^{\alpha}, y^{\beta},[z, y] x^{\gamma},[x, y],[x, z]\right\rangle^{F}$. Then $N=\left\langle x^{\alpha}, y^{\beta},[z, y] x^{\gamma},[x, y],[x, z],[y, z]^{\beta}\right\rangle$.
$\cdot\left[F^{\prime}, F\right]$ and $[N, F]=\left\langle[x, y]^{\alpha},[x, z]^{\alpha},[y, x]^{\beta},[y, z]^{\beta},[z, y, z][x, z]^{\gamma},[z, y, y][x, y]^{\gamma}\right.$, $[x, z, x],[x, z, y],[x, z, z],[x, y, x],[x, y, y],[x, y, z],[z, y, x]\rangle\left[F^{\prime}, F, F\right]$.

From $[z, y, z] \in[N, F]$ it follows easily that $[z, y, z]=\left([z, y, z][x, z]^{\gamma}\right)^{\mu}\left([x, z]^{\alpha}\right)^{\nu}$, and from that $\mu=1, \gamma=\alpha \nu$, so α divides $\gamma,[b, c]=1$ and G is abelian, as required.

6. Higher nilpotent extensions

Let G be an absolutely nilpotent of class k and H a group possessing a normal subgroup N contained in the n-th term $\zeta_{n} H$ of the upper central series such that $H / N \cong$ $\cong G$, then $H /[H, N]$ is a central extension by G so has class k, and thus H has class at most $k+n-1$, one less than is granted by general dispensation. In section 4 we showed that if G is a metacyclic p-group of class k and n any integer $\geqslant 2$, then there exists an extension $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$, with $N \leqslant \zeta_{n} H$ and H of class $s \geqslant n+k-1$.

We believe that for most constellations of k and n, every nilpotent group G of class k has an «n-th central extension» $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1, N \leqslant \zeta_{n} H, n>1$, such that H is of class at least $k+n-1$.

We have been able to prove this only for class 2 finite p-groups and for 2-generator p-groups of class $\leqslant 3$. We start with the following remark:

Theorem 6.1. Let G be a finite p-group of class $k \geqslant 2$. Then for any $n \geqslant k$ there exists a group H of class $\geqslant n+1$ with a normal subgroup M such that $M \leqslant \zeta_{n} H$ and $H / M \cong G$.

Proof. Let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a free presentation of G, with $d(F)=d(G)$, where $d(G)$ is the minimum number of generators of the group G. Then $R \leqslant F^{\prime} F^{p}$, so $[R, F] \leqslant\left[F^{\prime} F^{p}, F\right]=\left[F^{\prime}, F\right]\left[F^{p}, F\right] \leqslant\left(F^{\prime}\right)^{p} \gamma_{3} F$ and, by induction on i, for every $i \geqslant 1,\left[R,{ }_{i} F\right] \leqslant\left(F^{\prime}\right)^{p} \gamma_{i+2} F$. Therefore, with $N=\left[R,{ }_{n} F\right]$, we get $R / N \leqslant$ $\leqslant \gamma_{n}(F / N),(F / N) /(R / N) \cong G$, and the group F / N has class $\geqslant n+1$ since $\gamma_{n+1} F \nless\left(F^{\prime}\right)^{p} \gamma_{i+2} F$.

Theorem 6.2. Let G be a 2 -generator p-group of class $\leqslant 3$. Then for every integer $n>1$ there exists a group H of class $n+2$ with a normal subgroup M such that $M \leqslant$ $\leqslant \gamma_{n} H$ and $H / M \cong G$.

Proof. If G is metacyclic, the result follows from Theorem 3.1. Otherwise, by Lemma 4.1, there exists a free presentation of $G 1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1, F=\langle x, y\rangle$ such that $R \leqslant F^{\prime} F^{p}$ and $R \leqslant\left\langle x^{2}, y^{2}\right\rangle\left(F^{\prime}\right)^{2}\left[F^{\prime}, F\right]$ if $p=2$.

Obviously $\gamma_{n+3} F \leqslant\left[R,{ }_{n-1} F\right]$, since $\gamma_{4} F \leqslant R$. We show that, for every $n \geqslant 1$,

$$
\begin{equation*}
\gamma_{n+2} F \ngtr\left[R,{ }_{n} F\right] . \tag{6.1}
\end{equation*}
$$

From this the result follows. In fact, if $\gamma_{n+3} F \nless\left[R,{ }_{n} F\right]$, then the group $H=$ $=F /\left[R,{ }_{n-1} F\right]$ has class $n+2$ and, with $M=R /\left[R,{ }_{n-1} F\right]$, we have $M \leqslant \gamma_{n-1} H \leqslant$ $\leqslant \gamma_{n} H$ and $H / M \cong F / R \cong G$. If $\gamma_{n+3} F \leqslant\left[R,{ }_{n} F\right]$, then the group $H=F /\left[R,{ }_{n} F\right]$ has class $n+2$ and, with $M=R /\left[R,{ }_{n} F\right]$ we have $M \leqslant \gamma_{n} H$ and $H / M \cong G$.

To establish (6.1) assume first $p \neq 2$. Then $[R, F] \leqslant\left[F^{p}\left[F^{\prime}, F\right], F\right]=$ $=\left[F^{p}, F\right] \gamma_{4} F=\left(F^{\prime}\right)^{p} \gamma_{4} F$ and, for every $n \geqslant 1, \quad\left[R,{ }_{n} F\right] \leqslant\left(\gamma_{n+1} F\right)^{p} \gamma_{n+3} F$. Then $\gamma_{n+2} F \cap\left[R,{ }_{n} F\right] \leqslant \gamma_{n+2} F \cap\left(\gamma_{n+1} F\right)^{p} \gamma_{n+3} F=\gamma_{n+3} F\left(\gamma_{n+2} F \cap\left(\gamma_{n+1} F\right)^{p}\right)=$ $=\gamma_{n+3} F\left(\gamma_{n+2} F\right)^{p}$. Therefore $\gamma_{n+2} F \neq\left[R,{ }_{n} F\right]$, since $\gamma_{n+2} F \nLeftarrow \gamma_{n+3} F\left(\gamma_{n+2} F\right)^{p}$.

Assume now $p=2$. Then $[R, F] \leqslant\left\langle\left[x^{2}, y\right],\left[y^{2}, x\right]\right\rangle^{F}\left(\gamma_{3} F\right)^{2} \gamma_{4} F=\left\langle[x, y]^{2}\right.$ 。 - $\left.[x, y, x],[x, y]^{2}[x, y, y]\right\rangle\left(\gamma_{3} F\right)^{2} \gamma_{4} F$, and, by induction on i, it is easy to show that, for every $n \geqslant 1,\left[R,{ }_{n} F\right] \leqslant\left(\gamma_{n+2} F\right)^{2} \gamma_{n+3} F F^{\prime \prime}<d_{i, n} d_{i, n-1}^{2}, d_{j, n} d_{j-1, n-1}^{2} \mid 0 \leqslant i \leqslant n-1$, $1 \leqslant j \leqslant n\rangle$.

Assume by contradiction $\gamma_{n+2} F \leqslant\left[R,{ }_{n} F\right]$ for some $n \geqslant 1$. Then $d_{0, n} \in\left[N,{ }_{n} F\right]$ and

$$
\begin{equation*}
d_{0, n}=\prod_{i=0}^{n-1} d_{i, n}^{b_{i}} d_{i, n-1}^{2 b_{i}} \prod_{j=1}^{n} d_{j,{ }_{j}}^{k_{j}} d_{j-1, n-1}^{2 k_{i}} a \tag{6.2}
\end{equation*}
$$

for some integers b_{i}, k_{j} and $a \in F^{\prime \prime}\left(\gamma_{n+2} F\right)^{2} \gamma_{n+3} F$.
The elements $d_{i, n}, d_{j, n-1}, i \in\{0, \ldots, n-1\}, j \in\{0, \ldots, n\}$, are free generators of $\gamma_{n+1} F \bmod \gamma_{n+3} F F^{\prime \prime}$, thus from (6.2) it follows

$$
\begin{aligned}
& 1 \equiv b_{0}(2), \quad 0 \equiv k_{n}(2), \quad b_{i}+k_{i} \equiv 0(2), \quad \text { for } 1 \leqslant i \leqslant n-1 \\
& 2 h_{i}+2 k_{i+1} \equiv 0(2), \quad \text { for } 0 \leqslant i \leqslant n-1,
\end{aligned}
$$

and that is impossible.

References

[1] F. R. Beyl, Abelian groups with a vanishing homology group. J. Pure Appl. Algebra, 7, 1976, 175-193.
[2] F. R. Bext, Isoclinisms of Group Extensions and the Scbur Multiplicator. Groups-St. Andrews 1981, London Math. Soc. Lecture Note Ser., vol. 71, Cambridge 1982, 169-185.
[3] F. R. Beyl, Commutator properties of extension groups. C.R. Math. Rep. Acad. Sci. Canada, 2, 1986, 27-30.
[4] F. R. Beyl - J. Tappe, Group Extensions, Representations, and the Scbur Multiplicator. Lecture Notes in Mathematics, vol. 958, Springer-Verlag, 1982.
[5] L. Evens, Terminal p-groups. Illinois J. Math., 12, 1968, 682-699.
[6] B. H. Neumann, On amalgams of periodic groups. Proc. Roy. Soc. London, Ser. A 255, 1960, 477-489.
[7] I. B. S. Passi - L. R. Vermani, The inflation homomorphism. J. London Math. Soc., II Ser., 6, 1972, 129-136.
[8] U. Stammbach, Homology in Group Theory. Lecture Notes in Mathematics, vol. 359, Springer-Verlag, 1973.
[9] K. Varadarajan, Groups for which Moore spaces $M(\pi, 1)$ exist. Ann. of Math., 84 (2), 1966, 368-371.
P. Longobardi, M. Maj:

