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Teoria dei gruppi. — On absolutely-nilpotent of class k groups. Nota(*) di PATRIZIA 

LONGOBARDI, TRUEMAN MACHENRY, MERCEDE MAJ e JAMES WIEGOLD, presentata dal 
Socio G. Zappa. 

ABSTRACT. — A group G in a variety V is said to be absolutely-^, and we write G eAV, if central 
extensions by G are again in V. Absolutely-abelian groups have been classified by F. R. Beyl. In this paper 
we concentrate upon the class A%k of absolutely-nilpotent of class k groups. We prove some closure 
properties of the class A3lk and we show that every nilpotent of class k group can be embedded in an 
A3lk-gvoup. We describe all metacyclic ./1%,-groups and we characterize 2-generator and infinite 3-genera­
tor AX2-groups. Finally we study extensions 1—>N—»Jf—»G—»1, with N ^ £„ (H), the /z-centre of H, 
with n > 1. 

KEY WORDS: Variety; Central extension; Nilpotent group. 

RIASSUNTO. — Gruppi assolutamente-nilpotenti di classe k. Un gruppo G in una varietà V vien detto asso­
lutamente-^ (e si scrive G eAV) se ogni estensione centrale mediante G appartiene ancora a V. I gruppi as­
solutamente-abeliani sono stati caratterizzati da F. R. Beyl. In questa Nota si studiano i gruppi assoluta­
mente-nilpotenti di classe k. Si provano alcune proprietà di chiusura della classe A3lk, e si mostra che ogni 
gruppo nilpotente di classe k si può immergere in un A3lk-gmppo. Si descrivono i gruppi metaciclici assolu­
tamente-nilpotenti di classe k ed i gruppi 2-generati e quelli infiniti 3-generati nella classe A3fl2. Infine si 
esaminano estensioni 1—»N—>H—»G—>1, con N ^ £„(H), l'ennesimo centro di H. 

. 1. INTRODUCTION 

A group G in a variety V is said to be absolutely-V if central extensions by G are 
again in V. We denote the class of absolutely-^ groups by AV. 

Special cases of such groups have been considered by several authors, e.g. Varada-
rajan[9], Evens [5] and Beyl [1-3]. 

In this paper we concentrate upon the class A3lk of absolutely-nilpotent of class k 
groups. In[ l ] Beyl has classified all absolutely abelian groups; they are just those abe-
lian groups having trivial multipliers. Conditions sufficient to ensure that groups in nil-
potent varieties are absolute are studied in Passi and Vermani[7]. 

In sect. 2 of this paper we collect some general results about ADlk-groups. Obviou­
sly the class AïïC^ is n o t a variety, for example, it is not necessarily subgroup-closed, but 
it does have some interesting closure properties: for instance, it is closed under some 
nilpotent products (see 2.1). We do not know HA3lk is closed under Cartesian produc­
ts, the best we can say here is that Cartesian powers of finite yl^-groups are A3Z^-
groups (see 2.3). We have not been able to recognize if epimorphic images of anA9lk-
group G are always A%k > w e n a v e o n ry proved that this is true if G is finitely generated 
(see 2.4). 

Every nilpotent ^-generator group of class k can be embedded in a 2n-generator 
^4^-group (see 2.2), in particular the class of ^-generator A^-groups is not a small 
class. In sect. 3, 4 and 5 we concentrate upon ^-groups with 2 or 3 generators. 

(*) Pervenuta all'Accademia il 5 luglio 1995. 
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We describe all metacyclic ^4^-groups (see [4], for k = 2). Moreover we characte­
rize the 2-generator and the infinite 3-generator class 2 groups which are absolute-there 
are no infinite 2-generator non abelian A3Z2-groupsy and, in a sense, very few infinite 3-
generator ^42l2-g

rouPs-
Finally, in sect. 6 we study extensions 1—>N^H—> G - * 1 with N ^ Çn(H), 

n > 1. 
Notation is as in [8]. 
If n ^ 1 is an integer, x, y elements of a group G, H a subgroup of G, we put 

[x„ j ] = [*,?, ...,-y], [H,„G] = [H, G,..., G]. 

If F = (x,y) is a free group, we write 

4 > = U,3>,#, . . . ,#,3;, ... ,yl, for any /z ^ 0, 0 ^ / ^ » . 

Obviously W f > ,x] = i/+i,„ + i (modF") and [d,>nyy] = diyH + ! (modF"). 
Moreover the set {din \n e N 0 , / e {0, 1, ...,/z}} is a basis for F ' modF". 
The following result will be used frequently: 

1.1. (see [7, Theorem 5.1]) Let V be a variety of exponent 0. Then G e AV if and 
only if V(F) ^ [R, F] for all free presentations 1 —»R —>F—» G —» 1. 

2. GENERAL RESULTS 

It is easy to see that A3Z^ is closed under restricted direct products. In fact the re­
sult holds even for generalized nilpotent products. 

2.1. Let {Aii tel} be any set of class k groups. 
If Ai e A9lk for any tel and / < k, then the /-th nilpotent product of the Ai is in 

A%k. 

PROOF. Let G be such a group, and let 1 —» R — > F ^ G ^ l b e a free presentation 
of G. By 1.1 we have to prove that Yk + \F ^ [R,F]. 

Write Xi = Jt~1(Ai)y for any tel; obviously it suffices to prove that 

bi,y2> • •• ,^ + J e [R,F] for any 3^,3/2, ...,yk + 1e U I r If there exist r,s ^k,r*s, 
tel 

such that yjj e Xr, yj e Xs, for some h J ^ k, then [y\,y2, • • •, yu ] G K ? Ĉ ] F ^ YkF ^ ^ 
and [3^!, y2, ..., yk, Jk + 1 ] G [£> ^ ] - If J i > J2 > • • • > 3>* a r e i*1 o n e a n d the same Xz, and 
yk + 1eXj, then [y i ,3;2 , . . . , ^ , y A + 1] G [R n (X^^X,-)] ç [R,F], since ^ E ì ^ . 
Now assume that yl9 ...,y^eXr and ^ + 1 e l n for suitable r ** s. Then 
lji>3>2> • • • > ^>^+i ] E [y^X,,XJ. But, for any y <k, [X,,Xr, . . . ,X r , y^_y_iXJ ^ 
^ 7 ^ F n [ X , , X r f ^ R and [X,, X,, . . . ,X„ Yk-j- i ^ , X J ^ [R, F]. 

Hence, by induction on /, using the three subgroups lemma, it is easy to verify that 
[y,X,,[X,,X,, . . . , X J ] ^ [R,F] for l ^ t ^ k . Hence with i = k we have 

k — i 

[y*X r ,XJ ^ [R,Fl as required. • 
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For some nilpotent products we can drop the condition that the factors be 
absolute. 

2.2. Let {Ai\ i e 1} be any set of class k groups such that ykA; = YkAj, i, j e I. 
Then, with I <k9 the /-th nilpotent product of all A, with ykA{ amalgamating is in 
A3flk. 

PROOF. Similar to the proof of 2.1. • 

For Cartesian products we have: 

2.3. Let A be a finite A^-group. Then every Cartesian power of A is in 
ADlk. 

PROOF. Let A1 be the Cartesian power of A with index set I, and G a group having 
a central subgroup N such that G/N = A1. 

To show that G is in 3 ^ , it is enough to show that every finitely generated subgroup 
of G is in 9lk. 

Thus, let H be a finitely generated subgroup of G. Then HN/N is a finitely genera­
ted subgroup of A1

} and the finiteness of A now implies that HN/N is a subgroup of 
the direct product X of finitely many groups isomorphic to A, namely of diagonals of 
powers A) with J c I. (The reader will recognize the genesis of this type of argument in 
B. H. Neumann's proof [6] that Cartesian products of finite groups are locally finite). 
Note next that X is inADlk. Thus, if X is the subgroup of G such that K/N = X, it follo­
ws that K is in 3 ^ , and thus H is in 3lk since K^ H. 

Therefore G is in 9lk and Al is in A9lk, as required. • 

It would be nice to know if epimorphic images of ^431^-groups are always A3lk. We 
have not been able to confirm or deny this. For finitely generated groups, we 
have: 

2.4. If G is a finitely generated y43l^-group and N is a normal subgroup of G, then 
G/N is in A3lk. 

PROOF. Let G be a finitely generated nilpotent group. Then M(G) is finitely genera­
ted and so Hopf. Write V= Dlk. 

Obviously it suffices to show that G is in AV if and only if V(F) ^ [R, F] for some 
free presentation 1—>R—>F—>G—>1 ofG. For, let 1 —» Rj —> Fx —> G —» 1 any free 
presentation of G. Then (^ fi F[ )/([R1, F1]V(F1 )) = MV(G) = M(G) = (Rx Pi 
H F / V E R ^ F J , so that V(FX) ^ [ R i , F J . Then the result follows from 1.1. • 

We end this section with the following theorem, which in some sense reduces the 
study of finitely generated A^-groups to the cases of torsion-free groups and finite 
groups (see also[l, Theorem 2.1]). 
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2.5. Let G G A%k. If G is finitely generated, then G can be embedded as a sub­
group of finite index in an A3Zk-gtoup which is the direct product of a finite A3Z^-group 
and a finitely generated torsion-free ^45^-group. 

PROOF. Let xG be the torsion subgroup of G. Then xG is finite and G/xG is a fini­
tely generated torsion-free yl^-group by 2.4. Since G is residually finite, there exists a 
normal subgroup N in G such that N fl xG = 1 and G/N is a finite group in -43^, 
again by 2.4. Then ^ : x e G ^ (xN,xxG) e G/N X G/xG is an embedding. By 2.1 
H = G/N X G/xG e A9lk if £ > 1. Moreover G* has finite index in H since N* has fi­
nite index in G/xG If k = 1, the result is trivial. • 

3. METACYCLIC ^31^-GROUPS 

THEOREM 3.1. Let G be a metacyclic p-group of class k. Then 

(d) G e.A3lk if and only if one of the following holds: 

(/) G = (x,y\ |*| =pa,xpb =yp\[x,yl = xpds), with (p,s) = l, a^b+d, 
b^c, màb^{k- l)d, d > 0; 

(»)/> = 2, A>.2 and G = <x,y| |x| = 2*,y2*"" -1 =x2* = l ,xy = x " 1 + 2">, 
with 0 < «z < k — 1 ; 

(/«)/> = 2, £ > 2 and G = (x,y| |x| = 2*,y2*-1 = y 2 \ x y =x~1 + 2ms), with 
J * 0 ( 2 ) , 0 </» <k - 1, / è - 1 - / » ^ c ^ £ - 1; 

(w) p = 2,k >2andG = (x,y\ \x\ = 2k,xlk~l =y2\xy =x~1), with 0 <A < 
< & - l . 

(&) For any « ^ 2 there exists a group H, with a normal subgroup M ^ ÇnH such 
that H / M s G a n d c / H ^ » + * - l . 

PROOF. Since G is metacyclic, G = (x, j ) , with \x\ = pa, xp = yp , [*, j ] = xp *, 
a^b +d, (p,s) = 1, d&l. 

Let 1—>R—>F^G—>1 be a free presentation of G, with F = (3c,j). 
Assume first that/? ^ 2. Then (xyf* = xpa ypa , and we may suppose \x\ ^ \y\ 

and £ ^ c (replacing eventually ybyxy). Then [R, F] = {dit„, ^o,^, ^o, r > ^o7^^o, </ ) ^ " > 
with l^n,l^i^nyl^m^k-ly0^h^k-\yr^s. Fromy^ + 1 F ^ [R, F] it 
follows that <i0 ^ _ J G [R, F] and 

since the ^ / are independent modF". 
Hence fi -phy - 1 = 0, p{k ~ 1 } V " x 0 + pba = 0 and that happens if and only if 

b^(k-l)d. 
Therefore if G is in A3lk then b^(k- l)d. 
Conversely it is easy to see that G is in A3Z/, if (/) holds. 
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Furthermore, for any / ^ 2 we have 

[N, /F] ^ F" (4„, 4'* + /, <*<>, r + /, 4 > 7 i + /<?'" ) 

1 ^ « , & ^ r , 1 ^ w ^ £ - 1, 1 O'... 
From yk + i„2F= [N,/_iF] it follows 4 ^ - 2 + / - ì e [N,/_iF] and 

d(),k + l-3 = Wo7i-2 + (/-l)^0,/-l ' ) Wo,/)a(^0,^ + / -2 ) 7 

and from that b ^ (k - 2)d. Thus <z ^ è H- J ^ (£ - 1) J and G is of class ^ k - 1, a 
contradiction. 

Then, with T = [N,/_ iF], the group H = F/T has class ^ j + / - 1 and N/T ^ 
^ Ç/H, hence ($) holds. 

Now assume that p = 2. 
If |x| ^ 13; I, arguing as before we can prove that G has the structure in (/') and that 

(£8) holds. Now let \x\ > \y\; then we can assume xy = xl + 2t, with t odd (if [x, y] = 
= x4s, then {yx)2" = x2 ^ 1 and, replacing y by xy, we get \x\ ^ |;y|). 

Then [ x , j ] = xTt, for every /, and |x| = 2^ since G has class k, also b^k — l. 
First suppose that / 5* - 1 ; then t— — l + 2ms with 5 ^ 0( 2 ). By induction on h it is 

easy to prove that, for every k N , we have [xyy
2 ] = [x,y]2 "^, / J^0(2) . Thus 

^ * - w - l , and [N,F] = <</,.„ d2]l\ d2\h ,d0>r, d0'j d
2^)F" with « E N , 

l^i^n,0^h^k- l,rïïk, l^l^k-l.l£b>c + mmd G^A^lk then c + 
4- /^ ^ k — 1, and soc + m = k — l,c = k — m — l,b = k and (//) holds. If b ^ c + ^ 
and G eASH^, then £ ^ £ — 1, thus £ = k — 1 and {Hi) holds. 

As in the previous case we prove that (68) holds and that G eAdd^ if either (//) or 
(///) hold. 

Finally suppose xy = x ~1. Then, if b = k — 1, we get 

G = (x,y\x2k=l)x
2k~1=y2\xy=x-1), l^h<k-l, 

and [N,F] = (dï>n, di*h\d0>r, d0tMd^Q)F\ with n e N , 1 ^ i^ n, 0 ^ h ^ k - 1, 
r ^ k, 1 ^m ^ k — 1. Thus J0,^- 1 G [N, F] and arguing as in the previous case 
J0fA + / - 3 * I N w _ 1 F ] . I f * - * , t h e n G = <x>>o(y>,with \x\ = 2k,xy = x " 1 , \y\ = 2h, 
0 < A < * . Then, with Gn = («> XI (é>, |*| = 2k + h

y ah = a ~\ \b\ = 2h
 y we have a2" e 

e.t,nGny and Gn has classk + n. From Gn/(a
2 ) = G it follows that G is not i n A ^ and 

that (68) holds. • 

4. 2-GENERATOR ^ 4 3 l 2 - G R O U P S 

We give a complete description of 2-generator ^43l2-groups. 
We start with an easy Lemma: 

LEMMA 4.1. Let G be a 2-generator finitep-group and 1—»R—»F—»G—»1 a free 
presentation of G, with F 2-generator. Then either G is metacyclic or R ^ Fp [F ', F] 
and, if.p = 2, R ^ (x2,y2)(F')2[Ff, F], with F = (x,y). 
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PROOF. There exist free generators x, y of F such that 

R = (xabc,yY,yfi[x,ylò
9bc,yr)[F',F], 

where a, /3, y, ô, ju e Z. Obviously/? | a and p\/3; if/? X ju, then G is abelian. If either/? X y 

or/? X <5, then either <x)[G', G] or <^>[G', G] is normal in G/[Gf, G] and G/[G', G] 

is metacyclic; so G is metacyclic. 
Finally if p\y, p\/t, . p\ô, then R ^ F ^ [ F ' , F ] , and, if p = 2, R^ 

<(x2
9y

2)(F'?lF',Fl • 

THEOREM 4.2. Let G be a 2-generator finite p-group. 
Then G G A3Z2 if and only if G is metacyclic and 

G = (a,b\ \a\=pa,ap* = bpy,[a,b]=akpô), 

where (£,/?) = 1, j3 ̂  y, a ^ /3 + (5 and /? ^ ô. 

PROOF. Such a group is in A3l2 ( s e e Theorem 3.1). 
Now assume that G = (a,b) is a /?-group in A9l2. 
If G is metacyclic, then G has the required structure (see Theorem 3.1). 
Assume for a contradiction that G is non-metacyclic, and let 1—>R->F —» G —» 1 

be a free presentation of G. Thus we have R ^ Fp[Fr, F] by Lemma 4.1; hence if 
p*2, [R,F] = [FP,F][F',F,F] = (F'Y[F',F,F] and [F ' ,F ] ^ [R, F], contradic­
ting 1.1. 

Now let p = 2; then for some free generators x, y of F we have R ^ 

^ ( % 2 , j 2 ) ( F ' ) 2 [ F ' , F ] a n d [ R , F ] ^ ( [ x 2 , ^ 2 L ^ 2 ^ ] ) ( 7 3 f ) 2 7 4 f = <fc,y]2 !>,)>,*], 
[#,;y]2[x,3/,;y])(y3F)2y4F. From [x,;y,x] e [R, F] it follows [x , j ,x] = [x,y]2h-
• [x, y, x]* [x, y]2k [x, y, xfa, with a G (y3F)2y4F and 2h + 2£ = 0, k = 0(2), A = 1(2), 
contradiction. • 

A finite group is in A3Z2 if and only if its Sylow subgroups are. Furthermore the fol­
lowing result shows that there are no infinite 2-generator non abelian A3l2-gvo\ips. 
Hence Theorem 4.2 gives a complete description of 2-generator ASfl2-groups. 

THEOREM 4.3. There are no 2-generator infinite non-abelian ^43!2-g
rouPs-

PROOF. Assume for a contradiction that G is an infinite 2-generator non-abelian 
Aïïi2-gto\ip. Then G/G' is again infinite and 2-generator; we may write G/G' = 
= (xGf) X (yG')9 with yG' of infinite order. Then G = (x,;y)and(x) D (y) = 1.By 2.4 
we can assume | [x,y]\ =p. Thus xp, yp e £G and we can assume that x is a 
/?-element. 

If (x) fi G' = 1, then the group (x,y)/(xp,yp) is isomorphic to D4 if/? = 2 and is 
not metacyclic if/? ^ 2, in any case it is not in A3Z2. 

If (x) n G ' = (xp°) ;* 1, then |x| = /?a + * and the group (x,y)/(ypa + 1) is not in 
AX2 by Theorem 4.2. • 

By contrast 
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THEOREM 4.4. Every infinite 2-generator nil-2 group is residually ADl2. 

PROOF. Let G be a 2-generator infinite nil-2 group. Then G/G' is 2-generator and 
infinite; we can assume that G/Gf = (aC) X (bG'), with bG' of infinite order. Thus 
G = (a,b) and (a) fi (b) = 1. Let T be the torsion subgroup of G, then T is finite and 
we can assume T to be a p-group (p a prime). 

Assume first that \[a,b]\=pk. Then ap
 yb

p eÇG.Ifa is torsion-free, then, for 
any y ^ k, with Ny = (apY [b,a], bpY [b, *]), we have G/Ny e Â3l2 ; obviously HNy = 1 
and G is residually AX2. 

If |*| = p * , then h^k; for any y ^ A + 1, with Ny = (bpy [b, a]}, we have 

G/Ny = (b,ab\bpk + r =l,bph = (abY\[byab]=bpYl h^y and G/NyeA3l2 by 
Theorem 4.2; moreover fiNy = 1 as required. 

Now let [#, £] be torsion-free; then, with Mk = ([a, b]p ), we have C\Mk = 1 and 
G/Mk residually ^ 4 ^ by the previous case, thus G is residually ADl2 as requi­
red. • 

5. INFINITE 3-GENERATOR 243l2-GROUPS 

By 2.1 the direct product of an infinite cyclic group with a finite 2-generator A^lT 

group is inADl2 • The aim of this section is to prove that there are no other infinite 3-ge­
nerator ASfi2-gtoups. 

THEOREM 5.1. A non-abelian infinite 3-generator group is in A9l2 if and only if it is 
isomorphic to C» X H, with H eA9l2, H finite. 

PROOF. As remarked above, such groups are in A9l2. 
Conversely, assume that G e AD12 is a 3-generator infinite group, neither 2-genera­

tor nor abelian. Then G/G' is again a 3-generator infinite group and we can write 
G/G' = (aC) X (bGf) X (cG'), with cG' of infinite order. Then (a,b) fi (c) = 1. 
We prove that G/([a, b]) is abelian, and from that it follows [a, c] = [a, ba], [b, c] = 
= [ap

9bi for some O J G Z and [a.ca^b'1] = [bycafib~a] = 1, so G = (a9b)x 
X (cab~a), as required. 

G /([a, è]) is i n ^ l ^ , so we may assume [a,b] = 1, (a) D (£) = 1 and prove that G 
is abelian. 

It suffices to show that (*) if [a, c] = 1, then [b, c] = 1. 
In fact then G/([a,c~\) is abelian, so [&, c] = [aa,c] for some a E Z , hence 

[ ^ " a , d = 1 and by (*)[a,c] = 1. 
Then assume [a, c~\ = [ ,̂ &] = 1. Since G /(a) is a 2-generator infinite ^S^-group, 

it follows that G J (a) is abelian, by Theorem 4.3, hence [b, c] = ay for some y e Z . 
Then G = ((a)x(b)) x(c) and G = (a, b, c\[a, b] = [a,c] = l,[byc]=ay,aa= 1, 
b^ = l ) for some a, /? e N0 (a or /? = 0 if # or b torsion-free). 

Let 1—»N—>F—»G—»1 be a free presentation of G with F = (x ,y ,z ) , 
N = (xa, / , [z, y]x r , [x, y\ [x, *])F. Then N = (xa, / , b , 3>]*y, [x, y], [x, z],£y, z]^>• 
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•[F', F] and [N,F] = ([x,y]a, [x,z]a, [y,xf, [y,zf, lz,y,zlbc,zY, [z,y,y][x,yY, 
[*,z,x], [x,z,;y], [x,z,z], [*,?,*], [*,?,?], [*,?,*], k ,y ,# ] ) [ F ' , F , F]. 

From b , y, z] e [N, F] it follows easily that [z,y, z] = ([z,y, z][x, z\7 Y ([*, zT Y, 
and from that [A = 1, y = av, so a divides y, [b,c] = 1 and G is abelian, as 
required. • 

6. H I G H E R NILPOTENT EXTENSIONS 

Let G be an absolutely nilpotent of class k and H a group possessing a normal sub­
group N contained in the #-th term £„H of the upper central series such that H/N = 
= G, then H/ [H, N] is a central extension by G so has class £, and thus H has class at 
most k + n — 1, one less than is granted by general dispensation. In section 4 we sho­
wed that if G is a metacyclicp -group of class k and n any integer ^ 2, then there exists 
an extension 1—»N—»H—>G—»1, with N ^ ÇnH and H of class $ ^ # + £ — 1. 

We believe that for most constellations of k and », every nilpotent group G of class 
£ has an «»-th central extension» 1—»N—»H-»G—»1,N^ Ç„H,n > 1, such that H 
is of class at least £ + # — 1. 

We have been able to prove this only for class 2 finite p-groups and for 2-generator 
p-groups of class ^ 3. We start with the following remark: 

THEOREM 6.1. Let G be a finite /?-group of class k ^ 2. Then for any n ^ k there 
exists a group H of class ^ n 4- 1 with a normal subgroup M such that M ^ ÇnH and 
H/M = G. 

PROOF. Let 1—>R^F—>G->1 be a free presentation of G, with J(F) = d(G), 
where d(G) is the minimum number of generators of the group G. Then R ^ FfFp, 
so [R,F]^[F'Fp,F] = [F,,F][FP,F]^(F,Yy3F and, by induction on /', for 

every / ^ 1, [R„F] ^ ( F ? 7 / + 2 F Therefore, with N = [R,„F], we get R /N ^ 
^yn(F/N), (F/N)/(R/N) = G, and the group F/N has class ^ » + 1 since 
y„ + 1F^(FTy, + 2 F. • 

THEOREM 6.2. Let G be a 2-generatorp-group of class ^ 3. Then for every integer 
n > 1 there exists a group H of class » + 2 with a normal subgroup M such that M ^ 
^ y „ H and H/M = G. 

PROOF. If G is metacyclic, the result follows from Theorem 3.1. Otherwise, by 
Lemma 4.1, there exists a free presentation of G 1 —» R —> F —> G —» 1, F = (x, 3;) such 
that R^F'Fp and R ^ x 2 , ? 2 ) (F ' ) 2 [F ' ,F ] ifp = 2. 

Obviously yn+3F ^ \Ryn_iF], since y 4 F ^ R. We show that, for every n ^ 1, 

(6.1) y„ + 2 F ^ [ R , B F ] . 

From this the result follows. In fact, if yn + 3F ^[R,nF], then the group H = 
= F/[R,n_ jF] has class n + 2 and, with M = R/[R)n _ iF], we have M ^ yw _ j H ^ 
sS y „ FT and H / M = F/R = G. If y n + 3 F ^ [R, „F], then the group H = F/[R, nF] has 
class «-+2 and, with M = £/ [R,„F] we have M^ynH and FT/M = G. 
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To establish (6.1) assume first p * 2. Then [R,F] ^ [FP[F',F],F] = 
= [F?,F]y4F=(F'fyAF and, for every » > 1, [R,KF] s= (yn + 1FYy„ + iF. 
Then yn + 2Fn[R,„F]^y„ + 2Fn(y„ + lFYy„ + ,F = y„ + }F(yn + 2Fn(y„ + .Ff) = 
= y„ + }F(y„ + 2Ff. Therefore y„ + 2F £[RynF], since yK + 2F ^yn + }F(yn + 2Ff. 

Assume now p = 2. Then [R,F] s= ([x 2 ,?] , [y 2 ,x] ) F (y 3 F) 2 7 4 f = (I*,?]2" 
• [*, y, * ] , [x, y]2 [*, y, y])(y3-F)2 74^> and, by induction on /, it is easy to show that, for 
every » £ 1, [R,„F] *= (y„+2F)2y„+}FF" < 4 -„</? , - i>4 , .4 ? - i .» - i | 0 ^ * ^ « - 1, 
i « y ^ «). 

Assume by contradiction y„+2F^ [R,„F] for some n 3= 1. Then J0 „ e [N,„F] and 

(6.2) d0>„="n ̂ „4>'-1 ft 4 V A . . -1« 
/ = o y = i 

for some integers hi} kj and a eF" (yn + 2F)2yn + 3F. 
The elements di>nidj>n-i,i e {0, ..., « — 1 } , / e {0, ..., n}, are free generators of 

y„ + 1Fmody„ + 3 F F " , thus from (6.2) it follows 

1 = £ 0 ( 2 ) , 0 = ^ ( 2 ) , *,- + £,• = 0(2), f o r l ^ / ^ * - l , 

2A,- + 2ki+1 = 0(2), for 0 ^ / ^ n - 1, 

and that is impossible. • 
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