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Analisi matematica. — On homogeneization problems for the Laplace operator in par-
tially perforated domains with Neumann’s condition on the boundary of cavities. Nota (*)
di Orca A. OremNnik e Tatiana SHAPOSHNIKOVA, presentata dal Socio O. A.

Oleinik.

AsstracT. — In this paper the problem of homogeneization for the Laplace operator in partially per-
forated domains with small cavities and the Neumann boundary conditions on the boundary of cavities is
studied. The corresponding spectral problem is also considered.

Key worbps: Homogeneization; Perforated domains; Small cavities; Neumann’s condition; Spectral
problem.

Ruassunto. — Sul problema della omogeneizzazione per l'operatore di Laplace in domini parzialmente per-
forati con condizioni di Neumann sul contorno delle cavita. In questa Nota viene studiato il problema della
omogeneizzazione per I'operatore di Laplace in domini parzialmente perforati con piccole cavita e con con-
dizioni di Neumann nel contorno delle cavitd. Viene anche considerato il cotrispondente problema
spettrale.

INTRODUCTION

The problem of homogeneization for the Laplace operator in perforated domains
with a small density of cavities and the Dirichlet boundary conditions on the boundary
of cavities was considered in many papers (see, for example, [1-5]). In this paper we
study the problem of homogeneization for the Laplace operator in partially perforated
domains with small cavities and the Neumann boundary conditions on the boundary of
cavities. The corresponding spectral problems are also considered.

1. Let 2 be a bounded domain in R; with a smooth boundary 9,
Q={x:10<x;<1,7=1,...,n}, Gyis a domain in Q, G, c Q and G, is diffeomor-
phic to a closed ball.

We set G, = U (4,G, + €2), where ¢ is a small positive parameter, 4, is a constant
zeZ

which depends on e and a,£ 7' — 0 as € — 0, Z is the set of vectors z with integer com-
ponents, aB = {x:a"'x e B}, Y, = eQ\ 4,G,. We assume that Q N {x:x; =0} =
=y #0.
We denote
Qt=02N{xx>0}, L =2N{x:ix;<0}, QF=0"\G,,
S, =9G, , Q,=2/UyUuQ, S§=02,NQ, I, =002,\S,,

1

(#), = |w|"Judx, where |w| is the volume of the domain w.

As usual we denote by H, (£2, I') the space of functions which is obtained by com-
pletion of the set of infinitely differentiable in Q functions # (x), equal to zero in a

(*) Pervenuta all’Accademia il 4 luglio 1995.



134 O. A. OLEINIK - T. SHAPOSHNIKOVA

neighborhood of I', by the norm
12
||u||Hl(g)=(I(u2+ |Vu|2)dx) .
@

In partially perforated domain £, we study the Neumann boundary value
problem:
Ou,
ov
where v is the exterior unit normal vector to S,, fe C*(2), a > 0.

We consider a weak solution #, € H; (2, I',) of the problem (1) and study the be-
haviour of #, as ¢ > 0.

Let us introduce the function N/ (y) (; = 1, ...,#) as a 1-periodic solution in & -1y,
of the problem:

(1) Au,=f in Q,, =0 on,, u,=0 on I,

ANFf=0 ine'Y,, 3 =Y
<I\]je>s'1Ye=0-

€
7

Lemma 1. If w € H;(Y,) and (u)y, = 0, then

on a,e” 1S,

(2)

In order to estimate we need some auxiliary results.

(3) e, v, < Kie|Vaull, v,

where V.« = (u,,,...,4,), the constant K; does not depend on &.
Lemma 2. Let u € H,(Y,). Then

(4) )l 0500 < Ko {2l =2 e 2 ullp, v,y + Va I Veulliyv, }

if =3, and
_ €
5} lelhaso < Ko{Vare ™ el + ol - V.l
€

if =2, where all constants K; here and in what follows do not depend on e.

We shall give proofs of these lemmas in the appendix.

Using the integral identity for the problem (2), we obtain the inequality
(6) IV, NF [, e-1vo < Kae ™" " Valf ™ 2(INE [l 50 -
By virtue of inequalities (3)-(5) we have
(D) INF s < Ks @ =226 7251 4 Va) [V, Nf [y, <

S Kg(al" ™12 + \/a_sfn/z_ Y ”VnyE "Lz(rln) )
if » =3, and

(8) I s < K Vo + ol 52N Do
£

if n=2.
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From (6)-(8) we obtain the following estimates:
| ae n2 .
(9) 198 e < Ka(2), 23,
2ae

In-t-, fn=2.
2a,

From Lemma 1 and estimates (9), (10) we obtain
INF N, vy + 1V, N Ml v, < KioalZ?

a, \n2
INF o+ 19, N D < Kur (52 )°

(10) IV, ey < K

s

(11) °

for » = 3 and

IN£ v, + IV, NF ey v, < Kizae A [In 22 ,
(12) 2a :

INFlle, 00y + IV, NF ) < Kis _g£ In Ziaa ,
for n = 2.

Thus, we have

Lemma 3. Let Nf (7 =1,...,#) be a solution of the problem (2). Then the esti-
mates (9)-(12) are valid.

Cororrary 1. For the functions N we have the following estimates:

max INF| <Kjyla.e )", max |V,Nf| <Ks(a.e '), if n=3,
n= n=
(13) 2a,

max , f n=2.

71=0 &

IHZ{;‘;, maxIVN |\K17

ayj is a harmonic 1-periodic in y function, we
i

can use the mean value theorem for harmonic functions: if P e y, then

oN| | oN;
T\ ve’

J
where V7 is a ball of radius 7, and P is the center of VP

O Ip
By virtue of the estimates (9), (10) we obtain
ONf
%;

Proor. Taking into account that

max
14

< VRV NF N,y < Kigaee 712,

for » = 3, and

8N£ Zae £

<Ko —%
<K — 22, ’

if n=2.
Other estimates (13) are obtained in a similar way.



136 O. A. OLEINIK - T. SHAPOSHNIKOVA

Let voe C2*%(Q) be a solution of the problem
(14) Avg=f in Q, v,=0 on 9Q.
Consider the function

n
— v
1 e X 0 - +
=p,+¢ N(—)—, xeR-UQRS,
Ug Vo jgl j £ axj 3
where I\~If =N/, if y, >0 and I\NIf =0, if y, <0, as an approximate solution for
.
In what follows we use the usual convention of repeated indices.
Taking into account the definition of the functions vy, Nf (/ = 1, ...,#), we obtain

that (#} — u,) is a weak solution of the problem:

Al —u,)=0, ifxeQ

iy 8 e P ON? %0, _ .
Alu; —u,)=¢ 2 (N, 5 3% + 5y Bl if xe Q7
Ov
1_ =Nt =2
[u; —u.|, = eN; ol N

8 1 al\lls av() 821)0

o, e T H || = Ox. H >

A v 1 Oilx=+o Oy O%; | x; = +0
2 (4l —u,)= &N i) 1 _, =¢N¢ @9
o (4; —u;) = eNj 5, o, v; on §,, u, —u, = eN/ 5 on I',,

where [@]]|pc, = @|p+o— @|p—o for any point P ey and function @.
We set u! —u, =v!+0v?, where v} is a weak solution of the following prob-

lem:

(Av51=0, ifxeQ™, Av:=F5++£é%f,-,g, ifxeQ],
(15) {['1],=0, l:gj;ll]y=8f1,e|x1=+0+le|x1=+o,
t?;j=e,-,ev,», on §,, v}=0 onTl,,
where
Ff= aNJ‘S 32”0 <5)21)0 (G=1,..,n),

dys Ox; Oxg fie =N, O; O;



ON HOMOGENEIZATION PROBLEMS FOR THE LAPLACE ... 137

aI\]J'e 8”0 2 . .
= 5 ol and v? is a weak solution of the problem
10X
o
MZ=0, fxeQ UQS, [2],=eNf ,
Ox; |2 = +0
e %e o, &g S 2= o 20 r
= = n = Fo—_— .
o |l . 3, on §,, v, = eN| ™ on I,

Now we obtain estimates for v}, »Z?. Using the integral identity for the problem
(15) and taking the test-function ¢ =v., we deduce

avl
1|12, _ 12— +o1 0, ' €
(17) j|vxug| dx Jlgvsdx fF vlde — ¢ jf 5
Q; 4 QF Qr
For the function » € H,(£2,, I',) one can prove the Friedrichs type inequality
(18) “””LZ(QE) S COHqu”LZ(QE) )

where the constant Cy does not depend on €. This inequality can be proved in the same
way as the Friedrichs type inequality is proved in[4, p.53, Theor. 4.5] for perforated
domains.

From the inequality (18), the imbedding theorem and (17) it follows that

(19) J ]vasl lde < KZO ”vael ”Lz(!)g) :

Q.

n
s el +1F o + e 5, W lhcor)

Using the Friedrichs inequality (18), estimates (11)-(13) and (19), we get

o0& llry 2,y < Ko (a6 71" for n =3,
(20) 2a €
ol I, 2,) < Kz -—55 In 22, for n=2.
We set
(a,e 1", ifn=3,

1 £ . =2
z n2a£’lfn 2

Thus we have

Lemma 4. Let v} € H; (R,, I',) be a weak solution of the problem (15). Then the
following estimate is valid

(22) od l, 2,) < Kos @ (€).

Now we derive the estimate for the solution v2. We define the function ¢(x;)

as a smooth function for x; =0 and @ =1 for x, € [0, d¢], ¢ =0 for x; = 20¢,
|@’| < K,4& ™! and the constant ¢ is chosen in such a way that ¢ = 0 forx € §,. We set
@ = 0 for x; < 0. We say that »2 is a weak solution of the problem (16) if the function
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p2=p2— e(pﬁf % e H,(R,) and for any function ¥ € H,(2,, I',) the following

7
integral identity is valid

— . Ovg

[ (.52, 9, p)de = & [ [VeloNs 22} Vew |dx.

ax/
Q, Qr
We represent the function 772 in the form
7=l wt,

where w. is a weak solution of the problem

( av .
Aw£=—8A((pr —°) in Q}; Adw!=0 inQ°,
O;
ow} 3 O
(23)  [wll], = el = —¢ 9 [Ne TP
awl
= =0 onS,, wl=0 onl,,
L v
and w? is a weak solution of the problem
ow?
Awf=0 in Q,, =0 on,,
v

(24)

~, O
wl=e(1-@)Nf == onI,.
O;

7

Taking in the integral identity for the problem (23) the solution w; as a test-func-
tion and using the Friedrichs inequality (18) for functions from H; (2,, I',) and esti-
mates (11), (12) we deduce the following estimate

(25) ”wé‘l ||H1(Qe) s K25 ¢n (8) .

In order to estimate w? we define the function 8 € C® () such that 6 = 1 when
o(x,9R2)<¢, 6=0 when o(x,3R2) =26, 006 < 1.
o .

~ Oy
Let w? =w? — e(1 — @) ON; 3, Q.. It is easy to see that w? e H,(2,, T,).
J
Let us take w] as a test-function in the integral identity for the problem (24).

Then we have

7

(26) fl%wﬂ%&=ej(wrl—¢nwféﬂ} uw#wx

Ox;
Q. 2

By virtue of the definition of the function @ and 6 and estimates (11), (12)
we deduce from (26) that

(27) V.02 |, 0,) < Kas @, ().
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Using the Friedrichs inequality (18) for w?, we obtain
(28) lw? I, < Ko pule) .
Therefore, from estimates (25), (27), (28) we have

Lemma 5. Let »2 be a weak solution of the problem (16). Then the following esti-
mate is valid
(29) o2 i, - + 102 1,01 < Kag o (€).
The next theorem follows from (22) and (29).

TueoreM 1. Let #, be a solution of the problem (1), vy be a solution of the problem
(14). Then
e = 06 e, 2,) < Ko @ (),

where ¢, (¢) is defined by (21).

The case when 4,6 ! = C, C = const, is considered in [6-8].

2. The spectral problem, corresponding to the boundary-value problem (1), can be
considered in the same way as in [6, 7], using the theorem from [4] about the spectrum
of a sequence of singularly perturbed operators.

On the base of Theorem 1 we have

Tueorem 2. Let {47} be a nondecreasing sequence of eigenvalues of the eigenval-
ue problem
Aul? + A7ul =0 in Q,,
ouf
ov

and let {A”} be a nondecreasing sequence of eigenvalues of the eigenvalue
problem

=0 on S, ul?=0 on I,

Au” +A”u” =0 in Q,
#”=0 on 0Q,
and every eigenvalue is counted as many times as its multiplicity. Then

1 _ 1],
- T < € >
)’,S,, A 1 ¢n ( )
where C; is a constant independent of €.
The homogeneization problem for the Laplace operator in partially perforated do-

main with the mixed type of boundary conditions is considered in[9].

APPENDIX

Proor oF LEmMa 1. First of all we extend a function # on G, ; this means that we
construct a new function # € H; (€Q) such that # = # when x € eéQ\ 4, G, and the fol-



140 O. A. OLEINIK - T. SHAPOSHNIKOVA

lowing inequality is valid:
(30) IVl e0) < Koo [Velle,v,) -

In order to get such an extension we introduce a new variable y' = 2, 'x and con-
sider the domain 2, 'Y, = (2, 'eQ)\G,. Since 2,6 '—0 as ¢ - 0 we can take a
cube Q; with the length of the edge which does not depend on ¢. In addition we sup-
pose that the faces of Q; and the faces of Q are parallel and G,c Q.

Then for any function # e H;(Q, \.G,) we can construct such extension 7
that

(31) IV, 2,00 < Kt Vy #tly0,30) -
The proof of this inequality can be find in[4].
From the inequality (31) we deduce that
”ng”L2 @on S Ksz “qu“Lz(ﬂs(Ql\ao)) .
Now we can define the function # setting
~ |7, whenxea.G,,
“ { u, when xeY,\a,G,.
For simplicity we assume that # and # are smooth functions. Then, for any points

P,P'eY, we have
P’ P’
*2

*1
w(P) = u(P)+ [, ooyl Ve 4 [, 6, 6]l )y +

"f *2
Xn
~ (P P P
+...+ Jux (X7 3 X3 5 een s X — 15 %,)d%, ,

where P = (xf,...,x0), P'=(x',...,xl").
From this representation we obtain
& £
@(P") — u(P))* < Kye Jz?,fldx1+ o j;de .
0 0

Now we integrate the last inequality at first with respect to P’ € Y, and then with re-
spect to P e Y,, and using (30) we deduce

2 —
2 |Yely!u dx 2( Judx

3

2$K34£2 | Y| J |V, u|?dx.
Y.

Thus, we have

_ 2 2
[wraes v, 1( juazx) +K34£J|qu|2dx.

YE & €

Taking into account that (#)y = 0 we obtain the statement of Lemma 1.
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Proor oF LEmma 2. For simplicity we assume that G is a ball with the radius
0 <1/2 and its center coincides with the center of Q. Let Pe4,S,, P' e 0 'rS,,
a,0<r< %Q and P, P’ lie at the same vector-radius. We have

£0/2 2

(32) w(P)<2u?(P)+2| | oul gy
or
aEQ
From (32) we deduce
€0/2 2
WPy <2 (P +2| [ |Z g <
or
agQ
Ef/z ]?/2 a 2 n~1d
<24%(P')+2 rl=7dy sur "1
ag@ agQ ar
We have
2 la
2 < 2 ' 2—n _u n—1 : ?
u?(P) < 24%(P') + —== (a,0) f o I R L
£0/2 2
uZ(P)$2u2(P')+21nL J’ Su rdr, fn=2.
2a, “h or

Multiplying the last inequalities by (2,0)" ! ¥(¢q,...,9,_1), where | =
=7""'y(@y,...,,—1) is the Jacobian for the spherical coordinates and integrating

with respect to @y,..., @, -1, we obtain
(33) J uzdS < K;s[a:’IJuZ(P’)¢d¢l ...d¢”_1 +d5 ||Vxﬂ||%2(T8/2\Tas)],
ﬂESO Sl

if =3, and

(34) f u?ds < Ky

280

“sJ”Z(P')¢d¢1 de, +a,In 2—2; “qulllzdz(Ts/z\T;E)]’

S

if # = 2, where §, is a sphere of radius 1, T, is a ball of radius oo whose center coin-
cides with the center of G,.
Then multiplying the inequalities (33), (34) by »” ! and integrating with respect to

£ .
P' over re (agg, 79), we deduce estimates:

g” o 2 <
K, > T e, o500 <

n
<Ky [ e 5 ) ||vxu||fzm,z\ns)],
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if =3, and

e’ 2 2 <
K T — 4 “u”Lz(asSo) =

2
< Kol o 5 =62) 0 ATl s, .
/M €

if # =2. From these inequalities we can conclude that Lemma 2 is valid.
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