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Meccanica. — Structural discontinuities to approximate some optimization problems
with a nonmonotone impulsive character. Nota di ALbo Bressan e Monica MoTra, pre-

sentata (*) dal Socio A. Bressan.

AsstracT. — In some preceding works we consider a class O of Boltz optimization problems for La-
grangian mechanical systems, where it is relevant a line / =/, regarded as determined by its (variable)
curvature function y(-) of domain [s,, 5, 1. Assume that the problem & e O is regular but has an ipulsive
monotone character in the sense that near each of some points ¢, to é,y(+) is monotone and |y’ (+)] is very
large. In[10] we propose a procedure belonging to the theory of impulsive controls, in order to simplify &
into a structurally discontinuous problem &. This is analogous to treating a biliard ball, disregarding its elas-
ticity properties, as a rigid body bouncing according to a suitable restitution coefficient. Here the afore-
mentioned treatment of & is extended to the case where its impulsive character fails to be monotone. Let
¢, 010 ¢, ,, be the successive maxima and minima of y(*) or —y(+) near &,(r = 1, ..., v). In constructing the
problem @, which simplifies and approximates &, as well as in[10] it is essential to approximate /., by
means of a line /., with ¢(+) discontinuous only at &,, ..., &, and with |c' ()| never very large; furthermore
now we must take the quantities ¢, , to ¢, ,, into account, e.g., by adding a «nonmonotonicity» type at ¢&,,
which vanishes in the monotone case (r =1, ..., v). Starting from [10] we extend to the afore-mentioned
general situation the notions of weak lower limit J* of the functional to minimize, extended admissible process
(which has an additional part in each [c,;_;,¢,;]) and extended solution of the problem &, or better
(8,30,1, sy ) Where o, ,;=¢,;—¢, ;- (=1, ...,m;r=1,..,v). In the general case we consider
the extended (impulsive) original problem and the extended functional to minimize. This has an impulsive part
at each of the points &, to 8,, as well as the differential constraints, complementary equations, and Ponttja-
gin’s optimization conditions. Besides the end conditions at s, and s,, there are junction conditions at &, to
8,. In the general case being considered we state a version of Pontrjagin’s maximum principle and an exis-
tence theorem for the extended (impulsive) problem. We also study some properties of J*, e.g. when [* is a
weak minimum. In particular, within both the monotone case and the nonmonotone one, we show that the
quantity J*, defined as a certain lower limit, equals the analogous limit; and this is practically a necessary
and sufficient condition for the present approximation theory, started in[10], to be satisfactory.

Key worps: Analytical mechanics; Lagrangian systems; Control theory.

Ruassunto. — Discontinuita strutturali per approssimare certi problemi di ottimizxazione con carattere im-
pulsivo non monotono. In precedenti lavori abbiamo considerato una classe O& di problemi di ottimizzazio-
ne di Boltz per sistemi meccanici Lagrangiani, nei quali & rilevante una linea / = [, considerata come de-
terminata dalla sua funzione (variabile) di curvatura y(-) di dominio [s,, 5, 1. Il problema & € O sia regola-
re ma abbia carattere impulsivo monotono nel senso che y(+) sia monotona e con |y’ (+)| molto grande vicino
a ciascuno di alcuni punti é,, ..., ¢,. In[10] abbiamo costruito un procedimento entro la teoria del control-
lo impulsivo, atto a semplificare & in un problema strutturalmente discontinuo . Cid & analogo al trattare
una palla da bigliardo, anziché per es. con la teoria dell’elasticita, considerandola come un corpo rigido rim-
balzante secondo un opportuno coefficiente di restituzione. Qui estendiamo la suaccennata trattazione
in[10] al caso che il carattere impulsivo di & sia non monotono. Siano €y 05 ++vs Cr, y, 1 SUCCESSIVI Massimi e
minimi di y(+) o di —y(*) nella vicinanza di ¢,(r = 1, ..., v). Nel costruire il problema & semplificante e ap-
prossimante P, come in[10] & ora essenziale considerare una linea /,, approssimante /(. con ¢(+) disconti-
nua solo in ¢, ..., &, e con |¢’ (+)| mai molto grande; inoltre ora si deve tener conto delle suddette quantita
€05 +++» Cr,m, DEL €S., attraverso il «tipo di non monotonia» in ¢,, che svanisce nel caso monotono

(*) Nella seduta dell’11 marzo 1995.
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(r=1, ...,v). Partendo da[10] estendiamo alla suddetta situazione generale le nozioni di estremo inferiore
debole J* del funzionale da minimizzare, processo ammissibile esteso (che ha parti addizionali in [c, ;_,, ¢, ;1)
e soluzione estesa del problema @, o meglio (50, ,,...,9,,) ove 0,,=¢,;~¢ ;1 ((=1,...,m,;
r=1, ...,v). Nel caso generale consideriamo pure il problema originale (impulsivo) esteso e il funzionale esteso
da minimizzare. Questo ha parti impulsive nei punti ¢4, ..., é,, al pari dei vincoli differenziali, delle equa-
zioni complementari e delle condizioni di ottimizzazione di Pontrjagin. Oltre alle condizioni ai limiti in s, ed

§y Vi sono condizioni di giunzione in d, ..., &,. Nel detto caso generale enunciamo una versione del principio

di massimo di Pontrjagin e un teorema di esistenza per il problema (impulsivo) esteso. Studiamo anche al-
cune proprieta di J*, tra I'altro quando esso & minimo debole. In particolare, nel caso monotono o no, mo-
striamo che la quantita J*, definita come un certo limite inferiore, eguaglia 'analogo limite; e cid & pratica-
mente una condizione necessatia e sufficiente affinché la presente teoria di approssimazione, iniziata
in [10], sia soddisfacente.

1. INTRODUCTION

In[10] we consider a certain class O of Boltz optimization problems that can be
represented by means of a differential manifold, where it is relevant a line / considered
as determined by its (variable) curvature y(+) that has the arclength as argument and
the domain [sq,s;]1(%).

Let & be a regular problem in O for which in particular y' (+) is continuous; but let
it have a monotone impulsive character in that |y’ (+)| is very large near each among
some points ¢, to ¢, and y(+) is monotone there. In[10] we show a procedure of impul-
sive control theory, useful to approximate and to simplify & into a structurally discon-
tinuous problem &: we replace y(+) with a convenient function ¢(+), that together with
¢’ (+) is piecewise continuous and has at most the discontinuities &, =¢(8," ) — c(¢,” ) at
&(r=1,...,v).

In the present paper we extend [10] to the case when &’s impulsive character fails
to be monotone near some &;. We do this rather quickly — practically without using any
corresponding auxiliary problem & such as (3.19-20), for » = 0 in[10] — by means of a
process which is based on the (results obtained just in the) monotone case and turns
out to be a limit process — see P3.6 ().

Thus, in order to solve the problem & (or &) in this general case, we first put v = 1
and ¢ = &,, we assume that |y’ ()| is very large only in [, & + ¢, ], and we approxi-
mate the given problem & by means of a monotone impulsive problem, say &;, with
v=mand (¢4, ...,8,) replacedbyd=(d,, ...,d, ) where 8 =d, <d, < ... <d, <8+

(1) In[3] to [5] Aldo Bressan started a systematic (non linear) application of control theory to Lagran-
gian mechanical systems, by using coordinates as controls. This is based on the purely mathematical pa-
per[1] (extended by[2]). A. Bressan’s afore-mentioned work has been further developed by himself and
other researchers: F. Rampazzo, M. Favretti, M. Motta and B. Piccoli — see [6-17]. The present paper be-
longs to this research line.

(%) To associate to @ the discontinuous problem & is analogous to treating a billiard ball, unlike using,
e.g., the elasticity theory, by considering it as a bouncing rigid body with a fixed restitution coefficient (that
can be determined only approximately). [10] has been made in view of applications to any mechanical La-

grangian system belonging to the class introduced in [6, sect 5], say I's, or to its extension I' defined
in[9].
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+ ¢,. Briefly speaking, we consider the discontinuities o; = ¢;(d;*) —¢;(d;”) (i =
=1, ...,m) of the corresponding curvature function c,(+) (with ¢;a;_, <0 for j =
=2, ...,m); and we letd,, tend to ¢ *, keeping o, to g, fixed. By means of this limit, in
section 3 we determine, up to a small arbitrariness, a new curvature function, say c(-),
with a first order discontinuity only at ¢; and we extend to the present case the defini-
tion of the weak infimum J* of the functional to minimize. Furthermore in section 4 we
introduce (for v = 1) suitable extended admissible processes, which have some additional
parts in the intervals [c(d;” ), c(d;* )] (i = 1, ..., m), as well as the extended solution to
&. In effect we also consider an extended original problem with an extended functional to
minimize. This has at ¢ some impulsive parts (connected with the above intervals) as well
as the differential constraints, the complementary equations, and Pontrjagin’s opti-
mization conditions. In section 4 we also state (for v = 1) the PMP (Pontrjagin’s maxi-
mum principle) with border and junction conditions. In sections 5-6 the above results
are briefly extended to the general nonmonotone case with v = 1. In section 6 an exis-
tence theorem for the solution to the extended problem is also considered.

In accord with what was said in [10], we write a well posed extension of the opti-
mization problems, considered in[10] within the monotone case, to the nonmonotone
one; to do this we must add e.g. the nonmonotonicity type (a; ;, ..., a; ) being consid-
ered at each discontinuity point &;( = 1, ..., v). Any change of it generally affects the
solutions. Furthermore in the monotone case (for ;) it becomes empty. Therefore
in[10], where only this case is dealt with, the above type is not mentioned explicitly;
while here — see sections 4 to 6 — we speak of problem (&,; ¢, 1, ..., s, , ) instead
of .

Let us briefly add, first, that the afore-mentioned weak infimum J* is defined
in[10] by considering a certain functional ] depending on a curvature function c,(*)
(n € R) that is linear in the small intervals [8;, 8; + ;1 ( =1, ..., v); then J* is identi-
fied with the lim inf J ¥ for y — 0" . In Remark 2.1 we briefly show on the basis of [10]
that J* = lim ],*; and the existence of such a limit is basilar for the possibility of simpli-
fying the given (regular) optimization problem into the impulsive problem & hinted at
above.

Second, in[10, sect.5] the meaning of J* is enriched by showing that the above
¢, (+)’s linearity property can, briefly speaking, be weakened into ¢, (+)’s regularity and
monotonocity on [¢;,8; + ;] (=1, ..., v). We note that this enrichment appears to
hold also in the nonmonotone case, by its «quick reduction» to the monotone one hint-
ed at above, notwithstanding this reduction involves only curvature functions having
the above linearity property, for simplicity reasons.

Third, in section 3, first J* is defined in the new case, again as a simple lower limit
of a certain family Jj . Then its meaning is enriched by broadening the family, say to
Jxa: J* = lim inf J¥ ;. Furthermore in section 3 it is shown that all these lower limits
equal their corresponding limits; and more refined limit properties of J* are proved,
which become simpler in case a solution to a certain auxiliary problem exists — see
P3.6.
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2. ON THE PROBLEMS HAVING AN IMPULSIVE CHARACTER WITHOUT MONOTONICITY.
A FIRST STEP OF THEIR REDUCTION TO THE MONOTONE CASE.
CORRESPONDING AUXILIARY PROBLEMS

We consider the Cartesian frame Oc;c,c; (¢, ¢, = ¢,,, Kronecker’s delta) and the
line / in the plane Oc;c,, of equation P = P(s) where s is the arclength on /. Let v(s)
be I’s cutvature at P(s) with the sign relative to ¢; (when it exists). We assume that
for some points {8y, ..., 8,4} such that sg=¢;<8; < ... <4, <&, =5, 7()’s

restriction to (d;,d;4,) has a continuously differentiable extension to [¢;,d;, ]
(z=0,...,v).

One can determine / by means of the two-dimensional Cauchy problem - see [10,
p. 371

(2.1) dP/ds=T, dT/ds=7vy(s)c;XT for ae. selsy,s],
(22) P(Io)=P0, T(So):TO (|T0|:1,C3'T0=0=OP0'C3)
in the unknown function (s, y(+)) = (P(s), P’ (s)) of s.

In connection with the line /., we consider the Boltz optimization prob-
lem (3)

(2.3) ALP(), u(+)] = j LLs, @(s), u(s)1ds + PLP(s,)] — inf

under the differential constraint

(2.4) dP/ds = ¢ls, P(s), u(s)1(e R) for ae. sels,,s;]

and the initial and control constraints ‘

(2.5) P(so) =Py, u(*)e U=B([sy, 5,1, U),

where U is a compact subset of R”, $B([s,, s; 1, U) denotes the set of Borel measurable

functions from [sg,s5;] to U, ¥(:) e C*(R), while ¢(*) and L(+) have the forms
ols, P, u) =0 [s, 4,0, y(), y(s) 1 v'(s) + °Ls, &, 4,00, v(+), v(s) 1,

(2.6) S L(s, @, u)=L'[s, ,u,0(s, y(+)), y(s)1 y'(s) +L°Ls, @, u, 6(s, v(*)), y(s) ],
V(s, P,u)e ®=[sq,5;] X R XU, where s—>0(s, y(+)) solves problem (2.1-2).

We also assume that for / =0, 1 the functions ¢/ (s, P, %, 0, v), ¢ 5(s, P, 4,0, y),
L/(s,®,u,0,y) and Liy(s, P,u,0,v) of (s,P,u,0,y) are continuous on
D, =[59,5:]XRXUXR*X R, and for some constant C

2.7) |G, 2,4,0,c)| SCA+|P]) Vi, P,4,0,c)e® (7=0,1).

Briefly, here we consider again the regular physical system § studied in[10] and
having the properties P1.1-3 in[10, sect.1], but we disregard its monotonicity property

(%) We shall often use e.g. (2.1*) or (2.1)°" for (2.1) where the function y(*) is replaced by x(*) or c(-),

respectively. More generally, we denote by (r.s)*” or (r.s)" the formula obtained from (r.s) in the above
way.
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P1.4 there; and we aim at extending the results of [10] to this general case. More ex-
plicitly we consider a regular instance of the optimization problem (2.1-5) — Ze. an in-
stance of the latter problem with v = 0 and with y() replaced by a given curvature
function x(+) € C*([sy, $; 1), and we first assume that y(+) has an impulsive character, for
the sake of simplicity, near one instant & € (s, s; ). This means that, e.g., for some small
€0 >0, |x'(+)] is very large in (8, ¢ + ¢y) while it has an ordinary size on [s, 6) U
U(8 + &g, 51 1. Furthermore we assume that %(+) may be very complex on [¢, & + ¢(]
and that, for some 7 > 1, it has there the following monotonicity type of order m:

(@) for some dy to d,, with & =dy < JL< .. < dy=8+co, i [8,8+eolxls)is
monotone (only) on each of the intervals [d;_,,d;] (i =1, ...,m), so that
(2.8) 0,410, <0 fori<m, wheres,=c;~—c,_1(i=1,...,m)
with ¢; = 4(d))(j =0, ...,m).

Of course, the interval [8, & + eo] has now the role of the interval [7;, 5;] men-
tioned in e.g. [10, P1.4] for v = 1. In the case 7z > 1 being considered, one may call
(02, -oes @) x(*)'s nonmonotonicity type in [8, & + €41 — see (v) above (3.2). In the case
m = 1 this type becomes empty and x(+) just has the monotonicity property [10, P1.4],
o, being always determined by ¢(+) and ¢, to g,,.

In order to simplify the treatment of the above regular problem, it is convenient
— roughly speaking — , first, to schemetize or approximate this by means of a problem
such as [10, (2.1-2)°° U (2.4-6)) ] with both a monotone impulsive character and v =
=m > 1; and second, to take the limit of this as ¢, — 0.

In more details, in analogy with the replacement of the regular problem & with the
impulsive one & made in[10], as a FIRST STEP we replace problem (2.1-5)*) with an
impulsive problem (2.1-5)° where now ¢(+) is regarded to depend on 4, to d,,,

(2.9) 50<8=d1<d2<...<dm<3+€0<dm+1i51
holds, and — see (2.8);
(2.10) cd)=c¢*, where ¢; =c;_y, ¢t=¢ (G=1,...,m);

furthermore c(+) satisfies (at least approximately) conditions such as
c(s) = x(s) Vsels,d),
{ cs)=xle+(G6—-4d,) s, =8/, —d,)] Vse(d,,s],
(i) %(+) being an extension to (3,s,] for %(+)’s restriction to (8 + e, s;], with
| %" ()| of ordinary size. '

(2.11)

Of course the function ¢(+) is required to have a continuously differentiable
extension on any interval [d;_,,d;], which leaves it a large arbitrariness in any
interval (d;_,,d;) (/=2,...,m)(*). In order to reach our results quicker, we
can use this arbitrariness to assume that c(*) is constant on (d;_(,d;) (=2, ...,m).

(4) In analogy with [10, ftn.1], this arbitrariness has a counterpart in the widespread treatment of a bil-
liard ball as a rigid body bouncing according to a certain restitution coefficient: the (precise) choice of this.
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Later it will be clear that the same results can be reached under much weaker
assumptions.

As well as in[10, sect.2], we regard the above problem (2.1-5)°’ as a limit of a se-
quence formed by some suitable problems that involve implementable processes (we
mean connected with continuous curvature functions). Therefore we consider the
m-tuples n = (94, ..., n,,) eD=D,; with d = (d,, ..., d,, ), where
(212) Ddi{ﬂla=d1 <d1 +7’)1 <d2<d2+7]2< e <dm<dm+77m<a+€0})
and for any n e D we use the function

c(s), sels,d],

213) ¢, 4(9)=c,(5)= ci-1to(s—d;)/n;, seld;,d;+n],

m

ela, (), sed,= U (@d+n,d00,
where 7 runs on {1, ...,.} while the function a,():3, = R reads
= d
(2.14) a,}(S)id,'+1_—dt—+l—'—l—(di+1_S) SE[d,""‘T],',d,‘.\Ll] (l'=1,...,m).
diyy—d;—;
Incidentally (2.13); can be replaced with
¢, (s)=¢ Vseld,+n,,d;,11 (G=1,...,m—1),
(2.13)' ’ o fi
ey (s) =cla,(s)) Vseld, +n,,].

We define ¢, (+) [L,(:)] to be what ¢ [L] becomes by replacing ¢(+) in (2.6) with
¢, (*) (n € D); more generally we call (r.s), the formula obtained from (r.s.) by replac-
ingc, ¢, L, and Jwith¢,, ¢,, L,, and j,, respectively. Furthermore we assume that for
any n € D the class, say AdP,, of the admissible processes (P(+), #(+)) for the regular
(approximating) problem (2.1-5), is non-empty and we set
(2.15) Jra=45 =inf{J,(8): £ AdP,}, ]} =4"= Jim inf 35 -

As well as in[10, (2.15)], we regard (2.3)") as the task of determining the above

weak infimum 1* . We refer to this in speaking of the weak optimization (or minimiza-
tion) problem (2.1-5)°).

Remark 2.1. In the general case v = 1, by the definitions (2.15) — see [10, (2.15)] — re-
garded as valid in this case, we have that

, . _ . " . — : %
(2.15) = dm &, ie Jr= lm ..

n(eD)—0

This is necessary and practically sufficient for the theory started in [10] to be satis-
factory. The extension of (2.15") to the nonmonotone case will be performed explicitly
only in the case v =1, for the sake of simplicity — see P3.6 (a).

The proof of (2.15)" is short on the basis of [10]. In fact, up to a misprint,
[10, (4.1);] asserts that J* = 5*. Furthermore in[10] it is in effect deduced that,
given any ¢ > 0, for some # € U and some &,(¢) >0, [10, (4.2);;] hold for all
neB(0,8,(c)) N D, being understood that #(#) =«[B,(¢)] - see[10, (3.1)] -
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and that &= (2(+), #(*)) is an admissible process of problem [10, (1.2-4)%")]. There-
fore[10, (4.1),, (4.2),5] imply the first of the relations

g +2e> 5,625 VneB(0,8,(s))ND
— see below[10, (2.13)]. The second follows by the definition (2.15), (regarded as valid
for v = 1). Thus, by the arbitrariness of ¢(> 0) we conclude that

J* = limsup J;.

n(eD)—0

This and the definition [10, (2.15),] of 5* yield (2.15)'. =

We remember that, as shown in [10, sect. 5], the weak infimum J* remains invari-
ant if we replace the simple family F; ={c, (+)},p having the linearity property [10,
(2.11)] with any family F= {c,, (-)}neD € F —see [10, Def.5.1] — consisting of continuous
approximations of the function ¢(+) that are increasing and satisfy certain weak condi-
tions but are not necessarily linear in any interval (d;,d; + ;1 (i =1, ..., m).

Remark 2.2. By the properties of any family Fe F asserted in [10, sect. 51, the ana-
logue for F of equality (2.15)', referring to Fy holds and it can be proved practically like its
original version.

After [10, sects. 3, 4], for ne D we set
(2.16) s=8,()=
so+ (dy — )t (elsg,d1]), telo, 1],
=dd,+(t—-2i+ 1)y, (eld;,d;+1,]), tel2i -1, 24,
di+n+(diy—di—n;)e—20) (eld;+;,d;11), tel2i,2i+1],
where 7 runs on {1, ...,7}; hence by (2.13) and (2.16) one has
(217)  ct)=c,[B,)] =
clso + (dy —50)1, telo0, 11,
=d¢_1to(t—21+1), tel2/—1,2, (G=1,...,m),
cld;+ (d;iy 1 —d)e—2i), tel2i,2i+1],
so that (+) is independent of n € D. Furthermore, for v =mwe recall the following op-
timization problem depending on the parameter y € D — see [10, (3.19-20),, p. 43] -

and we do this by writing d explicitly in some places, like in the sequel and unlike what
we did in[10] where d was fixed at the outset.
2v+1
(2.18), 4 3y, alE1= j L, Jlt, @(2), 4(8)1dt + WIP(2v +1)1—inf (E=(2(-), 4())),
0
under the differential, initial, and control constraints

(2.19),4 dP[dt=35,, a@), $0)=8, #€(-)eU=8(0,2v+1],U),
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where

(2.20), 4 { Pnalt, @ u) =0, 4B, (1), ,ulB,(2),

L,a(t, 2 u)=L, 41B,(), P, u1B, ().
We remember from[10] that the function s=p, ;(¢) =8,(¢) is a bijection of

[0, 2v + 1] onto [s¢, 5; ], now being v = 7; and it mutually transforms the (optimiza-
tion) problem (2.18-20), ; into problem (2.3-5)¢"). More precisely

P2.1. Under (2.9) and (2.12) the conditions
(2.21) () =ulB,®)], @) =9p,®)] Veel0,2m+1], neD

imply that (z')Au(~) e U iff u(*) ﬁ, (i7) P(+) solves the (Cauchy) problem (2.4)4") U
U (2.5); #f P(+) solves problem ((2.19), 411, 2 and (iti) remembering (2.3)240) gnd
(2.18), 4

(2.22) 5y aLPC), u()] =5, J[2(), d(-)].
For u(+) € U and n € D we call P(+, u(+), 0, d) the solution in [s, s, ] of the problem

(2.4)4) U(2.5),, while for (+) € U and n € D, we call P(-, u4(+), 1, d) the solution in
[0, 27 + 1] of problem [(2.19), 411 ,; and we set

(223) &40 = (@ u(),n,d),u")), &, ia0= (2(+, a(+), n,d),a(+)) .

After Theorem 4.1 in [10, p. 44] the above impulsive problem (2.1-5)") can be reduced
to the ordinary (auxiliary) optimization problem (2.18-19), 4, in the sense that

(2.24) §=Tsa=inf{JoalE0yal:aecU}.

3. SECOND STEP FOR THE REDUCTION
OF THE NONMONOTONE CASE TO THE MONOTONE ONE.
A SIMPLE DEFINITION AND SOME PROPERTIES OF THE NEW WEAK INFIMUM ] *

In the Second Step we let d,, tend to ¢ by keeping ¢ = d; < ... < d,,. Before study-
ing this limit we consider 3,, ;(¢) =8, (), a,[8,1)], and c(¢)=¢; (t)_given by (2.16) and
(2.17), as functions of (%, 4, ¢) defined for ¢ € [0, 27 4+ 1] and y € D, of course in con-

nection with a given admissible choice of ¥(+) — see (2.11-12).

P3.1. Those functions are continuous on A X [0, 2m + 1] and their derivatives w.r.t. t
are uniformly continuous on A; =AX (j,7+1) (=0, ..., 2m), where

(3.1) A={(n,d):¢=dy<dy+n,<d,<..<d,<d,+1,<8+¢e}.
Then, by (2.20), 4, our assumptions imply the following proposition.

P3.2. For every R > 0 the functions 9., (¢, P, u) and I:,,,d(t, P, u) are meaningful
and uniformly continuous on A; X [=R,RI1X U (=0, ..., 2m).

Now it is not difficult to see that, first,
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P3.3. For some R >0 the solution (- a(+), n,d) of problem [(2.19),,4)1,2 in
[0, 2m + 1] exists and bas a C -norm less than R V(n,d, u) edxU.

Second, by (2.18-19) and (2.23),

P3.4. The functions £, 4 qand 3,7’(1 (£, 4.2]0f (n,d, #) are continuous w.rt. (n,d) € A
uniformly w.rt. ue U.

For d regarded as fixed at the outset, as it is done in [10], proposition P3.4 practi-
cally reduces to P3.9 in[10, p. 44]; and its proof, briefly sketched above in the general
case, is in effect a straightforward generalization of the reasoning presented in[10,
sect. 3] just to prove P3.9 there.

It is natural to define the weak infimum J* of the functional to minimize by

(3.2) J* =liminf Jf (keeping 8 =d; < ... <d,) — see (2.15).
d,,,—>6‘+

We now call & the point (4, ..., 8) € R”, so that (0, 8) is the only point (», d) € 4
with d,, + n,, = &; and we prove that

P3.5. J* has the following two propertz'es
(33) ]*=]#_ ' ]nd; ]*=]n"j§

(n, d)(e A)—-> (0,8

being

(3.4) Jra=inf{y, 08, 4z e U} V(nd)el;
furthermore

(3.5) Jra=Tks V(n,d)ed.

Proor. Fix any ¢ > 0. Then by P3.4, for some g, > 0

(3.6) '30,§[go,§,,;]_3y,,d[gy;,d,ﬁ]l<5
V(n,d, %) e Ax U with [1]<po, |d~2|<po.

Furthermore by definitions (2.15); 4 and (3.2), for some ¢; € (0, pg) the first of the
inequalities
B.7) J*<Jr+e<Hoslfoszl+te V(0,d,2)eldx U with |[d—¢|<p,
holds; and the second follows from theorem (2.24).

The definition (3.3), of J* implies that, for some o€ (0, py), some (7, d,v)e
e 4 X U satisfies the conditions |7|<p, |d —¢|<p, and the first one of
(38) ]#+8>37]13[E§,2,;] =gﬁ,;[gﬁ,3,5] fOI‘ Eiioﬁg,zeﬁ.
Then by definition (3.8); and P2.1, (3.8), 4 also hold. The first of the inequali-
ties
(3.9) ]*‘]#sgo,z[go,i,a]‘35,2[%,2,,;]+25<4s
follows from (3.7-8). Since p < g, by using (3.6) first with (n,d,#) = (0, d,v) and
then with (,d,#) = (3, d,v) we deduce (3.9),.
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By &’s arbitrariness (3.9) yields the first of the inequalities
(3.10) J* = ]# s ]# < J*.
By the definitions (3.2) of J* and (3.3), of J#, (3.10), is an exercise on infimum lim-

its. Thus (3.3); has been proved.
Equality (3.5) follows from (2.15); ,, (3.4) and (3.8),. Then — remembering (3.6) —

by (3.3), and (3.4), for some (,d,v)e 4 X U, we have the inequalities
(311) |77|<Po, Id—§[<90> l]#_j;;fd|<€> gv],d[gr),d,ﬁ]<]rid+€'
By (3.4) with n = 0 we have the first of the relations
(3.12) J6:< 30,000,551 S 8palE, 5]+ e <J* + 3¢,
By (3.11);, ,, (3.6); holds for # = v; this yields (3.12),. By (3.11); 4 we deduce
(3.12);. The arbitrariness of ¢ > 0 yields the first of the relations
(3.13) JeesTt,  TE<J§s
Now we note that by (3.4) some further choice of (n,d,7)eA X U satisfies
(3.11); 5 and the first of the relations
(314) j(f,_; > go,é[go,g,ﬁ] —e> jﬂ,d[gn,d,ﬁ] - 2¢ Bj;:d — 2¢ >]# — 3¢.

The second follows from (3.6), valid for # = v again; by (3.4) (3.14); holds, while
(3.11); yields (3.14),. By &’s arbitrariness (3.13), also holds. We now deduce (3.3);
from (3.3); and (3.13). =

It is worth noting that

P3.6. (a) For the weak infimum |* — see (3. 2) — we have that

(3.15) * = lim ¥, =
J <n,d>(em—><o,§)]”"’ (n d)(eA)a(o a)]” -

b) If (i) {Eo, 54, Js>0 15 any among the infinitely many minimizing sequences of
problem (2.18-20) ; and (i) ;= , 408, 4, which determines u,, 4 for s >0 and
(n,d) €A, then

(3.16) J* =:1in}° go,g(go,g,a )= lim 3r),d(gn,d,ﬁ,) =

: (s,m,d)(e N X 4)—(+=;0,9)

= lim .
(5,7,d) (e Nx4)—(+;0, S)Jn,d(én,d,ux)

(¢) If (iti) problem (2.18- 20)0 s bas a solution £, sav and () u* =u, 408, 4,
which determines u, g4 for (9, d) € 4, then e.g. the lower limit in (3.3) can be replaced by
the limit for (n,d)—(0,9), ie. for d,+ v, — 3%, with (v,d) € A:

* — " 3 x| = 1 o E x| = .
(3.17) J*=1J0,5[&0, 5 2+] (n,d)(ehZ{?a(o,g) I al&y a1 (md)(glgl_)(w) Indl&n a4, 4]
Note, first, that by (b) there is some sequence u; € U such that |* equals the R H.S. of
(3.16)5.

Second, in all the limits considered in P3.6 we can restrict (v, d) by the conditions
(n,d) e Adand v; = d; — d; _ |, which in effect eliminates the interval [d; _; + 9,1, d;]
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(7 =2, ..., m). This result is natural and it is expected to be reached directly if, instead
of using our two-step treatment of the nonmonotone case, one extends directly the
whole treatment of the nonmonotone case written in[10].

Proor or P3.6. Consider any ¢ > 0. Then for some po > 0 (3.6) holds; and by
(3.2), for some d with (d) é=d, < ... <d, <3+ p, the first of the relations

(3.18) J*+4e=Ji+3e= 5,750 za) +2:2 5,4, 40 2 5y
Y(n,d) e AN [B(0, py) X B(8, po)]

holds. Furthermore by (2.24) some # € U renders (3.18), true. Now by (d) and (3.6)
we easily deduce that

(3.19) |30,2(go,2,12) - 31;,‘1(21;,:1,12” <2 V(n,d)eAN[B(0,p,) X B(4, p)].

This implies (3.18);. Lastly (3.4) yields (3.18),. By &’s arbitrariness (3.18) implies
that
J*= limsup 5,,,,1.

(9, d)(ed)—(0,9)

Then, by (3.3); ,, (3.15); holds; and (3.5) yields (3.15),.
To prove part (5) we first deduce (3.16); from (3.3); and the assumptions in ().
Now we consider any ¢ > 0. By (3.16),, for some Se N

|J* _3o,§(go,§,fz,)|< e Vs>S§.

Furthermore, for some p, (3.6) holds. Then, by putting # = #, in (3.6),, one easily
sees that

]]*_gn,d(gn,d,ﬁ,)l<25 V(n’d)ezn[B(O)PO)XB(§’PO)]» Vs>S§.

By &’s arbitrariness this yields (3.16),. Lastly assumption (i7) in (5) and P2.1 for # = #;
— see (2.22-23) — yield (3.16);.

To prove part (¢) we first deduce (3.17); from (3.3); and assumption (i7Z). Thus,
setting #, =4 * (s e N*), {Eo_ 54 Js>0 is a minimizing sequence of problem (2.18-
20)o,;; and by assumptions (:7) and (i), #; ,, 4=, 4 for all s > 0 and all (n,d) € 4.
Therefore, by part (5), (3.16) and (3.17); imply (3.17), ;. ®

We are now particularly interested in the afore-mentioned limit (v, d) (e 4) —
— (0, 8) and hence in the case (n,d) = (0, ). In this (2.16) yields
So+(a'—§0)t, tE[O) 1])

(3.20) Bo(t) =42, tell, 2m],
S+ (s, =) —2m), tel2m, 2m+1],
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while (2.16) and (2.17) imply

clso + (& —s0)21, tel0, 1],
(.21) &) g, =G teem 2, relarm1, 2,
. t)= =
‘ (nded) >0, 7 By <, tel2],2/+11,

clé+ (s; =8¢ —2m)], tel2m, 2m+1],
for =1 tom and /=1 to m — 1. Thus by (2.6) and (2.20)

(002, P, u) =
olso + (8 —50) 2, P, 018 = 50), telo0, 11,
_ o' (8, P, u,008,¢(*),cio 1+ o, =2i+1))o;, tel2i—1,2],
o, tel2l, 21 +1],
ol + (s — &) — 2m), @, ul(s; — 8), tel[2m,2m+ 1],
C-2) L e =
Llsg+ (8 —s0) ¢, P, ul(é —54), telo0, 1],
LY, @, 4,008, ¢(4)), ¢y + 0 (¢ — 28 + 1)) 0y, tel2i-1,2i],
o, tel2l, 21 +1],
{ L[+ (s; — 8)(¢ — 2m), @, ul(s; — &), tel2m,2m+ 1],

fori=1tomand /=1 to m — 1. By (3.22), it follows that
(3.23) () =const Weel[20,20+1] (I=1,...,m—1).

Remark that, by (2.10-11) and (3.20-23), ¢(+)’s values in (d;, d; ), z.e. those of %(*)
there, are irrelevant, as far as the limits at § are concerned.

The results (3.22-23) allow us to simplify the auxiliary problem (2.18-19), , by can-
celling the intervals (2/, 2/ 4+ 1) for / =1, ..., m — 1. Thus in the simplified problem,
say (2.18-19)', ¢(+):[0,7 + 11 = R has the definition

clsg + (8 —s0) 21, tel0, 1],
(3.24) co ) =ct)=4¢_tolz=1+1), tell—-1,1] (=1,
cle+ (s =)t —m)l, telmm+1].

ey m),

4. ON THE (SECOND-STEP) IMPULSIVE PROBLEM (&,; G, 1, ..., O )
IN THE NONMONOTONE CASE FOR v = 1.
EXTENDED FUNCTIONAL TO MINIMIZE; ORDINARY AND IMPULSIVE PARTS
OF DIFFERENTIAL CONSTRAINTS, COMPLEMENTARY EQUATIONS,
PONTRJAGIN’S CONDITIONS; BORDER AND JUNCTION CONDITIONS

By means of the preceding limit (», d) — (0, 8) we have in effect associated to our
original regular problem both (a) an impulsive problem &, Ze. (2.1-5)°") with the cur-
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vature ¢(*) defined on the whole set [s,s;1\{¢}, in a way compatible with (2.11):
(4.1) c(t) =x(t) Vtelsy,8), ct)=3x@) Vte(s s];
and (8) the monotonicity type (o4, ..., o,,).

Remark 4.1. Since in the limit problem d,, = ¢
(4.2) c@t)—c(¢")=a1+ ... +0a,,

for m > 1 it suffices to know the «nonmonotonicity type» (o4, ..., 0,,); consequently in the
monotone case considered in[10] there is no need to know amy monotonicity type.

Because of the «nonmonotone» monotonicity type now associated to problem &,
this cannot be treated like in [10]; in fact above formula (3.24) we replaced the corre-
sponding auxiliary problem (2.18-19), with a simplified one, called (2.18-19)". Thus it
would be better to speak of the problem (&;; 0y, ..., a,).

Let s> 60(s) = 6(s, c(+)) = (x(s), y(s), x" (s),y' (s)) be the solution to the Cauchy
problem (2.1-2¢Y in the case (4.1). Referring to this we construct ¢(s, #, #) and
L(s, @,u4) by means of (2.6) and we set — see[10, (3.16)]

{qo,-(c, P, u)=0'[8, P, u, 0(3), c]

(4.3)
L;'(C) '?’ u) iLl [8) g’) u, 6(3), C]

i=1,..,m).

To introduce extended solutions — see[10,(6.9)] — in the present framework, we
consider the process

(4.4) E=(PC), (), {: (), 4:(}iet, . m)

where the function P(+): [so, 5;1\{¢} = R is AC on both [s,, ¢) and (¢, 5, ], and where,
calling U the set of control values,

(4.5) wue B(lso,5,:1,U), P () e AC([¢; -1, ¢;]), u;€ B(le;~1,¢1,U)
(G=1,..,m).

Furthermore we define the extension of the functional () to minimize — see
(2.3)%) — by

(46) =20, 401+ 3 [ Lle, 2.0, 1 (00de

In our simple problem (&;; oy, ..., ,) the differential constraints (in &(+) and
&;(+)) and the complementary equations (in A(*) and A,(*)) have the ordinary parts in
[so, 511\ {¢} - see[10, (6.17)]

(4.7) d@/ds = ols, P, u(s)], dr[ds= —2p ols, P, u(s)] + L 5ls, P, uls)]

for a.e. s € [sy,5,], and the impulsive parts

(4.8) d®;[dc=o,ls, %, u;(c)], dA;[/de=—X;0;,lc, P u;(c)] + L; e, &, u;(0)]
for a.e. celc;_1,¢;]1 (=1, ...,m). Furthermore we have the control constraints
(4.9) wis)eU, wc)eU (G=1,..,m),
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the initial and junction conditions for #(+) and &;(*)

(4.10) Pls) =, @@ )= (cy), Pnlc,)=P0E"),
' g’,’(C{)=3’,‘+1(€,') (l.=1,..‘,m_1),
and the terminal and junction conditions for A(+) and A;(+)
Msp) = =V'[2(s)],  MeT)=21(co), Anlc,) =A(T),
Aile))=2iv1le) (G=1,...,m—1).

Note that (4.10), and (4.11), are lacking in the analogue[10, (6.18)] of
(4.10-11).

Similarly, Pontrjagin’s optimization condition has the ordinary part

(4.12)  Als) ols, P(s), u(s)] — LLs, P(s), u(s)] =
= max {A(s) p[s, P(s),u] — L[s, P(s),ul: u e U}
for ae. s e [sg,s1] — see[10, (6.19)] — as well as the impulsive parts
(4.13) 2 (c0) p;le, @i(c), u;(c)] = L;[c, Pi(c), u;(c)] =
=pax A () p;le, P (c),ul = Lilc, P;(c),ul:ue U}

for ae. celc;_1,¢;l and 0,20 (=1, ..., m).

(4.11) {

5. EXTENSION OF SECTION 4 TO THE CASE OF v > 1 DISCONTINUITY POINTS
WITH ARBITRARILY GIVEN NONMONOTONICITY TYPES

Now we briefly consider our impulsive (or better structurally discontinuous) prob-
lem (2,50, 1,...,0,,,) (r being regarded to run on {1, ..., v}) in the general case
(v = 1), where the single discontinuity point ¢ (for ¢(+)) is replaced by ¢; to &,. We as-
sume that

(¢) s <81 <... <3¢, <s;and é, has the monotonicity type (7, 1, ..., 7, ,, ) in the

sense that 8, corresponds to a short interval [, b,] where the regular system § (to be
treated approximately) has an &mpulsive character of type (o, 1, ..., 7, ,) (r=1,...,v)
— see (7) above (2.8) regarding 4, =¢, b,=8+ &g, and o, ;= q;.

Now, e.g. expressions (4.3-4), (4.6), (4.8-9), and (4.13) simply become

(5 1) ¢,-)[(C, ‘?)u)igol[ar"?)u)@(ar)>c]’

‘ Lf,i(c’ ‘??u)iLl[ar)'?yu) @(ar))c]>
(5.2) &= (‘?(')’ u(+), {‘?r,i(')) ur,i(')}i= 1,..omyr=1,.., v) s
(5.3) SE1=5LP(+), u(+)] + gl gl J Lilc, 8, ,(c), u,,(c)lde,

d(?r,' d€= r,’[c, '.(P,-,',”,—,t‘(c)])
(5.4) { ilde =g ’

d)\r,i/dc = _Ar, iPrig [C) g)r,i: ur,i(c)] + Lr [C7 ‘?r,z” ur,i(c)] »

, e
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for ae. cele, ;-1,¢..],
(5.5) u(s)eU, u,,(c)eU,
and
(5.6) A, e, ile, $ () u, ()] - L, lc, @, i(c),u,:(c)] =
=mx {0 e, e, P (), ul =L, ;[c, &, ;(c),ul:ue U}

for ae. cele, ;-1,¢,;] and o, ;20 respectively, where
(5.7) e 1=c(8,),  oi=ci-1ta,; (., =cé))
for i=1 to m, and r =1 to v. Furthermore (4.10), 4 5 and (4.11) become
5.8) { P, ) =9,1(c,0), 9,,,,,,.(@,,,,,) =2(s,),

B ile, ) =P ix1(c,;) G=1,...,m—1;r=1,..,v)

and ‘

5.9) { M) = =W'[206s)], A7) =2,10c0),  Apmlcn) =A7),
Ani(Cni) =2 is1(e ) (E=1,..,m—1).

Of course (4.7) and (4.12) need not to be changed.

6. EXTENDED PROCESSES, PONTRJAGIN’S MAXIMUM PRINCIPLE,
AND EXISTENCE THEOREM FOR THE GENERAL PROBLEM (&,; G, 1, ..., Ty )

Derinrion 6.1, (@) In connection with the general optimization problem
(2,50, -, 9, ) we say that the process & — see (5.2) — is an admissible (extended) pro-
cess, if it solves the ODEs (4.7)1, (5.4); and it satisfies the conditions (5.5), (5.8) and
(5.9).

(b) We say that the admissible process

(61) 5* i(g;*(,), ' {g)‘ rt( )}’=1,..,,m,;r=1,e..,v)
is an extended solution to the above problem if
(6.2) glE*1 < 4[] for all admissible processes & — see (5.2-3).

One can easily prove that

P6.1. For the afore-mentioned solution &* , we bave that J[£* ] = J* where |* is the
analogue for (P,;0, 1,...,0,,) of the weak infimum [* defined by (2.15) for
(L1501, 00y Tm).

Pontrjagin’s maximum principle (PMP) — see [10, Theor. 6.2] — can be extended as
follows.

TueorEM 6.1 (PMP). Let &* be an extended solution to problem (&,;a, 1, ...
cees Ty, m, ). Then there are some functions A(+): [so, 511 = Rand A, ;(*) e AC([c, ; 1, ¢, ;1)
—see 5.7) — (¢=1,...,m;r=1,...,v), such that (:) A(*) s AC on sy, 8],
(@;-1,8,1, (7 =2,...,v),and (3,, 1], (i) the ODEs (4.7), and (5.4), are solved while
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conditions (5.8) and (5.9) are satisfied, and (iii) Pontrjagin’s optimization conditions
(4.12) and (5.6) hold in their general versions for (P,; 0, 1, ..., T m ).

In order to state the existence theorem below we consider the following sets
(63) F*(s, P)={(yo,9): 90 = L(s, P,u),y =opls, P,u), uc U}
V(s, ®) e ([so, 511\ {81, ..., 8,}) X R,
and
6.4)  EX(c,®)={(90,9):30= L, (c, P, u)a,;,y = ¢,:(c,P,u)o,,;,uecU}
Vi, ele;—1,6,1XR (G=1,..,m;r=1,..,v).

Tueorem 6.2. If the sets (6.3-4) are convex, then an extended solution £* to problem
(P35 00 15 eoes T m,) exists ().

In analogy with [10, Corollary 4.1] one can prove that by means of £* some mini-
mizing sequences can be constructed.

Let us note that in (6.1) $* (-) is allowed to take some negative values — see also [10,
p. 511. This is not possible in various physical applications that we have in mind (in fact
some among the phase conditions [10, (6.20)] have to be satisfied in them) — see e.g. [6,
9-13]. In spite of this the present theory can be applied to several optimization prob-
lems — such as problems (A) to (F) in [6], added with some monotonicity types — in that
every admissible process (P(+), #(+)) for them satisfies some among the phase condi-
tions [10, (6.20)].

The present work has been performed in the activity sphere of the Consiglio Nazionale delle Ricerche,
group n. 3, in the academic years 1992-93 to 1994-95.
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