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Meccanica. — Structural discontinuities to approximate some optimization problems 

with a nonmonotone impulsive character. Nota di A L D O BRESSAN e MONICA MOTTA, pre­

s e n t a t a ! * ) da l Socio A. Bressan. 

ABSTRACT. — In some preceding works we consider a class Otf of Boltz optimization problems for La-
grangian mechanical systems, where it is relevant a line / = /r(.}, regarded as determined by its (variable) 
curvature function y(-) of domain [sQ, sx]. Assume that the problem & e 06* is regular but has an impulsive 

monotone character in the sense that near each of some points ê1 to £vy(') is monotone and \y' (*)| is very 
large. In [10] we propose a procedure belonging to the theory of impulsive controls, in order to simplify £P 
into a structurally discontinuous problem (P. This is analogous to treating a biliard ball, disregarding its elas­
ticity properties, as a rigid body bouncing according to a suitable restitution coefficient. Here the afore­
mentioned treatment of i? is extended to the case where its impulsive character fails to be monotone. Let 
cr>Q to cr>mr be the successive maxima and minima of y(-) or -y(- ) near $r{r = 1, ..., v). In constructing the 
problem &, which simplifies and approximates &y as well as in [10] it is essential to approximate /r(.) by 
means of a line /c(.} with c(') discontinuous only at dx, ...,$v and with \c' (•) | never very large; furthermore 
now we must take the quantities cr> 0 t o cr> mr into account, e.g., by adding a «nonmonotonicity» type at Sr, 
which vanishes in the monotone case {r — 1, ..., v). Starting from[10] we extend to the afore-mentioned 
general situation the notions of weak lower limit J* of the functional to minimize, extended admissible process 

(which has an additional part in each [cr,,-_i,c,.f/]) and extended solution of the problem £P, or better 
(&v; <rr !, ..., o"r>Wr) where cr, z- = cr>i — cri-1 {i = 1, ..., mr; r = 1, ..., v). In the general case we consider 
the extended (impulsive) original problem and the extended functional to minimize. This has an impulsive part 
at each of the points $t to £v, as well as the differential constraints, complementary equations, and Pontrja-
gin's optimization conditions. Besides the end conditions at s0 and sly there ate junction conditions at 8t to 
Sv. In the general case being considered we state a version of Pontrjagin's maximum principle and an exis­
tence theorem for the extended (impulsive) problem. We also study some properties of J* , e.g. when J* is a 
weak minimum. In particular, within both the monotone case and the nonmonotone one, we show that the 
quantity ]*, defined as a certain lower limit, equals the analogous limit; and this is practically a necessary 
and sufficient condition for the present approximation theory, started in [10], to be satisfactory. 

KEY WORDS: Analytical mechanics; Lagrangian systems; Control theory. 

RIASSUNTO. — Discontinuità strutturali per approssimare certi problemi di ottimizzazione con carattere im­
pulsivo non monotono. In precedenti lavori abbiamo considerato una classe 0& di problemi di ottimizzazio­
ne di Boltz per sistemi meccanici Lagrangiani, nei quali è rilevante una linea / = /r(.), considerata come de­
terminata dalla sua funzione (variabile) di curvatura y(') di dominio [s0 , ^ ] . Il problema & e OtP sia regola­
re ma abbia carattere impulsivo monotono nel senso che y(*) sia monotona e con |y ' (•) | molto grande vicino 
a ciascuno di alcuni punti $lt ..., £v. In[10] abbiamo costruito un procedimento entro la teoria del control­
lo impulsivo, atto a semplificare & in un problema strutturalmente discontinuo S>. Ciò è analogo al trattare 
una palla da bigliardo, anziché per es. con la teoria dell'elasticità, considerandola come un corpo rigido rim­
balzante secondo un opportuno coefficiente di restituzione. Qui estendiamo la suaccennata trattazione 
in [10] al caso che il carattere impulsivo di & sia non monotono. Siano cr0, ..., cr >mr i successivi massimi e 
minimi di y(*) o di — y(*) nella vicinanza di Sr{r = 1, ..., v). Nel costruire il problema £P semplificante e ap­
prossimante £P, come in [10] è ora essenziale considerare una linea lc{.) approssimante ly{.) con c(') disconti­
nua solo in $!, ..., Sv e con \c' (•) | mai molto grande; inoltre ora si deve tener conto delle suddette quantità 
crto, ...,cr>m per es., attraverso il «tipo di non monotonia» in Sr, che svanisce nel caso monotono 

(*) Nella seduta dell'11 marzo 1995. 
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(r — 1, ..., v). Partendo da[10] estendiamo alla suddetta situazione generale le nozioni di estremo inferiore 
debole J* del funzionale da minimizzare, processo ammissibile esteso (che ha parti addizionali in [crj_ i, cr> J ) 
e soluzione estesa del problema #>, o meglio (#>„; 07 ; 1 , ..., o-r Wr) ove 07̂ • = crì• — cri_1 (/'= 1, ...,mr; 
r = 1, ..., v). Nel caso generale consideriamo pure il problema originale (impulsivo) esteso e 'A funzionale esteso 
da minimizzare. Questo ha parti impulsive nei punti £1? ..., Sv, al pari dei vincoli differenziali, delle equa­
zioni complementari e delle condizioni di ottimizzazione di Pontrjagin. Oltre alle condizioni ai limiti in sQ ed 
sl vi sono condizioni di giunzione in S1, ..., £v. Nel detto caso generale enunciamo una versione del principio 
di massimo di Pontrjagin e un teorema di esistenza per il problema (impulsivo) esteso. Studiamo anche al­
cune proprietà di / * , tra l'altro quando esso è minimo debole. In particolare, nel caso monotono o no, mo­
striamo che la quantità / * , definita come un certo limite inferiore, eguaglia l'analogo limite; e ciò è pratica­
mente una condizione necessaria e sufficiente affinché la presente teoria di approssimazione, iniziata 
in [10], sia soddisfacente. 

1. INTRODUCTION 

In [10] we consider a certain class 0(P of Boltz optimization problems that can be 
represented by means of a differential manifold, where it is relevant a line / considered 
as determined by its (variable) curvature /(•) that has the arclength as argument and 
the domain t 0 ? ^ i ] (1). 

Let & be a regular problem in 0& for which in particular y ' (•) is continuous; but let 
it have a monotone impulsive character in that \y' (*)| is very large near each among 
some points 8X to Sv and /(•) is monotone there. In [10] we show a procedure of impul­
sive control theory, useful to approximate and to simplify & into a structurally discon­
tinuous problem £P: we replace /(•) with a convenient function <;(•), that together with 
c ' (•) is piecewise continuous and has at most the discontinuities <jr — c($* ) — c(â~ ) at 
* r ( r = l , . . . ,v)(2). 

In the present paper we extend [10] to the case when tP's impulsive character fails 
to be monotone near some £,. We do this rather quickly - practically without using any 
corresponding auxiliary problem & such as (3.19-20)^ for rj = 0 in [10] - by means of a 
process which is based on the (results obtained just in the) monotone case and turns 
out to be a limit process - see P3.6 (a). 

Thus, in order to solve the problem tP (or & ) in this general case, we first put v = 1 
and 8 = Sx, we assume that | y' (•) | is very large only in [$, â + £0]>

 a n d we approxi­
mate the given problem & by means of a monotone impulsive problem, say &j, with 
v = m and(#!, ..., Sv ) replaced by d — (d\, ..., dm) where S = dx < d2 < ... < dm < â + 

(*) In [3] to [5] Aldo Bressan started a systematic (non linear) application of control theory to Lagran-
gian mechanical systems, by using coordinates as controls. This is based on the purely mathematical pa­
per [1] (extended by [2]). A. Bressan's afore-mentioned work has been further developed by himself and 
other researchers: F. Rampazzo, M. Favretti, M. Motta and B. Piccoli - see [6-17]. The present paper be­
longs to this research line. 

(2) To associate to tP the discontinuous problem ff is analogous to treating a billiard ball, unlike using, 
e.g., the elasticity theory, by considering it as a bouncing rigid body with a fixed restitution coefficient (that 
can be determined only approximately). [10] has been made in view of applications to any mechanical La-
grangian system belonging to the class introduced in [6, sect 5], say r5, or to its extension r defined 
in [9]. 
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+ s0 . Briefly speaking, we consider the discontinuities a, = Q ( ^ + ) - cd{df ) (i -
= 1, ...,m) of the corresponding curvature function Q ( - ) (with <JJGJ-I < 0 for y = 
= 2, ...,m); and we let i w tend to è + , keeping cr x to a OT fixed. By means of this limit, in 
section 3 we determine, up to a small arbitrariness, a new curvature function, say c(%), 
with a first order discontinuity only at S; and we extend to the present case the defini­
tion of the weak infimum J* of the functional to minimize. Furthermore in section 4 we 
introduce (for v = 1) suitable extended admissible processes, which have some additional 
parts in the intervals [c(df ), c(dt

+ )] (/ = 1, ...ym), as well as the extended solution to 
cP. In effect we also consider an extended original problem with an extended functional to 
minimize. This has at d some impulsive parts (connected with the above intervals) as well 
as the differential constraints, the complementary equations, and Pontrjagin's opti­
mization conditions. In section 4 we also state (for v = 1) the PMP (Pontrjagin's maxi­
mum principle) with border and junction conditions. In sections 5-6 the above results 
are briefly extended to the general nonmonotone case with v ^ 1. In section 6 an exis­
tence theorem for the solution to the extended problem is also considered. 

In accord with what was said in [10], we write a well posed extension of the opti­
mization problems, considered in [10] within the monotone case, to the nonmonotone 
one; to do this we must add e.g. the nonmonotonicity type (o^ 2 > • • • > ° V , mi ) being consid­
ered at each discontinuity point £,•(/ = 1, ..., v). Any change of it generally affects the 
solutions. Furthermore in the monotone case (for £,) it becomes empty. Therefore 
in [10], where only this case is dealt with, the above type is not mentioned explicitly; 
while here - see sections 4 to 6 - we speak of problem (£PV; aft lf ..., ar Wr) instead 
of (P. 

Let us briefly add, first, that the afore-mentioned weak infimum / * is defined 
in [10] by considering a certain functional / * depending on a curvature function ^ ( - ) 
(rj e R) that is linear in the small intervals [8it £/ + 77 J (/ = 1, ..., v); then/* is identi­
fied with the lim inf J* for rj —> 0+ . In Remark 2.1 we briefly show on the basis of [10] 
that / * = lim J* ; and the existence of such a limit is basilar for the possibility of simpli­
fying the given (regular) optimization problem into the impulsive problem £P hinted at 
above. 

Second, in[10, sect.5] the meaning of/* is enriched by showing that the above 
^('Ys linearity property can, briefly speaking, be weakened into c^i'Ys regularity and 
monotonocity on [8i9 £,- + rj J (/ = 1, ..., v). We note that this enrichment appears to 
hold also in the nonmonotone case, by its «quick reduction» to the monotone one hint­
ed at above, notwithstanding this reduction involves only curvature functions having 
the above linearity property, for simplicity reasons. 

Third, in section 3, first / * is defined in the new case, again as a simple lower limit 
of a certain family / / . Then its meaning is enriched by broadening the family, say to 
J*,d: J* = li111 m£J*,d- Furthermore in section 3 it is shown that all these lower limits 
equal their corresponding limits; and more refined limit properties of/* are proved, 
which become simpler in case a solution to a certain auxiliary problem exists - see 
P3.6. 
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2 . O N T H E P R O B L E M S H A V I N G A N I M P U L S I V E C H A R A C T E R W I T H O U T M O N O T O N I C I T Y . 

A FIRST STEP OF THEIR REDUCTION TO THE MONOTONE CASE. 

CORRESPONDING AUXILIARY PROBLEMS 

We consider the Cartesian frame OciC2c$ (cr*cs = $„, Kronecker's delta) and the 
line / in the plane OciC2, of equation P = P(s) where s is the arclength on /. Let y(s) 
be /'s curvature at P(s) with the sign relative to c3 (when it exists). We assume that 
for some points {S0, ...,SV + 1} such that s0 =â0 < â1 < ... < Sv < âv + 1 =^j , y(-)'s 
restriction to ($,-,$;+1) has a continuously differentiable extension to [£,-, Si+1] 
U = 0, . . . ,v) . 

One can determine / by means of the two-dimensional Cauchy problem - see [10, 
p. 37] 

(2.1) dP/ds = T, dT/ds = y(s)c3xT for a.e. j e l > 0 , J i ] , 

(2.2) P(s0)=P0, T(s0) = T0 ( |T 0 | = l,c3-T0 = 0 = OP0-c3) 

in the unknown function d(s, /(•)) = (P(s), Pf U)) of s. 
In connection with the line /y(.) we consider the Boltz optimization prob­

lem (3) 
si 

(2.3) $&(-), «(•)] = J" LU, 6>{s\ u(s)]ds + Y[8>{Sl )] -> inf 
Jo 

under the differential constraint 

(2.4) dP/ds = <p[s, (P(s), u(s)] (e R) for *.*. j e |>0, J J 

and the initial and control constraints 

(2.5) P(j0) = P o , «(•) e 1 i=$(Uo,* i l U), 

where U is a compact subset of Rm, £B(U0 > ^i ], £7) denotes (the set of Borei measurable 
functions from Uo,^] to 17, T(') eC1(R), while ç?(#) and L(') have the forms 

>U, J>,^) = 9 1 U s>,*,0fr, r(')), rW] r'W + f°U s*,*,#U, r(-)), rtoL 
(2.6) « LU, ^ « j ^ U s>,«,0U, r(-)), rW] r'M+L°|>, $>,*,0U, r(-)), rWL 

VU, J > , « ) E ( P = U 0 , ^ 1 ] XRXU, where JI->©(J, /(•)) solves problem (2.1-2). 

We also assume that for / = 0, 1 the functions gr'U, &, u, 0, 7), p ^ U , #>, «, 0, 7), 
1/ U, £P, «, 0, 7) and LJ

tg>(s, &, u, 0, y) of U, 6>
> u, 0, y) are continuous on 

®id=[s0,Si]xRxUxR4XR, and for some constant C 

(2.7) |p ' ' ( j , 0>, «, 0, *) | ^ C(l + \P\ ) VU, 0>, «, 0, e) e ©J (/ = 0, 1). 

Briefly, here we consider again the regular physical system S studied in [10] and 
having the properties PI. 1-3 in [10, sect.l], but we disregard its monotonicity property 

(3) We shall often use e.g. (2.1)*(-) or {2.\)c{'] for (2.1) where the function y(-) is replaced by #(•) or c(-), 

respectively. More generally, we denote by (r.s)z(-) or (r.s)c(-) the formula obtained from (r.s) in the above 

way. 
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Pl.4 there; and we aim at extending the results of [10] to this general case. More ex­
plicitly we consider a regular instance of the optimization problem (2.1-5) - i.e. an in­
stance of the latter problem with v = 0 and with y(-) replaced by a given curvature 
function %{') eC1{[s0,si])) and we first assume that %(•) has an impulsive character, for 
the sake of simplicity, near one instant 8 G {S0, sx ). This means that, e.g., for some small 
£o > 0> \x (')I is verY large in {8,8+ e0) while it has an ordinary size on [s0, 8) U 
U{8 + eoxSi~\. Furthermore we assume that %(•) may be very complex on [8, 8 + e0] 
and that, for some m > 1, it has there the following monotonicity type of order m\ 

(i) /or some d0 to dm with 8 = d0< d^< ...< dm = 8+ s0 , i» [£, 5 + e0]z(*) « 
monotone {only) on each of the intervals [dj-i/dj] ( /= 1, ...,m), so that 

(2.8) o,
/-+1(T/- < 0 for i <m , where at• = c{ — c{ _ ! (/ = 1, ...,m) 

with Cj = x(dj){j = 0, ..., m). 

Of course, the interval [8, 8 + s0] has now the role of the interval [^, b{\ men­
tioned in e.g. [10, Pl.4] for v = 1. In the case m > 1 being considered, one may call 
(<j2, ..., <rw ) x( ') ' s nonmonotonicity type in [£, £ + s0] ~ s e e (y) above (3.2). In the case 
m = 1 this type becomes empty and #(•) just has the monotonicity property [10, Pl.4], 
ai being always determined by c{%) and v2 to <rOT. 

In order to simplify the treatment of the above regular problem, it is convenient 
- roughly speaking - , first, to schemetize or approximate this by means of a problem 
such as [10, (2.1-2)c(,) U (2.4-6)c(,)] with both a monotone impulsive character and v = 
= m > 1; and second, to take the limit of this as £0-*0+ . 

In more details, in analogy with the replacement of the regular problem & with the 
impulsive one £P made in [10], as a FIRST STEP we replace problem (2.1-5)x(,) with an 
impulsive problem (2.1-5)c(,) where now c{*) is regarded to depend on dx to dm, 

(2.9) J 0 < £ = ^ I < ^ 2 < .. . <dm<8+s0<dm + 1=s1 

holds, and - see (2.8)3 

(2.10) c{dfz ) = cf", where cf = Q- i, Q+ = c{ {i = 1, ..., m) ; 

furthermore c{*) satisfies (at least approximately) conditions such as 

c{s) =x(s) Vye [s0,8)y 
(2.11) 

c{s)=xl8+{s-dm){sl-8)/{sl-dm)i V 5 € ( 4 , ^ ] , 

{it) %{•) being an extension to {8,Si] for %(•)* restriction to {8+ s0>JiL w^ 
\x'{') I of ordinary size. 

Of course the function c{*) is required to have a continuously differentiable 
extension on any interval [di-lydii7 which leaves it a large arbitrariness in any 
interval {di-itdi) (/ = 2, ...,m) (4). In order to reach our results quicker, we 
can use this arbitrariness to assume that c{*) is constant on {di-Ì9di) {I = 2, ...,m). 

(4) In analogy with [10, ftn.l], this arbitrariness has a counterpart in the widespread treatment of a bil­
liard ball as a rigid body bouncing according to a certain restitution coefficient: the (precise) choice of this. 
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Later it will be clear that the same results can be reached under much weaker 
assumptions. 

As well as in [10, sect.2], we regard the above problem (2.1-5)c(,) as a limit of a se­
quence formed by some suitable problems that involve implementable processes (we 
mean connected with continuous curvature functions). Therefore we consider the 
^-tuples rj = (rj1, ..., rjm) eD = Dd with d = (dl9 ...,dm), where 

(2.12) Dd±{yl:$ = d1<d1 + ril<d2<d2 + r)2<...<dm<dm + r]m<8+eo}, 

and for any rj e D we use the function 

Ci-i + ^i(s-di)/rii9 se(dt-,di + rçj, 
(2.13) cY1)d(s)=cy}(s) = ^ 

cla^s)], se^= U (dt- + 7)j,di+1], 

where / runs on {1, ...,m} while the function <xv('):3v—>R reads 

(2.14) a {s)±di+l-
 t + 1 {di+l-s) se [di + r)iydi + l] ( / = 1 , . . . , /») . 

di+i-dj-rjj 
Incidentally (2.13)3 can be replaced with 

' Cyis) =q Vre [di + r)j,di+1] (i = 1, . . . ,w - 1), 
(2.13)' , 

^ CO = c(ari (s)) Vr e Ww + T?W , ̂  ] . 

We define 9^(0 [1^(0] to be what <p [L] becomes by replacing c(-) in (2.6) with 
Cyji') (rj e D); more generally we call (r.s)^ the formula obtained from (r.s.) by replac­
ing c9 <p, L, and 3 with cv, <pv, Lv, and ^, respectively. Furthermore we assume that for 
any rj e D the class, say AdPv, of the admissible processes (#>(•)> «(•)) for the regular 
(approximating) problem (2.1-5)^ is non-empty and we set 

(2.15) J*d =3* = inf {3V (É): f G Aff, } , / / =3* = liminf § . 

As well as in [10, (2.15)], we regard (2.3)c(,) as the task of determining the above 
weak infimum 3*. We refer to this in speaking of the weak optimization (or minimiza­
tion) problem (2.1-5)c('\ 

REMARK 2.1. In the general case v ^ 1, by the definitions (2.15) -see [10, (2.15)] - re­
garded as valid in this case, we have that 

This is necessary and practically sufficient for the theory started in [10] to be satis­
factory. The extension of (2.15') to the nonmonotone case will be performed explicitly 
only in the case v = 1, for the sake of simplicity — see P3.6 (a). 

The proof of (2.15)' is short on the basis of [10]. In fact, up to a misprint, 
[10, (4.1)x ] asserts that $* =3* - Furthermore in [10] it is in effect deduced that, 
given any s > 0, for some u e il and some â1(s) > 0, [10, (4.2)1.3Ì hold for all 
rçe£(0,<Me))nD, being understood that u{t) = u{^ (/)] - see [10, (3.1)] -
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and that Ç-(#>(•), «(•)) is an admissible process of problem [10, (1.2-4)^(,)]. There­
fore [10, (4.1)i, (4.2)1.3] imply the first of the relations 

3* + 2 £ > 3 , ( ? ) ^ 3 * VijeB(o,Me))nD 

- see below [10, (2.13)]. The second follows by the definition (2.15)2 (regarded as valid 
for v ^ 1). Thus, by the arbitrariness of s(> 0) we conclude that 

3* ^ limsup 3*. 
r j ( e D ) ^ 0 

This and the definition[10, (2.15)2] of 3* yield (2.15)'. • 

We remember that, as shown in [10, sect. 5], the weak infimum 3* remains invari­
ant if we replace the simple family #i — {c^ (•)}>,eD having the linearity property [10, 
(2.11)] with any family 3r= {c^ (•)]> 6 D e F - see [10, Def.5.1] - consisting of continuous 
approximations of the function c(-) that are increasing and satisfy certain weak condi­
tions but are not necessarily linear in any interval {diidt• 4- rjj] (/ = 1, ..., w). 

REMARK 2.2. By the properties of any family &e F asserted in [10, sect. 5], the ana­
logue for $ of equality (2.15)', referring to 3rx holds and it can be proved practically like its 
original version. 

After [10, sects. 3, 4], for 19 e D we set 

(2.16) s=^(t) = 

p o + W i - * o ) f (e|>o,<*i]), ' e [ 0 , 1 ] , 

= J ^• + (t - 2/ + 1) ij,. (e UiJi + r)ii), / e [2/ - 1, li], 

[^• + ^ + {di+1-di-7}i)(t-2î) (e W/ + î7,-,i/ + 1])> te[li, 2/ + 1] , 

where / runs on { l , ...ym}; hence by (2.13) and (2.16) one has 

(2.17) d(t)=c,[p,(t)] = 

fc{s0+(d1-s0)t]9 te[0, 1] , 

= \ci_l + <j{{t - 2/ + 1), te [2i - 1, lily (i = 1, ..., m), 

[cidi + W/+1 -/ / /)(* ~ 2/), * E [2/, 2/ + 1] , 

so that c(') is independent of 77 G D. Furthermore, for v = /# we recall the following op­
timization problem depending on the parameter rj E D - see [10, (3.19-20)^, p. 43] -
and we do this by writing d explicitly in some places, like in the sequel and unlike what 
we did in [10] where d was fixed at the outset. 

2 v + 1 

(2.18),^ %,dlì\= j £,>rf|>, 3>(t),û(t)]dt+nâ>(2v + l)]-+m£(ç={8>(-), «(•))), 
0 

under the differential, initial, and control constraints 

(2.19),, rf dff,/dt = frird(t,9>,û(t)), &(0) = !?0, « ( - ) e € = ffi([0, 2v + 1], U), 
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where 

. N \fv,i{t,d>,u)±fVidUìv(t),3>,uìp'v(t), 
(2.20L d < ^ 

[ Ki(t,99u)±L^d[^(t),&,u'\p!n(t). 

We remember from[10] that the function s = pVtd(t) = pv(t) is a bijection of 
[0, 2v + 1] onto t o , ^ i ] , now being v = m; and it mutually transforms the (optimiza­
tion) problem (2.18-20)^>d into problem (2.3-5)c^( '\ More precisely 

P2.1. Under (2.9) and (2.12) the conditions 

(2.21) u(t)=u[^(t)]y 8>(t) = !P[p,(t)] V/e[0,2».+ l ] , rjeD 

imply that (/)«(•) e l i *#«(•) e Û, (ii) #>(•) j o t e flfe (Cauchy) problem (2.4)^ ( '} U 
U (2.5)i iff &(') solves problem l(2.19)ri}d]1)2 *#^ («0 remembering (2.3)^ ( , ) and 
(2.18),,, 

(2.22) â ^ W O , ^ ' ) ] =3, ,rf[^(0, «(•)]. 

For #(•) e 11 and 77 e D we call £?(•, #(•), ?7,_a0 the solution in [s0, 1̂ ] of the problem 
(2A)c*i{m) U (2.5)b while for «(•) E U and >? E D~d we call £P( -, «(•), >?, i ) the solution in 
[0, 2m + 1] of problem [(2.19)y?)j]i)2; and we set 

(2.23) ^,dM.) = (#>( -, «(•), ij, A «(•)), ^,/ffi(.) = (£( -, «(•), i?, </), «(•)) • 

After Theorem 4.1 in [10, p. 44] the above impulsive problem (2.1-5)c(,) can be reduced 
to the ordinary (auxiliary) optimization problem (2.18-19)0,,, in the sense that 

(2.24) JÌ=IóU = ^{3oAkd,uì'ueU}. 

3. SECOND STEP FOR THE REDUCTION 

O F T H E N O N M O N O T O N E C A S E T O T H E M O N O T O N E O N E . 

A SIMPLE DEFINITION AND SOME PROPERTIES OF THE NEW WEAK INFIMUM / * 

In the Second Step we let dm tend to S by keeping S = dx< ... < dm. Before study­
ing this limit we consider fi^j (t) — ̂  (/), a^ [/^ (t)], and c(t)-cd (t) given by (2.16) and 
(2.17), as functions of (rj, d, t) defined for t E [0, 2m + 1] and rj eD, of course in con­
nection with a given admissible choice of %{•) - see (2.11-12). 

P3.1. Those functions are continuous on A X [0, 2m + 1] and their derivatives w.r.t. t 
are uniformly continuous on Aj—A X (/, j + 1) (J = 0, ..., 2m), where 

(3.1) A= {(77, d):$ = d1<d1 + Y)1<d2<...,<dm<dm + r)9i<$+e0}. 

Then, by (2.20)^j, our assumptions imply the following proposition. 

P3.2. For every R > 0 the functions tp^jit, &, u) and L^ji*, &> u) are meaningful 
and uniformly continuous on Ay X [ — R, R] X U (j = 0, ..., 2m). 

Now it is not difficult to see that, first, 
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P3.3. For some R>0 the solution &(*>u(m),r),d) of problem ^(2.19)^^1^2 in 
[0, 2m + 1] exists and has a C°-norm less than R V(TJ, dy u) E A X 11. 

Second, by (2.18-19) and (2.23), 

P3.4. The functions Ç^j^and 3,, j [f̂ , j,« ] 0/(17, d, u) are continuous w.r.t. (rj9 d)eA 
uniformly w.r.t. u ell. 

For d regarded as fixed at the outset, as it is done in [10], proposition P3.4 practi­
cally reduces to P3.9 in [10, p. 44]; and its proof, briefly sketched above in the general 
case, is in effect a straightforward generalization of the reasoning presented in [10, 
sect. 3] just to prove P3.9 there. 

It is natural to define the weak infimum J* of the functional to minimize by 

(3.2) / * = liminf J / (keeping S = dl < ... < dm) - see (2.15). 

We now call S the point (£, ..., 8) e Rm, so that (0, 8) is the only point (rj, d) <=A 
with dm + rjm = $; and we prove that 

P3.5. J,v has the following two properties 

(3-3) '*=' # %,i^ ( o>^ >*=>»« 
being 

(3.4) 7,%-inf{3,,</tf, ,rf ,«]:«eÌÌ} V( r j , J ) e4 ; 

furthermore 

(3.5) Ud = J*,d V ( i , , i ) e 4 . 

PROOF. Fix any e > 0. Then by P3.4, for some p0 > 0 

(3.6) \3o,ilhà,^-3,,jlhd,^\<z 

\f(r),d,u)eÂXU with M < p0 , \d - S\ < p0 . 
Furthermore by definitions (2.15)3?4 and (3.2), for some px e (0, p0) the first of the 
inequalities 

(3.7) 7* ^JI + e^ 3<uK<w,*] + e V(0, ^ , « ) e j x û with \d-£\< Pl 

holds; and the second follows from theorem (2.24). 
The definition (3.3)2 of ]* implies that, for some p e ( 0 , p i ) , some (rj,d,v) e 

eAxU satisfies the conditions |i?| < p, \d - $\< p, and the first one of 

(3.8) J*+*>hrthl*l= Schisi fotv±vop-t2eÛ. 
Then by definition (3.8)3 and P2.1, (3.8)2,4 also hold. The first of the inequali­
ties 

(3.9) 7* ~ J # ^ 3<w[Êo,2,*] " %^hi^ + 2£ < 4£ 

follows from (3.7-8). Since p < p0, by using (3.6) first with (17, J, #) = (0, 5, ?) and 
then with (r),dyu) = (rj,d,v) we deduce (3.9)2. 
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By ss arbitrariness (3.9) yields the first of the inequalities 

(3.10) 7 * ^ 7 # , 7 # ^ 7 * -
By the definitions (3.2) of / * and (3.3)2 of ]*, (3.10)2 is an exercise on infimum lim­

its. Thus (3.3)i has been proved. 

Equality (3.5) follows from (2.15)i, 2 , (3.4) and (3.8)2. Then - remembering (3.6) -

by (3.3)2 and (3.4), for some (rj,dfv) e A X I t , we have the inequalities 

(3.11) M<po, \d-$\<po, | / # -7 ,M<£, 3vAhd,vi<JÏ,d + e. 

By (3.4) with t] = 0 we have the first of the relations 

(3.12) )l, ^ 3o,_*[Êo,&*] ^ 3 M té,,**] + e <]* + 3s . 

By (3.11)i,2, (3.6)i holds for u=v; this yields (3.12)2. By (3.11)3|4 we deduce 
(3.12)3. The arbitrariness of s > 0 yields the first of the relations 

(3.13) kt^J*, j**ut. 

Now we note that by (3.4) some further choice of (77, dy v) e A X 11 satisfies 
(3.11)i.3 and the first of the relations 

(3.14) ft, > 3o,*[Êo,&*] " e > 3,,dÛ,,d,vi ' 2e^J*d -2e>]*-J>e. 

The second follows from (3.6), valid for u = v again; by (3.4) (3.14)3 holds, while 
(3.11)3 yields (3.14)4. By e's arbitrariness (3.13)2 also holds. We now deduce (3.3)3 

from (3.3)i and (3.13). • 

It is worth noting that 

P3.6. (a) For the weak infimum ]* - see (3.2) - we have that 

(3.15) 7 * = lim J*d = lim J*d. 

(b) If (i) {Ço,s,ûs }s>o is anJ among the infinitely many minimizing sequences of 
problem (2.18-20)0 ^ and (ii) us = « M ) ( / o ^ j , which determines us>rjd for s > 0 and 
(77, d) e A, then 

(3.16) 7*= Hm'3of*(fo,W= JW x % L</(^,^) = 

= lim 3H,J(£» diUy 

(c) If (Hi) problem (2.18-20)0j<? has a solution £o,&«* an& (#>) #* = #17, J °/̂ ,</> 
^/(C^ determines u^jfor (r),d) e A, then e.g. the lower limit in (3.3) can be replaced by 
the limit for (77, d) —> (0, £), i.e. ybr Jw + rjm —> £ + , with (77, d) e 4: 

(3.17) /*=3o,*Uo,*,«*]= liP 3 , , J [ ^ , J , « * ] = lim 1 ^ j £ ^ ] . 

Note, first, that by (b) there is some sequence useVi such that J* equals the R.H.S. of 
(3.16)3. 

Second, in all the limits considered in P3.6 we can restrict (rj, d) by the conditions 
(rjyd) e A and r^ = d{ — dt• _ 1, which in effect eliminates the interval W/ - 1 + >7/ -1 > ^ ] 
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(/ = 2, . . . , /»). This result is natural and it is expected to be reached directly if, instead 
of using our two-step treatment of the nonmonotone case, one extends directly the 
whole treatment of the nonmonotone case written in [10]. 

PROOF OF P3.6. Consider any e > 0. Then for some p0 > 0 (3.6) holds; and by 
(3.2), for some 2 with (d) S = 2X < ... < 2m < S + p0 the first of the relations 

(3.18) / * + 4e > h + 3e £ 3o,2(Êo,2,i) + 2e ^ 3,,</(Ê,,j,5) ^ ìli 

V(77 ,^)eZn[B(0,po)xB(^p0)] 

holds. Furthermore by (2.24) some « e l l renders (3.18)2 true. Now by (d) and (3.6) 
we easily deduce that 

(3.19) \3oj(hd,t) -3,,dCZ,,d,,)\<2s V ( ï î , J ) 6 2 n [ l i ( 0 , p o ) x B ( i p 0 ) ] . 

This implies (3.18)3. Lastly (3.4) yields (3.18)4. By es arbitrariness (3.18) implies 
that 

/ * ^ limsup 3 ^ . 
(q,<f)(eZ)->((>,$) 

Then, by (3.3)1>2, (3.15)! holds; and (3.5) yields (3.15)2. 
To prove part (b) we first deduce (3.16)! from (3.3)3 and the assumptions in (b). 

Now we consider any e > 0. By (3.16)i, for some S s N 

l /*-3o,*(fo,*,5 j) |<e >/s>S. 

Furthermore, for some p0 , (3.6) holds. Then, by putting û = us in (3.6)i, one easily 
sees that 

l7*-3,.rf(Ì,,i ,*)|<2e V( ) j , i ) e î n [B(0 ) po)xB(^po) ] , Vx > 5. 

By s's arbitrariness this yields (3.16)2. Lastly assumption (ii) in (b) and P2.1 for u = us 

- see (2.22-23) - yield (3.16)3. 
To prove part (c) we first deduce (3.17)i from (3.3)3 and assumption (Hi). Thus, 

setting us — u* (s ë N * ) , {ÎQ,S,ûS}S>Q is a minimizing sequence of problem (2.18-
20)0j |; and by assumptions (it) and (iv), us>7]j = u^j for all ^ > 0 and all (rj, d) e Zi. 
Therefore, by part (b\ (3.16) and (3.17)! imply (3.17)2f3. • 

We are now particularly interested in the afore-mentioned limit (rj, d) (s A) —» 
—»(0, £) and hence in the case (rj,d) = (0, £). In this (2.16) yields 

(3.20) j30(') = 

"*<>+ (*-*<>)'> * e [ 0 , 1] , 

£, f e [ l , 2/»], 

£ + (sx - S)(t - 2m), * e [2w, 2w + 1] , 
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(3.21) ? ( / )= lim c^r}{t)] = { 

(3.22) 

while (2.16) and (2.17) imply 
rd> 0+ (*-*>)']> f e [ 0 , 1] , 

c/_i + Œi(t-2i+ 1), te [2i - 1, 2 / ] , 

Q , / E [ 2 / , 2 / + 1 ] , 

<:[£ + (Ji - 8){t ~ 2w)], / e [2/w, 2/w + 1] , 

for / = 1 to /» and / = 1 t o w - 1 . Thus by (2.6) and (2.20) 

(Vo(t,!P,u) = 

^[s0 + (â-s0)ty^ui(â-s0)y / e [ 0 , 1 ] , 

p 1 ^ , ^ , ^ © ^ , ^ - ) ) , ^ - ! + <J/(/-21 + 1))^. , / e [ 2 / - 1 , 2 / ] , 

0 , / e [2/, 2 / + 1 ] , 

ç>[£ + Ui - £)(/ - 2m), fP, ulisx - S), / G [2/», 2/» + 1] , 

Lo (/,#>,«) = 

Xbo + ( * - J 0 ) ^ * ] ( * - * o ) , / e ^ 0 , 1] , 

L 1 (*, 0>, «, 0(*, *(•)), <:,•-! + crf.(/ - 2/ + 1)) <jf., / e [2/ - 1, 2 / ] , 

0 , / e [ 2 / , 2 / + 1 ] , 

L[£ + (^ - $ ) ( * - 2 w ) , ^P,«](JI - £ ) , / e [ 2 w , 2w + l ] , 

for / = 1 to m and / = 1 to w - 1. By (3.22)1 it follows that 

(3.23) 3>(t) = const V/ € [2/, 2/ + 1] (/ = 1, ..., m - 1). 

Remark that, by (2.10-11) and (3.20-23), c(')'s values in (dhdi+1), i.e. those of £(•) 
there, are irrelevant, as far as the limits at S are concerned. 

The results (3.22-23) allow us to simplify the auxiliary problem (2.18-19)0,$ by can­
celling the intervals (2/, 21 + 1) for / = 1, ..., m — 1. Thus in the simplified problem, 
say (2.18-19)', c(-):[0,m + 1] —> JR has the definition 

(3.24) ?<>,*(')=?(*) = « 

"d>o+ ( * - * > ) ' ] , ' e [ 0 , 1] , 

*/_! + * / ( / - / + ! ) , / E [ / - 1 , / ] ( / = 1 , . . . , /» ) , 

c[£ + (Sì - 8){t -m)], t e [m, m + 1] . 

4. O N THE (SECOND-STEP) IMPULSIVE PROBLEM (&v;<Trti, . . . , a r W r ) 

I N T H E N O N M O N O T O N E C A S E F O R V = 1 . 

EXTENDED FUNCTIONAL TO MINIMIZE; ORDINARY AND IMPULSIVE PARTS 

OF DIFFERENTIAL CONSTRAINTS, COMPLEMENTARY EQUATIONS, 

PONTRJAGIN'S CONDITIONS; BORDER AND JUNCTION CONDITIONS 

By means of the preceding limit (77, d)—>(0, 8) we have in effect associated to our 
original regular problem both (a) an impulsive problem ^ , i.e. (2.1-5)ci') with the cur-
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vature <:(•) defined on the whole set fro^iAW* ^ a w a v compatible with (2.11): 

(4.1) c(t)=X(t) V/E [>„,*), c(t)=x(*) V f E ^ ] ; 

and (/3) the monotonicity type (<rl9 ..., <jm). 

REMARK 4.1. Since in the limit problem dm = S 

(4.2) C(S+)-C(S-) = <JX+ . . . + < v , 

form > I it suffices to know the «nonmonotonicity type» (a2, ..., o-w ); consequently in the 
monotone case considered in [10] there is no need to know any monotonicity type. 

Because of the «nonmonotone» monotonicity type now associated to problem ^ , 
this cannot be treated like in [10]; in fact above formula (3.24) we replaced the corre­
sponding auxiliary problem (2.18-19)0 with a simplified one, called (2.18-19)'. Thus it 
would be better to speak of the problem (&i; <ri, ..., am). 

Let s*-*d(s) = 6(s, c(-)) = (x(s),y{s), x' (s),y' (s)) be the solution to the Cauchy 
problem (2.1-2)c(,) in the case (4.1). Referring to this we construct pfr, &, u) and 
Lfr, &yu) by means of (2.6) and we set - see [10, (3.16)] 

, x \?ï(c>6>yu) = 9
1[ây6>yuyd(8)>c] , . ^ 

(4.3) \ t u = 1, . . . ,*»). 
\Li(c9^iu)^Ll{^^u>e(i)9c'\ 

To introduce extended solutions - see [10, (6.9)] - in the present framework, we 
consider the process 

(4.4) ?=(^(- ) ,«( - ) ,{^( ' ) , «,-(•)}/. i , . . . ,J 

where the function #>(•): fro > ^I 1 \ {£}"-* # is AC on both fr0, 8) and (£, j j ], and where, 
calling U the set of control values, 

(4.5) «e^8(ko,^i] , U), ^ ( - ) e ACŒcy. ! ,£ , ] ) , «f. e $(fo_ n ql U) 

(i = 1, ...ym). 

Furthermore we define the extension of the functional 3(0 to minimize - see 
( 2 . 3 ^ - b y 

(4.6) 3Œ-3W-), *(•)]'+ 2 ya-w«/W]i . 

In our simple problem ( ^ j crx, ..., <rw) the differential constraints (in #>(•) and 
tP/(#)) and the complementary equations (in A(*) and A,(#)) have the ordinary parts in 
fro>*i]\{*} " see[10, (6.17)] 

(4.7) dtP/ds = ?fr, *P, *(*)], <&M = -Açj^fr, 0>, «(*)] + L , k , 0>, u(s)] 

for a.e. .ye fr0,^i], and the impulsive parts 

(4.8) d(Pi/dc = <pi[s, &i,Uj(c)], dXi/dc= -X^ig>[cy 8>
iiui{c)~] +L f >[>, 5>,-,«l-(r)] 

for a.e. c e [c/_i,c,-] ( /= 1, ...,#z). Furthermore we have the control constraints 

(4.9) « W e D , Ui(c)eU ( /= 1, ..., #z), 
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the initial and junction conditions for &{•) and &{{") 

(4 10) \^(s0) = s>0, (?(s-) = (p1(c0), g>jcm) = g>(s+), 

\9>i(c,) = 3>i+1{ci) ( / = 1 , . . . , » - 1 ) , 

and the terminal and junction conditions for A(#) and A/(*) 

Ms1)= -Y'[g>(Sl)l, Ms-) = x1(c0), xm(cm) = x(s+), 

X-(q) =X-+1(ct-) ( /= 1, ...,/» - 1). 

Note that (4.10)4 and (4.11)4 are lacking in the analogue [10, (6.18)] of 
(4.10-11). 

Similarly, Pontrjagin's optimization condition has the ordinary part 

(4.12) \{s) <p[s, &{s), u(s)i - Us, &(s), u(s)i = 

= max {X(s) <p[s, &(s), u] - L[sy 8>(s), «]: ueU} 

for a.e. se [ J 0 , ^ I 3 - see[10, (6.19)] - as well as the impulsive parts 

(4.13) XMçiic, ^M^Uiic)} - me, S>
i{c)yui{c)i = 

=SLX {*i(c) ?dc, %>(c), u] - Lilc, 9i(c)9 «]: u e U} 

for a.e. ce [c/_ i, q] and at^ 0 (/ = 1, ...,m). 

5. EXTENSION OF SECTION 4 TO THE CASE OF v > 1 DISCONTINUITY POINTS 

WITH ARBITRARILY GIVEN NONMONOTONICITY TYPES 

Now we briefly consider our impulsive (or better structurally discontinuous) prob­
lem (£PV; <irfl, ..., <jr mr) (r being regarded to run on { l , ...,v}) in the general case 
(v ^ 1 •), where the single discontinuity point S (for <;(•)) is replaced by Si to Sv. We as­
sume that 

(/) s0 < $i < ... < Sv < Si and Sr has the monotonicity type (<rr> i, ..., ar>mr ) in the 
sense that Sr corresponds to a short interval [ar, br ] where the regular system S (to be 
treated approximately) has an impulsive character of type (<rr? j , ..., ar Wr ) (r = 1, ..., v) 
- see (/) above (2.8) regarding ar = 8, br = S + sQ, and <jrj = 07. 

Now, e.g. expressions (4.3-4), (4.6), (4.8-9), and (4.13) simply become 

J <pfti(c, &, u) = 9
l [*„ P, u, d(âr), ci, 

(5.2) ?=(^(- )^( - ) ,{^ , / ( - ) ,^ / ( - )} /=i , . . . ,^ ; ,= i,...,v), 

(5.1) 

v ^ r ' ' ' 

(5.3) I f ] = 3UP(0,«(•)]+ E S L>-[e, 3>r ,(<:), «„•(<:)]<£:, 
r = 1 / = 1 J 

(5.4) 
d&rj/dc = <pr>i[c, 8>rJ, urJ{c)1, 

dXrJ/dc = -Xrìi<prJìg>[cìS
>

rìiìurìi(c)~\ +L,titìp[c9 ®Tiiy urJ(c)], 
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for a.e. e e \_cri-X, cri\ 

(5.5) u(s)eU, urJ(c)eU, 

and 

(5.6) XrJ(c)9rJ{c, ^^(c),^,^ - LrJlc, S>rJ(c),urJ(c)i = 

=S£ {K;i(c)-9r,dC> &r,i(c),u] - L^C, 8>rJ(c),u\. U E U} 

for a.e. c e [crj-.ìy crj] and <7r>,- ̂  0 respectively, where 

(5.7) cr> ! = <:(£" ), cfti - c r , / - i H- crr>/ (cr)Wr -<:(£ + )) 

for / = 1 to #zr and r = 1 to v. Furthermore (4.10)2,4,5 and (4.11) become 

(5.8) < 
I &r,i\Cr,i) = &r,i+l(cr,i) (* = 1, . . . , * » , - l ; r = 1, ..., v) 

and 

f A ( j 1 ) = - F ' [ S > U 1 ) ] , *(*,") = V i ( ' r , o ) > A ^ ( ^ ) = A(^+ ) , 
(5.9) «{ 

[ ^r,/(^,/) = K,i+i(cr,i) (* = 1> . . . ,w r - 1). 
Of course (4.7) and (4.12) need not to be changed. 

6. EXTENDED PROCESSES, PONTRJAGIN'S MAXIMUM PRINCIPLE, 

AND EXISTENCE THEOREM FOR THE GENERAL PROBLEM (^Pv ; 0",., i , . . . , <Tr,mr ) 

DEFINITION 6.1. (#) In connection with the general optimization problem 
(£PV ; orri, ..., <jfm ) we say that the process ? - see (5.2) - is an admissible {extended) pro­
cess, if it solves the ODEs (4.7)i, (5.4)! and it satisfies the conditions (5.5), (5.8) and 
(5.9). 

(h) We say that the admissible process 

(6.D r = ( 5 * (•),«*(•), {^(•),<,-(-)},--i,...>^ ir=i>...,v) 
is an extended solution to the above problem if 

(6.2) $[<£* ] ^ 3[f] for all admissible processes f - see (5.2-3). 

One can easily prove that 

P6.1. For the afore-mentioned solution f *, we have that $[?* ] = / * where J* is the 
analogue for (#>v; <jr> lt ..., <rr>Wr) o/ zfo ẑ<?tf& infimum J* defined by (2.15) ybr 

Pontrjagin's maximum principle (PMP) - see [10, Theor. 6.2] - can be extended as 
follows. 

THEOREM 6.1 (PMP). Let f* be an extended solution to problem (&v; <jftlt ... 
..., ar yWr ). Then there are some functions A( • ) : [s0, Si ] —> R and A r> / ( • ) G ^4C( [crj ,- _ i, £r> / ] ) 
- see (5.7) - (/ = 1, ..., mr\ r = 1, ..., v), ^c/? ^ / (/) A(0 is AC on Ly0,£i], 
(£/_ i, Sj], (j = 2, ..., v), and (Sv,^], («) /Z>e ODEs (4.7)2 <z#̂  (5.4)2 tfre solved while 
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conditions (5.8) and (5.9) are satisfied, and {Hi) Pontrjagins optimization conditions 
(4.12) and (5.6) hold in their general versions for (c?v; <jr> 1? ..., <7r>Wr). 

In order to state the existence theorem below we consider the following sets 

(6.3) F* (s, &) = {(y0,y): 3>o ^ L(s7 8>,u),y = ç>{s, &,u),u s U} 

V{s,S>)e{[s0,s1]\{S1,...,Sv})xR, 

and 

(6.4) F*;{c, &)±{(y0,y):yo&Lfti(c, ^u)*^^ = <pr>i(c,&,u)<Trti>ueU} 

V(c,g>)e[crti-Ucrtii XR {i= 1, ...,mf;r= 1, . . . , v ) . 

THEOREM 6.2. !/"/$£ re& (6.3-4) #re convex, then an extended solution f * fo problem 
(tf>v; c7r> ! , . . . , crr>Wr) exists{5). 

In analogy with [10, Corollary 4.1] one can prove that by means of f* some mini­
mizing sequences can be constructed. 

Let us note that in (6.1) £F* (•) is allowed to take some negative values - see also [10, 
p. 51]. This is not possible in various physical applications that we have in mind (in fact 
some among the phase conditions [10, (6.20)] have to be satisfied in them) - see e.g. [6, 
9-13]. In spite of this the present theory can be applied to several optimization prob­
lems - such as problems 04) to (F) in [6], added with some monotonicity types - in that 
every admissible process (#*(')>#(•)) for them satisfies some among the phase condi­
tions [10, (6.20)]. 

The present work has been performed in the activity sphere of the Consiglio Nazionale delle Ricerche, 

group n. 3, in the academic years 1992-93 to 1994-95. 
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