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Magnetofluidodinamica. — Oz the solvability of some initial boundary value pro-
blems of magnetofluidmechanics with Hall and ion-slip effects. Nota di Vsevorop A. So-
LoNNIKOV e GruserpE MULONE, presentata (*) dal Corrisp. S. Rionero.

Asstract. — The solvability of three linear initial-boundary value problems for the system of equa-
tions obtained by linearization of MHD equations is established. The equations contain terms correspond-
ing to Hall and ion-slip currents. The solutions are found in the Sobolev spaces W7 ' (Qr) with p > 5/2
and in anisotropic Hoélder spaces.

Key worps: Magnetohydrodynamics; Anysotropic currents; Existence; Uniqueness.

Riassunto. — Sulla risolubilita di qualche problema ai valori iniziali e al contorno per la magnetofluido-
dinamica con effetto Hall e di ion-slip. Si stabilisce la risolubilita di tre problemi ai valori iniziali e al contorno
per il sistema ottenuto linearizzando le equazioni della MHD. Le equazioni contengono termini cortispon-
denti alle correnti di Hall e di ion-slip. Le soluzioni sono trovate negli spazi di Sobolev W7 '(Qr) con
P >5/2 e negli spazi di Holder anisotropi.

1. INTRODUCTION AND MAIN RESULTS

The motion of an incompressible fluid in a magnetic field in the non-relativistic case
is governed by the system of equations
(U, + U-VU = pog 'H-VH = V(p o5 ' + pH?p51/2) + vAU + F(x, ),
H=-up 'VXE,
(1.1) {V-U=0o0, V-H=0,
J=VXH,
\J tuaf] X H+pafH X (J X H)=oE+pUXH),

where H is the magnetic field, U is the velocity field, E is the electric field, J is the cur-
rent density vector, p, is the pressure and F is the external force. The last equation of
(1.1) represents a generalized Ohm’s law including the Hall and ion-slip currents [1-4].
The constant coefficients g, v, u, o are the density, the kinematic viscosity, the mag-
netic permeability, the electrical conductivity. 8 and B; > 0 are the Hall and the ion-slip
coefficients. As usually, we have neglected the dispacement current.

Excluding E and J we can write the system (1.1) in the form

U, +U-VU =ppg "H-VH — V(p,p* + pH?e5' /2) + vAU + F(x, ¢),
H,=V X (UXH)+n,AdH + 8V X [H X (VX H)] +

(1.2)
+8,V X {H x [H x (Vx H)1},

(*) Nella seduta dell’11 febbraio 1995.
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where v, = (o) ! is the magnetic resistivity. We assume that the fluid is contained in a
bounded domain QcR’>. We denote by Qr the cylinder Q X (0,T) (xeQ,
te(0,T)), §=0Q, Xr=8x%x(0,T) where T is a positive number.

To the system (1.2) we add the initial conditions

(1.3) Ux, 0) = Uy(x), H(x, 0) = Hy(x),

and the boundary conditions

A) U=4', H,=b onlXrp,

(B) Un=0, DWU)n-nDU-nn=c¢, H.=5 onZXr,

on X,

© U=a, H'n=0,
{noVXH—-BHX(VXH)]-pHXHX(VXH]}.=d,

wherea',b',¢',d are givenfieldswitha'*n =b"n=¢"n=d' n =0, n is the unit
normal to S, and D(U) is the symmetric part of VU.

Conditions (A), (B) and (C) are appropriate for a rigid non-conducting, free non-
conducting and rigid perfect-conducting boundary, respectively. Because of the impor-
tance of MHD problems both in mathematical and physical applications, many writ-
ers [4-10], have studied uniqueness, continuous dependence and stability of a basic mo-
tion of system (1.2) (with or without ion-slip currents) with initial conditions (1.3) and
boundary conditions (A), (B), or (C). In the papers[11-14], the existence and unique-
ness problem in suitable Hilbert spaces have been studied in the absence of Hall and
ion-slip currents. The papers[15, 16] deal with existence theorems when the displace-
ment currents are not neglected. Finally in the papers of [7, 8] existence theotems (in
the linear and non-linear case) for a MHD flow with Hall current in a toroidal domain
are proved in the Sobolev space W5 2(Qr) and also a linearization principle is
established.

In the present paper we consider eq. (1.2) linearized about certain given solenoidal
vector fields Uy(x, ) and Hy(x,¢) ie.,

(1.4) Li(u,p,b)=f, Veu=0, Ly(uh)=g, V-bh=0
where
(L.5) Ly(#,p,bh)=
=u,+ Uy Vu+u- YUy~ pei ' [Hy' Vb + b-VHy] — vAu + o' Vp,
(1.6)  Ly(u,b) =h, —nodb — BV X (Hy X (VX b)) + V X (b x (V X Hy))] —
—B8.VX{Hy X [Hy X (VX bh)]+Hyx [h X (VX Hy)]+hbX[Hy*x (VX H,)I} ~
~VX (UyXbh+uXH,),

and f, g are given vector-valued functions of x and ¢
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For this system, we consider initial-boundary value problems consisting in the de-
termination of #, p, b, which satisfy (1.4), initial conditions

(1.7) ul,o=uy(x), bli—o=hox)
and one of the following conditions at the boundary §
AY u#=a, b.=5b onZ'},
B")Y #un=0, D@a)n—(nDu)n)n=c, .=b onXr,
u=a, bn=0
bh) = (n,VXxXbh—plhX(VXH,) +H,*(VXh)] -
—B1{h X [Hyx (VX Hy)l+HyX[hx(VXH]+
+Hy X [Hy X (VX b)1}).=d, on X .
We establish the solvability of problems (1.4), (1.7)-(A"), (1.4), (1.7)-(B'), (1.4),

(1.7)-(C"), in anisotropic Sobolev and Holder spaces W2 !(Qr), C2**1*%/2(Qr).
We recall that the norm in the space W2 '(Qr), is given by the formula

“”“%VI,Z’I(QT) ‘=~40$|Zj| < ”Dj””II;,(QT) + ”Dtu”pr(QT) »

T
where “”llip(QT) = JJ |v(x, £)|? dxdt is a standard L,-norm.

Functions # € VVPZ’ '(Qr) have traces on the cross-sections (x € Q,¢ =t,e [0, T1)
of the cylinder Qr and on the lateral surface § x (0, T) = X 1. These traces belong to
the fractional Sobolev spaces (or, which is the same, to the Besov spaces) VVPZ —2/p(Q)
and W2 ~ /P 1=1/2 (3 1), respectively. The norms in W (2) and W/?(X 1) with non-
integer 7 € (0, 2) are defined by the formulas

|D’u(x) — D uly)|?
p —
“ulW;(g)_OS%| ”D]u” (Q)+ E JJ y|3+p(,_[r])

dxdy ,

|x —

||””[\7V;'/2(21> = ”””ﬂ,(sr) + ”Vgr]”” et jjj |V[’]u(x, t) = Vg’]u(y, s

ds, ds, dt ”[qun—um)lf’ dS, drdr

lx_ |2+p(r D |t_7|1+pr/2 ’

Here V is the surface gradient; in the case r < 1, V5" % should be replaced by # in this
formula. We shall always assume that p > 5/2. Under this conditions, p(2 — 2/p) > 3
and the following estimate holds:

(1.8) SSP lu(x,8)] <C sup Nl llwz- 270 2y < Cillellwz 10 -
T ts

This estimate will be especially useful for the investigation of the nonlinear problems
which will be the subject of subsequent publications.
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The norms in the Holder spaces C*¥**(Q) and C***%**+%/2(Q.) are defined by
the formulas

: D’u(x) — D’ uly)
la|creay= 2 sup |Diaulx)|+ 2 sup | - 2l
o<ijl<k = /=& % |« — 9|

b

|u|ck+a,(k+a)/2(QT) = E sup ID;D,{”(X, t)l +

0<2i+|j|<k %t

|DiDiu(x,t) — D Diu(x, 7)| N

2i+171=k x,t,¢ |t — z|*/?

+

| D} Dfu(x, ) — D/ Djuly, )|
+ Z sup =
2i+|jl=k x,y,¢ |x =]
We make use of these spaces in the cases £ =0, 1, 2.
Main results of the present paper are as follows.

Tueorem 1. 1) Let SeC’, HOEWPZ'I(QT), U,e W2 (Qy), p>5/2. For arbitrary
FeL,(Qr), g€ L,(Qr), bye W22/ (Q), uge W2~2/7(Q), ac W2~ 1P 1-1/2(5,),
an=0, be W2~ n1=12(30) which satisfy the compatibility conditions hy. |5 =
=b(x, 0), uy|s=alx, 0), Veby=0, Veuy=0, V-g =0, in a weak sense, bn =0,
problem (1.4), (L.7)-(A") has a unique solution (u,p,b) such that ue W7 '(Qr),
VpeL,(Qr), be W2 (Qr). For this solution the following estimate holds

(1.9)  Nl#llwz 1o + Vol @n + 181wz 100 < et (DAl 00 + gl @0 +

+bollwz-20 @) + o llwz-2100) + @llwz- 1o 1- v/ sy + |Bllwz-1ie1- 112055y ) -

2) For arbitrary feL,(Qr), geL,(Qr), boesz—z/P(.Q), uoeWPZ‘Z/P(.Q),
be W2 Uri=Y2(3) ce W)Yo Y212 (50), such that V-by=0, V-2, =0,
Vg =0, in a weak sense, by, |s=b(x, 0), uy*n|s=0, bn=0, ccn =0,

(1.10) D(uy)n— (n-D(ug) n)n=clx,0) ifp=3

problem (1.4), (1.7)-(B') has a unique solution (u,p,b) such that ue W2'(Qr),
VpeL,(Qr), be W' (Qr), and for this solution the inequality

(1.11)  lellwz v on + 1920z, 00 + 161wz 10n) < 2 (D (1Al 00 + el @n +
+ o lwz -0 @) + | #0 lwz 212 0) + lallwz-1/p.1-172 5y +

H&llwz- e 1- 172057y + llellig - re 2= (sy))
bholds.
3) Assume in addition that
(1.12) Hynly,=0, Uynl|s=0.
Then for arbitrary f, g, #y, a satisfying the bypotheses of n° 1) and arbitrary hye ‘sz—z/ »Q),
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de W)~ Vnl2=12(50) such that V-hy=0, d'n=0, hyn|s=0, [g— VX

Xd]l'n IS =0,

(1.13) B.(hy)|s=dx,0), #fp=3

problem (1.4), (1.7)-(C') has a unique solution (wu,p,b) such that uesz’l(QT),

VpeL,(Qr), he W2 (Qr), and for this solution the inequality

(1.14) | allwz 1o + Vol 00 + 18llwz 10 < s (T (I £l @r) + llgllz, o +

+\ o llwz-2100) + N #ollwz-2100) + l@llwz-1i0.1- 1120 5y + | llwp - 701721122 (5))

holds. The positive constants C,(T), C,(T), C5(T), are non-decreasing functions of T.
Tueorem 2. 1) Let SeC?***, Hye C?**1*%/2(Q;), Uye C**%1++/2(Qr).

feC*@*92(Qr), geC***(Qr), hy, #oeC***(Q), a, beC**='"*/2(Zy),

where a € (0, 1) and ¢ is an arbitrarily small positive number. Assume further a*n = 0

and that the following compatibility conditions hold: V+-g =10, V-hy=0, V-2, =0,

u0|3=a(x, 0)’ b07=b(x) 0)) b.n=0) aﬂ(x) 0) =u(l)‘r|5) bt(xy O)=b(1)‘r|5

where w1y, b,y are found from (1.4)-(A') and initial conditions, i.e.

(1.15) by = nodho+ BLV X (Hy X (V X by)) + V X (by X (V X Hy))] + B,V X
X{Hy X [Hy X (VX ho)] + Hy X [hy X (VX Hy)] + by X [Hy X (VX Hy)1} +
+V X (Uy X by + uy X Hy) + g(x, 0).
(1.16) w4y = — Uy Vay — uy- VU, +
+upg H[Hy Vb + by- VH, 1 + vAuy + f(x, 0) — pg ' Vpo(x),
and py(x) is a solution of the Neumann problem
00 dpy =V {meg [Hy*Vhy + by VHy1 — Uy*Vay — uy- VU, + £},
o
(1.17) on |s

= {% [H(]‘Vbo +b0'VHO] - U()'Vuo - ”O'VUO +f_ VV X V X ”0}'” .

Then problem (1.4), (1.7)-(A') has a wunique solution ue C***1*%/2(Qr), Vpe
ECa,a/Z(QT)’ bGC2+a,1+a/2(QT) and

(118)  |a|cevarvazg + |Vl cawrzigp + |bcovarvuzgy <
Sy (T)(|flcatrarzgy + |g

+ Ibo lc2+a(g) + |ﬂ|C2+a,l+u/2(2T) + Ib'c2+a,l+m/2(2_r)) .

cuer2ign) + |#o |c2ragg) +

2) Assume that S, Hy, U, are as in the case 1). For arbitrary fe C*»@+9/2(Q),
ge Ca,a/Z(QT)’ bo; uy e C2+a(.Q), be C2+a'1+a/2(2T)) ce C1+a, 1/2+a/2(2T)
such that

Veg=0, Vebhy=0, Veuy=0, wuyn|s=0, by,=5bkx0), bn=0,
¢c'n=0, [D(uy)n—(nDuy)n)nl|s=cx,0), &x,0)=5h"]s,
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problem (1.4), (1.7)-(B’) bas a unique solution w e C***1*%2(Qr), Vp e C**?(Qr),
be C2+a,1+a/2(QT) and

(1.19) |u|cz+a,1+a/z(QT) + |Vp|ca,a/2(QT) + |b|cz+a,l+a/2(QT) S

Sc5(T)(|f Ca,(a+€)/2(QT) + Ig
+ |b0 |C2+z(9) + |b|c2+a,l+a/2(£,r) + |c|C1+zz, 1/z+a/2(27_)) .

Ca,a/Z(QT) + IZIO Icz+a(g) +

3) Assume that S, Hy, U, are as in the case 1). For arbitrary f, g, a, u, satisfying the
hypotheses of n° 1) and arbitrary hye C***(Q), de C'**»V2+%/12(X 1) such that

V’b0=0, bo'n|5=0, b(l)'n|s=0,
Belhy)|s=d(x,0), dn=0, [g—=Vxdlnls=0,

problem (1.4), (1.7)-(C') has a unique solution u € C***1+*/2(Qr), Vp e C**/%(Qy),
heC* %1 *42(QwY and for this solution the estimate

(1.20) lﬂlc2+a,l+a/2(QT) + valca,a/Z(QT) + |b|C2+a,l+a/2(Qr) <
< Cé(T)(If Ca,(a+s)/2(QT) + lg

+|bo [czrag) + |al|crrerrazgy + |d|reaizimzzy)

Cu,a/Z(QT) + Iuo IC2+a(_Q) +

holds.

The following rematks can be made concerning these two theorems. Under the
appropriate hypotheses on U, and H,, all three assertions of Theorem 1 hold
for arbitrary p > 1. This can be easily deduced from the results of the
papers[17,18]. In the compatibility conditions (1.10), (1.13), the traces of the
functions D(zy)7 — (n-D(#,) n)n and Bf(uo)eWpl'z/P(Q) at the boundary
S are defined for p > 3. In the limiting case p = 3 the condition f; (x) |5 = f; (x, 0) with
he W, (Q), e W}~ 1/2=1/ @) (51) should be understood in a generalized
sense as the conditions of the boundeness of the integral

T

[ [as. [ 1A0) —fote, 0P L2 + |2 =312 dy,
o § 4
(see[19]). In particular, when £, (y) =0 or f,(x, 0) = 0 it is reduced to
T
|falx, 1)]? 5 dy
JOJ T, d#dS< >, and QJ Nl G <

respectively. Condition [g — V X d]-z| = 0 should be understood in a weak sense as

J(g— V xXd*)-Veodx =0, Vte(0,T), for atbitrary smooth ¢ (where 4* is an
9
extension of & into Q). In Theorem 2 the norm |f

relation
alate)) = su x,¢)|+ su + su
lfC (+a/2(Qr) Q]P If( ) I x,yg |x__y|a x,t,l?r It_T|(a+s)/2

The number ¢ can be taken zero if f(x, ¢) satisfies the conditions V-f= 0, z-f|5, =0
(see [17]).

cota+9/2(qp) is defined by an obvious

|flx,8) = fly, )] | f(x,2) = f(x,7)]
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2. AUXILIARY LINEAR PROBLEMS
First of all we consider auxiliary linear problems for the magnetic field A.
(Lh=bh, — nodb — B{V X [Hy X (VX b)] +V x [h x (VX Hy)l} —
—B.V X {Hy X [Hy X (VXb)]+

(2.1) ) +Hy X [hX (VX Hy)]+hbX[Hyx(VXHy)}=G,
Veb=0, *
| b(x, 0) =hby(x) in Q,

(7) h.=b onXr,
(hn=0,

B.(h) =0y [V x bl. — B[H, X (VX h)]. —

—Blh X (VX Hy)l. — B {Hy X [Hy X (V X b)]}. —

—B1{Hy % [hx (VX H)}. = B1{h X [Hyx (VXHyl}.=4d.
The system (2.1) is an overdetermined parabolic system (see [20]). The following two

lemmata show that problems (2.1)-(7), (2.1)-(z) can be reduced to parabolic initial-
boundary value problems

(22) Lb:G) bIt=0=b0) V‘b|S=0’ b11|3=by
(2.3) Lb=G, blio=ho, h'nls=0, B.(b)|s=d.

Lemma 1. IfVebhy=0n Q, V-G = 0in Qr, then the solution of problem (2.2) satis-
fies the equation V+-bh =0 in Qr.

Proor. Setting r = V+h, we easily obtain from (2.2) the Dirichlet problem
Or/dt =n,dr in Qr,
(2.4) r=0 on X,
r(x,0) =0 in Q,
which has the unique solution V+5 = 0. The lemma is proved.

Lemma 2. IfVeby =0 Q, V-G =0in Qr, Gn —n-V Xd=0o0n2r, then the
solution of problem (2.3) satisfies the equation V+-bh =0 in Qr; [8].

Proor. We have already seen that » = V- satisfies the heat equation dr/d¢ —
— no4dr = 0 and a homogeneous initial condition 7(x, 0) = 0. Let us show that relations
(2.3) yield a homogeneous Neumann condition dr/3x|s = 0. We have

0=20h/3tn|s=xnodb-n|s+n-(B{VX[Hy X (VX h)]+VX[hx(VxXH)}+
+8, (VX {Hy X [Hy X (VX b)]+ Hyx[hx(VxH,I+
+h X [Hy X (VX Hy)I}))|s+n Gls.
From the identity
(2.5) Au= -V XVXu+V(V-2n)
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and the condition VX d+-z=G-n it follows that #¢(0r/3n)|s= —G-n +V X
X d+-n = 0, hence, ris a solution of a homogeneous Neumann problem for the heat equa-
tion which has a unique solution » = 0. The lemma is proved.

We observe at the conclusion that relation (2.4); and analogous relation in Lemma
2 should be understood in a weak sense, since the derivatives (dV+h)/3¢ and
(82V+h)/(3x; 3x;) are not defined as elements of L, (Qr). Therefore the above argu-
ments have a formal character but it is not difficult to make them rigorous. The idea of
elemination of equation V+A = 0 was used in the papers [21-23] and in [8] where it had
been applied to problem (2.3).

We turn our attention to problems (2.2), (2.3) and show that they are parabolic, z.e.
that the system Lbh = G is parabolic and that the complementing condition is satisfied.
We write the operator L in the form

(2.6) Lh = 0h/3t + @b

and consider the principal part @, of the operator @ with coefficients «frozen» at arbit-
rary point (xq, %)) € Qr. Clearly,

Ao (%o, 2, 8/3x) b = — nodb — B{V X [Hy (%o, ) X (V X b)]} —
_‘BIV X {Ho(xo,to) X [HO(antO) X (V X b)]} .

Hence, o (xq, %y, ) = 1o |£|?I + BR(£)R(H, ) R(%) + 8,R(£)R(H,) R(H, ) R(%),
where e R?, I is 3 X 3 identity matrix and

0 =& &
R(f)= 53 0 "51 .
—EZ El O

For arbitrary n e C* we consider the quadratic form

3
2.7) (@®nn= 2 , Cloijn; ;=g [£17 [0]* +
i,]=

+B(R(&) R(Ho) R(E) 1, 1) + 81 (R(£) R(Ho ) R(H, ) R(&) 1, 1)

where z is the complex conjugate of 4 € C. Since (R(&)¢y, %) = — (¢4, R(8)E,),
we have Re(R(5)¢, ¢ =0, V¢eC® and Re(dy(&)n,n) =no|&|?|n]*+
+ 81 |R(Hy)R(8)n|? = 7o |£]? |n|?. This shows that the operator @, is strongly ellip-
tic [24], hence, the operator L is strongly parabolic which implies the parabolicity in the
sense of Petrovskii.

To verify the complementing conditions for problem (2.2), (2.3), we have to prove
the solvability of model problems for a homogeneous system of ordinary differential
equations arising after «freezing» the coefficients of the operator 9/ ¢ + @, at an arbit-
rary point xy € S, ¢, € (0, T) and making (formally) the Laplace transform with respect
to ¢ and the Fourier transform with respect to the tangential space variables at the point
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%o. Consider first problem (2.2). Since the translation and the rotation of coordinate
axes leaves the system 8h/0t + Qq(xo, £y, 9/ 9x) h = 0 invariant, the model problem
mentioned above has a form

(ph + 10 (E2+ E2—d? [ dz?) b — BR(iE, , i%,, d/dz) R(H, ) R(E, , %5, d/d2) b —
—B, Ry, i,,d/dz) R(H,) R(H,y ) R(i%,, i%,,d/dx)b =0  for >0,
gzzlz=0=bay a=172)

[db, /dz + iE by + &b, 1|, —o =, Zz:; 0.

The complementing condition is equivalent to the assertion that problem (2.8) has
a unique solution for arbitrary complex-valued b,, e, arbitrary & € R? and p € C with
Rep = 0 (or more generally, Rep = — 42,8 € (0, 10)), |p| + &% # 0. In fact, it suffices
to prove the uniqueness of the solution, Ze. to show that the homogeneous problem has
only a trivial solution » = 0. This can be deduced from «energy estimate» for our
model problem (see [23] in this connection). Let b be a solution of a homogeneous
problem (2.8) (z.e. with b, = 0, ¢ = 0). Multiplying scalarly (2.8); by 4 and integrating
from 0 to %, we obtain

(29) Relp +no(e2+ E%)]J' |52 dz + nof |db/dz|? dz —
0 0

©

—BRe j (R(it,, i€,, d/dz) R(Hy ) R(E, , i&,, d [ dz) b, B) dz —
0

0

—B1Re j (R(i%,, i%,,d/dz) R(Hy) R(H, ) R(iE,, i%5,d/d2) b, b)dz = 0.

0
Now we observe that the operator R possesses the properties R, = —R;
Vi,j=1,2,3,

I(Ru,v)dz=J(u,Rv)dz, when #, |,-,=0, and #,— 0 for z— o .

0 0

Hence, after integration by parts in (2.9) we obtain

Relp + 9o (22 + E%)]I |/~J|2dz + 770_[ IdZ/dzlzdz +
g ¢

+/31Rej |R(H, ) R(iE,, i%,,d/dz2)b|dz = 0.
0

This implies that =0 for z>0 and hence the complementing condition is
verified.
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By similar arguments it can be shown that the complementing condition holds also
for problem (2.3). In this case it is necessary to show that the problem

(b + 10 (824 E3—d? [ de®) b — BRUE, , i, d dz) R(H, ) R(E,, iE,, d dz) b —
—B.R(%,, it,, d/dz) R(Hy ) R(Hy ) R(E,, i%5,d/d)b =0 for >0,
(210) § bs|.-0=0,

[poRh — AR(Hy)Rh — B R(H,)R(Hy)RA], |,-0=0, a=1,2,

Z—)O,

\ Z2—> ®

has only a trivial solution. (2.10); can be written in the form
pz - T]O(i‘fl: iEZ» d/dZ)(l"Elgl + 1.52;2 + di);/dz) +
+R(i&,, i&,, d/dZ)[VioR(l'El , 262, d/Z) — BR(Hy)R(i&,, i&;, d/dZ)Z -

—B1R(Hy)R(H,)R(Ey, %5, d/dz) b1 = 0.
Multiplying this equation by A and integrating from 0 to ®, we obtain after integration
by parts

[ (o121 + n | G2 1By + &2k, + dby [ )| + 10 |RGEy 5, df d2) B2 =
0

—B(R(H,y)Rb, Rb) + B, |R(Hy ) R(i£,, i%5,d/d2) b|?1dz = 0.

Taking the real part of the last expression we easily obtain as before 4 = 0 for z > 0
which is equivalent to the complementing condition for problem (2.3).

Now we are able to apply to (2.2), (2.3) the theory of general parabolic initial-
boundary value problems. The following propositions are particular cases of Theorems
1.2 in[18] and 4.9 in[25].

Tueorem 3. 1) Let Se€ C°, Hye W2 '(Qr), p > 5/2. For arbitrary G € L,(Qr),
hye W2=2(Q), be W2~ 1= (21), satisfying the conditions by, |s = b(x, 0),
bn=0,V-hy|s=0, problem (2.2) has a unique solution b € W7 ' (Qr) satisfying the
inequality

(2.11) ”b”W}l(Qr) s C7(T)(|IG||LP(QT) + |6 ”W,?‘Z/P(Q) + ”b”W,,Z*‘/P»"‘/ZP():T)) :

2) For arbitrary G € L,(Qr), by € VVPZ‘Z/” (Q), de W, = nt2=12 (30, satis-
fying conditions by n|s =0, dn =0, and B_.(hy)|s=d(x, 0), if p = 3, problem (2.3)
bas a unique solution b e W} ' (Qr) satisfying the inequality

(2.12)  [bllwz1on < Ca (DG L0 + Bollwz-2100) + |2 g - 17172112051 -

Tueorem 4. 1) Let SeC***, Hye C?**'**%2(Qr), with ae (0, 1). For

arbitrary G € C**%(Qr), hye C2**(Q), be C?**1**/2(3 ), satisfying the condi-

tions bho, |s=5b(x,0), bn=0, Veby|s=0, byy,|s=b,(x,0) where by (x)=

= Qlx, 0, 8/ 3x) by problem (2.2) bas a unique solution b € C***1**/2(Qr) and for this
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solution the inequality
(2.13)  |b|czrmirmzion < Co(T)(|G
holds.

c»/2(Qp) + |1:)0 lCZ+m(Q) + |b|C2+u,l+a/2(ET))

2) For arbitrary G € C***(Qr), bye C2**(Q), d e C1+» V2 +4/2(X 1) satisfy-
ing the conditions by n|s = b(x, 0),dn = 0,B_(hy)|s = d(x, 0), b1y n|s = 0, problem
(2.3) has a unique solution he C*****2(Qr) and

(214) |b|C2+z,l+a/2(QT)SCI()(T)(IG

C"""/Z(QT) + Ibo |C2+a(g) + Idlcl+a, 1/2+a/2(2T)) .

The constants C;, Cg, Cy, Cyy are non-decreasing functions of T.

Taking account of Lemmata 1 and 2 we arrive at the following existence theorems
for problems (2.1)-(z) and (2.1)-().

Tueorem 5. 1) Let S, Hy, G, by, b, p, satisfy the hypotheses of Theorem 3, n° 1) and
of Lemma 1. Then problem (2.1)-(i) has a unique solution b € W ' (Qr) and this solution
satisfies inequality (2.11).

2) If G, hy, d, satisfy the bypotheses of theorem, 3, n° 2) and of Lemma 2, then prob-
lem (2.1)-(i) has a unique solution b € W7 ' (Qr) satisfying inequality (2.12).

Tueorem 6. 1) Let S, Hy, G, hy, b, p, satisfy the bypotheses of Theorem 4, n° 1) and
of Lemma 1. Then problem (2.1)-(i) bas a unique solution b e C***1**2(Qr) and for
this solution inequality (2.13) holds.

2) If G, by, d, satisfy the bypotheses of Theorem 4, n° 2) and of Lemma 2, then prob-
lem (2.1)-(i5) has a wunique solution heC?+**'**2(Qr) satisfying inequality
(2.14).

3, Proor oF THEOREMS 1 aND 2

In this section we prove n° 1) of Theorem 1 and n° 3) of Theorem 2. We start with
Theorem 1. To establish the solvability of problem (1.4), (1.7)-(A"), we use the method
of successive approximations. We set #'© =0, p'¥ =0, 4'¥ = 0 and define 2™+ 7,
p™ Y pmFY 4 20, as the solutions of linear problems

L01(”(m+1);P(m+1)) =f— ll(u(”’),b('”)), V.egm+1) = 0,
(3.1) {u(m+l) loo=u(), 4" Vs =a,

LA™V =g —L(a"™ b)), Veun*V =9,
(3.2) {b(m+1) |'=0 — bo(x), bf,m+l) |2T =)
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where
Loy (a,p) =2, —vAu + 05 Vp,
Li(u,b) =UyVu + u-VUy + ppg ' [Hy* Vb + h-VH, ],
Loy (B) = b, — 1odb — IV x (Hy x (V x b)) + V X (b x (VX Hy))] —
=BV X {Hy X [Hy X (VX b)]+ Hy X [hx (VXHy)]+hx[Hyx (VXH,y]l},
L(u,b) ==V XUy Xh+uxH,).

Making use of the assumptions Uy e W7 ' (Qr), Hye W2 '(Qr), it is not hard to
prove that

(33) (e, DI, ) + N2 (e, b1, 0 <

< e(fullwp gy + 18wz ) + el ) + 1B]lL, @)

where ¢ is an arbitrarily small positive number and ¢ e (0, T]. For instance,

t l/p
”(|Uo-vu|P+ lu-VU, |?)dcde| <
0 Q

' 1/p ! 1/p
<C sup 1Us . @ I||V”||Iip(9> dr| +Csup VU, |, @ J"”"iw(m dr| .
TS o

TS¢t
0

From inequality (1.8) and from interpolation inequalities
Vel @ < eillelvza) + cle)@ll,@ . Vere (0, 1),
loello. @) < e2llallwzio) + elel#ll, @, Vere(0, 1),

we easily deduce the estimate

¢

t 1/p 4 1/p
J”UO'VII +u'VU0”PdT <e¢ Jl'u”ley;(g)d'? +C(€) JII”I'{T([))JT
0 0

0

1/p

Other terms in /; and /, can be evaluated in a similar way. Estimates (3.3) show that /;,
l, e L,(Qr) and consequently problems (3.1), (3.2) are uniquely solvable. Let us show
that the sequences {2}, {p™}, {h™} are convergent. The differences

w(m+l)=u(m+1) (m) S(m+1)=p(m+1)__p(m)’ z(m+1):b(m+1)_b(m)’

—u ,

are solutions of the problems

LOI(w(m+I),s(m+1)) — __ll(w(m)’z(m)),
V.w(m+1)=0, w(m+1)]t=0=0’ w(m+1)|S=0’
LOZ (z(m+1)) = _lz (w(m))z(’”)))

V.z(m+1)=0’ z(m+l)|[=0=0, zfrm+1)|t=0=0'
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Taking into account the results of [17], Theorem 5 n°® 1) and (3.3) we obtain for arbit-
raty t < T

34) [V yzrgy + Vs VL) + 127 PVl g, S
< DL @™, 2" ) + Iz (™, Z(M))”LP(Q,)] s
< el |z 1) + 127wz 1)) + ()0 L, @) + 127z, 00 -

For the norms in L,(Q,) we have

4 1/p
63 "], < max [l ¢, ke [ j |!z"”’<r>||L,,<mdr] <

0

¢ 1/p
< tl/(Pp,)HZ(M)“%V/I’{Il(Q’)li J”z(m)(T)"LP(dejl <
0

P 1/p
stl/"||z(”””%é5.'l(g)[ J||Z('”)(T)||VV}’1<QT)“17] ’

0

where p' is the conjugate of p. By applying the Young inequality, we easily obtain from
(3.5)

t
N,,,“(t)Sa;Nm(t)+c(e3)me(r)d‘r, meN, m=1, &20,

0
Where N, (t) = ”w ”WZ 1(Q,) + ”VX( )”Lp(Qz + ”Z il ”W2 l(Q;) Settmg ZN(I') = E N (l‘)
and making the summation with respect to 7z € [1, N] we obtain

Sn() SZya1() S esZn(0) + c(as)JzN(T)dT + N, (F).
0

t
Assuming 3 < 1 we have Xy (¢) < ¢y (s;)JZ‘N(‘r)dT + N, (¢)/(1 — &3). By the Gron-

0
wall’s lemma there exists a positive constant C(¢) such that
(3.6)  Xn() S C@)N () < CO# w10 + V2 V) + 16V w1000

< Co (DA, 0 + lgll, @ + 120 lwz 2100 +

|l ”WPZ‘Z/P(O) + ||“||W;-‘/P"“/ZP(ET) + ||b||W;—l/p.1—1/2P(ET)) :

The last inequality implies the convergence of the series 2 N,,, +1(2) and the existence

of the solution of the problem (1.4), (1.7)-(A") = lnn #7*D s= lim "+,

m —> oo

b= lim A”*" Estimate (2.11) follows from (3.6). Uniqueness of the solution can

also be established by the same kind of arguments. Let (e, p, ) be a solution of homo-
geneous problem (1.4), (1.7)-(A’) Then

lewllwz 1) + Vol ) + 18llwz 10 < CUlA Il ) + 2l )
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and, as a consequence, N(¢) = ”’”HW}‘(Q,) + ||Vp||1?(Q,) + l|b|IWPZ"(Q,) satisfy the in-
t
equality N() < €, N(#) + ¢(e;) j N(z)dr, which implies w =0, Vp = 0, b = 0. The

first part of theorem is provecf.

Other two statements of Theorem 1 are proved in the same way. All the necessary
estimates for ™+ p™+ 1 p"+D follow from Theorem 5 and from the results
of [26, 27].

Let us turn our attention to Theorem 2, n°® 3. We define again iterations ", p ™),
b by 49 =0, p'” =0, 9 =0,

(m+1) —

”(m+l)|t=o=”0(x), u s=a,

L (u(m,+l)’ (m+1))= —l(u('”),b(’”)), V.u(m+1):0’
(3.7) { 01 p =4

N e R A S e
. b('”+1)|,=0=b0(x), b('”+1)'n]5=0, BT(b(m+l))=d.

For [, (#, h) and [, (u, h) we have the estimate

(3.9 |li(u,b)

C:z,(u+s)/2(Qt) + IZZ (u, b) Ca,a/Z(QI) <

S C2(|u|ca,(u+s)/2(g) + 'b

Ca,(a+s)/2(Qt) + |Du Cm,(1+s)/2(g) + |Db|cu,(a+z)/2(g)) <

S eq([a|crearrarzg) + |b|crrarvazg) + 0(54)(SUP ||+ sup |1?|) ,  &>0
or or

and we observe also that in virtue of boundary conditions (3.7),, (3.8), and (1.12),
(UyX b +uxXH,).|s=0 and, as a consequence, /,(#-h)-n|s=0. This makes it
possible to apply Theorem 6, n°® 2) to problem (3.8). From this theorem and from re-
sults of papers[17,25] it follows that (2" ,p™ Ah™) are well defined. The
differences

(m)

(me1) = gl 1) _ ylm)

w (m+l)=p(m+1)_p(m)’ z(m+1)=b(m+l)_b(m)’

are solutions to the problems

{L01(w(m+l)»5(m+l)) — —-ll(w(’”),z('”)), Vew”+D = 0,

w(m+l)|l=0=0’ w(m+1)ls=0,

{Loz(z"”“)) = —Lw", "), VP =o0,

z(m+l)|t=0=0’ z(”’“)-n|,=0=0, BT(Z(”'+1))|S=O~
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Making use of Theorems of [17,25], of theorem 6, n° 2) and of the inequality (3.9) and
taking into account that

t
mQa}x |27 (x, 7)| < J |27 (x, 7)|Cz+1,1+.,/z(QT)d7

0 t
we easlly arrive at the estimate Q.1 (f) < e5Q,, (¢) + c(es) j Q,,(v)dz, e5>0
where 0
Qm+1(t)=|w(m+l)|C2+z,1+a/2(g)+ IVS(m+1) C""‘/Z(Q,)+|z(m+1)|C2+°"l+°‘/2(Q,)'

Further arguments are absolutely the same as in the proof of Theorem 1 and they can
be omitted.
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