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Fisica matematica. — On topological degree and Poincaré duality. Nota di FRANCO 

CARDIN, presentata (*) dal Socio A. Bressan. 

ABSTRACT. — In this Note we investigate about some relations between Poincaré dual and other topo­
logical objects, such as intersection index, topological degree, and Maslov index of Lagrangian submani-
folds. A simple proof of the Poincaré-Hopf theorem is recalled. The Lagrangian submanifolds are the geo­
metrical, multi-valued, solutions of physical problems of evolution governed by Hamilton-Jacobi equations: 
the computation of the algebraic number of the branches is showed to be performed by using Poincaré 
dual. 

KEY WORDS: Topological degree; Poincaré duality; Maslov index; Lagrangian manifolds; Solutions of 
Hamilton-Jacobi equation. 

RIASSUNTO. — Sul grado topologico e sulla dualità di Poincaré. Sono studiate le relazioni tra la dualità 
di Poincaré ed altri oggetti topologici quali l'indice d'intersezione, il grado topologico, l'indice di Maslov di 
sottovarietà Lagrangiane. Viene richiamata una semplice dimostrazione del teorema di Poincaré-Hopf. Le 
soluzioni multivoche dell'equazione di Hamilton-Jacobi, relativa a qualche problema fisico di evoluzione, 
sono geometricamente rappresentate da sottovarietà Lagrangiane: il calcolo del numero algebrico delle fal­
de è realizzato mediante il duale di Poincaré. 

1. INTRODUCTION 

The intersection index of two transverse submanifolds U and V can be computed, 
via the Thorn isomorphism, by means of the Poincaré dual of U and V. This Note ex­
plores some applications of this fact. An earlier application was given in [6], where it 
was remarked that the Maslov cohomological class of a Lagrangian submanifold A is 
precisely the Poincaré dual of the singular (Maslov) cycle of A, and this is recalled here, 
after some preliminary définitions given in Sections 2 and 3, in the Section 4. The 
Poincaré dual is useful to compute the topological degree of functions; indeed, we de­
fine the topological degree as a suitable intersection number, and we can directly prove 
the well known homotopic invariance of the topological degree in Section 5. Another 
topological application is presented in the Section 6: the proof of the Poincaré-Hopf 
theorem is quickly revisited, and in order to use the present framework, the Euler char­
acteristic of x(M) is here defined as the self-intersection index of the zero-section of 
the tangent bundle TM of a compact manifold M (see [9]). In the last Section 7 is pre­
sented a way to compute the algebraic number of branches of a Lagrangian submani­
fold L, thought of as a «multi-function», which is the geometrical solution of a Hamil­
ton-Jacobi partial differential equation, related, for example, to some physical prob­
lems of propagation in the space-time. This computation, and the selection of the ap­
propriate branches, are useful to build some new weak solutions (in the sense of «func­
tions»), flike e.g. the viscosity solutions, see [5]. 

(*) Nella seduta del 3 novembre 1994. 
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2 . P O I N C A R é D U A L I T Y 

Let M be a «-dimensional oriented smooth manifold. Denote by Hk(M) the &-di-
mensional space of the de Rham cohomology. The Poincaré duality, produced by the 
nondegenerate pairing 

(2.1) HH-k(M)xH?(M)9([*l[fil)» j*APeR 
M 

(c: compact support), establishes the existence of the following isomorphism: 

(2.2) Hn-k{M)^{H^{M)Y' , 

see [3, p. 44]. 
Let £ be a ^-dimensional oriented submanifold of M, and/: S*^ M the correspond­

ing embedding map. By Stokes's theorem, the map 

(2.3) H^(M)3[oj{k)]^ [j*t >(*)«=£ " CO" 

s 

is a linear functional on H^ (M); hence, by the above duality, a cohomological class 
[rjs] eHn~k(M) is associated to S, the so-called Poincaré dual of S: 

(2.4) lto{k)Ar)s=\j*co{k), V c ^ e H ^ M ) . 
s s 

Localization Principle [3, p. 67]: the support of the Poincaré dual of a submanifold 
S can be shrunk into any given tubular neighborhood of S. 

Let U and V be two closed oriented submanifolds of M with transversal intersec­
tion, that is, 

(2.5) TxU
h ®TxV

k = TXM, VxeUhn V* (dim 17* C\Vk = h+k-n). 

In view of Thorn's isomorphism theory (see [3,(6.31)]) we have 

(2.6) r)ijhnvk = rjijh Arjvk . 

Here, with a little abuse of notation, we mean Uh f) Vk ^ Vk fi Uh, in the sense that 
jjh p| yk inkers jn a standard way the orientation of the pair (Uh, V^). 

3. INTERSECTION INDEX 

When A +-k = », so dim U* fl V* = 0, the above intersection Ub 0 Vk consists of 
a finite set of points. Each of these points is endowed with a (suitable) inherited orien­
tation multiplicity, + 1 or — 1. The sum of these multiplicities is the so-called intersec­
tion index Uh O Vk (see [7, vol. 2, Sect. 15]). By remembering that the Poincaré dual 
of a point (with inherited orientation) can be represented by a bump function whose in­
tegral is 1 [3, p. 52, p. 68] we have that 

(3.1) UbQVk=\wnVk, 
M 
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and, by using the formula (2.6), 

(3.2) UbOVk=jriutArjVk. 
M 

Now, let E be a (n — 1)-dimensional oriented submanifold of M, and let 7 be a closed 
curve on M transversally crossing E. Let [YJ2] e H 1 (M) and [rçr] e f f - 1 (M) be the 
Poincaré duals of E and 7 respectively. We compute the difference between the num­
ber n + of transition points from the negative side to the positive side and the number 
n _ of transition points in the reverse direction. This number is the intersection index 

2? O r , 

(3.3) ZOr= J ^ A T ^ ! ^ . 
M r 

4. MASLOV INDEX 

Let A be a Lagrangian submanifold of the cotagent bundle T* M, 

(4.1) A ^ T * M — > M , 

that is, dim A = dim M and the restriction of the symplectic 2-form a> = dpi A dql on A 
is vanishing identically, r OJ = 0. The graphs of the differentials of smooth functions 
M3q^>S{q) G R are Lagrangian manifolds, but the converse is not true, and a theo­
rem by Maslov-Hòrmander characterizes the local structure of the generic Lagrangian 
submanifolds by means of the so-called Morse families or generating functions 
(see [12]). Denote by Z the set of points À on A where 

(4.2) rank [D(TTM o 0(A)] < max ( = d i m M ) . 

Under some genericity assumptions, the singular locus Z is the union of a (n — ^-di­
mensional orientable submanifold of A and subsets of dimension ^ n — 3. Thus Z nat­
urally determines a cycle [Z] in Hn-Ì(A, Z) (singular homology with integer coeffi­
cients), called the Maslov cycle of A, see [8]. The Maslov index m(y) of a closed 
smooth curve 7 in A is given by the intersection index Z O 7. By means of the Poincaré 
dual class [r]Z] G H / ( A ) related to Z we can compute m{y), see (3.3), 

(4.3) m{y) = ZOY=\r)znr=y'r)z = n+-n-. 
A r 

We remark that the cohomological class [r)Z] eH}(A) is obtained, as a rule, by 
considering a rather different approach: given an atlas of Morse families (or generating 
functions) covering A (see e.g. [12]), one builds a suitable 1-cocycle in the Cech coho-
mology, and, by the isomorphism with de Rham cohomology, finally finds the Maslov 
class, which is, precisely, the above Poincaré dual class [r]Zl, see[6]. 

5. TOPOLOGICAL DEGREE 

Let / : X—» Y be a smooth function, where dimX = dim Y, X is compact and Y 
is connected. We recall that the topological degree of / at a regular value y ' s Y is 
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(see e.g. [11]): 

(5.1) deg (/, y ') = I sgn (detD/(xa ) ) . 
x* : /(*« ) = y ' 

Let us define 

(52) graphf:= {(xyy) zX xY:y =f(x)}y Xr := {(x,y) sX X Y: y =y' } . 

We notice that, at the regular values y' e Y, graph/ and Xy> have transversal intersec­
tion. We can recognise that the topological degree is the intersection index of 
g r a p h / f i x ^ , 

(5.3) d e g t / , / ) = graphfOXy, . 

We quickly obtain the following main property of deg (f,yr), that is, its independence 
from y ' ; by the above construction with the Poincaré dual, we can write 

(5.4) deg(f,y')= J r)graphf A rj^, = J j ^ y = J r]^ph/ = deg(/ ,y") 
-A. X Y JLy ' J\y " 

since Xy> and Xy, Vy', / ' e Y , are homotopically (hence homologically) trivially 
equivalent. 

6. POINCARÉ-HOPF THEOREM 

Let M be a compact oriented manifold, and let T°M = {(x, 0): x e M} c TM be 
the zero section of TM. Following Hirsch [9], we define the characteristic of Euler as 
the self-intersection index of the zero section: 

(6.1) x(M):=T°MOT°M. 

Let £ be a vector field with a finite number of zeros {xl }j = 1? ^ and rank (DÇ(xt- )) = 
= dim (M), / = 1, ..., k. Every vector field, like the above f, produces a homotopic (and 
hence homologic) ^-deformation of T°M, 

(6.2) graph(£f):= {(x, efr.x <EM] cTM . 

Such an ^-deformation is transverse to T°M in TM, and this holds in view of the above 
rank condition on £ (here, we drop the classical discussion about the relaxation of this 
generic condition); we may write 

(6.3) Z(M) = r ° M O r ° M = graph (e?)Or0M, • 

and, in view of (5.3), 

(6.4) Z(M) = deg(ef, 0) = 2 sgn(det UD£fe))) = E index (?)]*,., 

where for the last definition in (6.4) one can see e.g. [2, p. 288]. 
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7. A (SORT O F ) T O P O L O G I C A L D E G R E E F O R L A G R A N G I A N SUBMANIFOLDS 

RELATED TO H A M I L T O N - J A C O B I EQUATIONS 

Let M be a (classical model of) space-time, M = Rm + l 3 (t^q*), / = 1, . . . , » . 
Let 

(7.1) H : T * J T + 1 - > R , U,^ ;po,Py) ' -*H(/ ,^ ;Po,Py)=Po + ^ ^ l ' , P y ) 

be a possibly time-depending Hamiltonian function. By solving geometrically the 
Cauchy problems for the H-J equation related to H we mean looking for Lagrangian 
submanifolds A of T* R" +1 contained into H~1 (0), and such that the elements of i(A) 
of the form (0, q';po,pj) are given by 

(7.2) (0 ,^ ' ;p 0 ,p y ) = | 0 , ^ ; - t t / O , * ' , 

where the function 

(7.3) a : ! T - > l ? , ^ "-XT^1") 

represents the initial data. When A is globally given by the graph of the differential of a 
function S{tyq

l), then we say that S{t,ql) is a classical solution of the H-J 
equation, 

(7.4) | ^ 0 + 3c(w, f 7 ( W ) ] = o, S(o,*'') = <x(*«"). 

We can interpret A as a sort of multi-function (just like a Riemann surface in complex 
analysis, see [12]). If the Hamiltonian X produces a global flux for the associated 
Hamiltonian system of o.d.e.'s (the characteristics), then, under a suitable non-
characteristic condition on the initial function (see e.g. [10,4], and the literature therein 
quoted), the geometrical Cauçhy problem is globally solved by a Lagrangian submani-
fold, which however is not globally transverse to the base manifold M = RK + 1; hence, 
as is well known, there need not exist global classical solutions like S{t,ql). Then A has 
a non trivial Maslov cycle Z. The intersection index of a (connected piece of) character­
istic curve 7 of the Hamiltonian system X on A with Z, Z O y, is just the Morse index of 
7, and it is the Maslov index for a non-closed curve (see[l, appendix 11]). 

In order to calculate the number of branches (with orientation) connected to a 
global geometrical solution A, ŵ  proceed as follow. If the solution of H-J is classical, 
A = graph (dS), the following topological degree is well defined at the regular points 
ipiipj): 

(7.5) deg (dS;po ,pj ) = \ *7graphws) A rç*^y) , 

where 

(7.6) l ^ U , V ) : = { ^ ^ ^ o , P y ) e T * ^ + 1:(po,Py) = (po^p;)}, 

and the supports of the Poincaré duals r\ ̂ ^S) a n d >?K T̂ \n
 a r e chosen in small tubular 

neighborhoods of graph (dS) and R(P|,p') respectively. 
(pó.py) 
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We can make two generalizations: first, we extend the formula (7.5) to general La-
grangian submanifolds A( ^ graph. {dS)); second, instead to consider R^ ,],/)> we 
consider 

(7.7) Kittl*):={(t,qi;Po,pj)eT*R? + 1:(t,qi) = (t',q'i)}. 

The new formula is thus 

(7-8) DEG ( A ; / ' , * " ) : = J VA A 7)^ , 

and it counts the number of (p0,pj) corresponding on A to {t1 ,qft). 
The integer DEG (A; t ', q H ) is well defined where A is transversal to R*,*^), and it 

is singular precisely on (the projection on the base Rn + 1 = {(t,q*)} of) the singular 
Maslov cycle Z of A. Finally, we have 

(7.9) DEG(A;t',q«)= J r]A= J" ijA = DEG (A; * " , ? * ) , 

for every pair (/' ,qn)y (/", #'") homotopically connected by some curve not crossing 
the Maslov singular cycle Z. 
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