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Teoria dei gruppi. — Solvable finite groups with a particular configuration of Fitting
sets. Nota di Daniera BussoLoni, presentata (*) dal Socio G. Zappa.

AsstracT. — A Fitting set is called elementary if it consists of the subnormal subgroups of the conju+
gates of a given subgroup. In this paper we analyse the structure of the finite solvable groups in which every
Fitting set is the insiemistic union of elementary Fitting sets whose intersection is the subgroup 1.

Key worps: Solvable finite groups; Fitting sets; Nilpotent groups.

Riassunto. — Gruppi risolubili finiti con una particolare configurazione degli insiemi di Fitting. Un insie-
me di Fitting si dice elementare se & costituito dai sottogruppi subnormali dei coniugati di un dato sotto-
gruppo. In questo lavoro si analizza la struttura dei gruppi finiti risolubili in cui ogni insieme di Fitting &
unione insiemistica di insiemi di Fitting elementari la cui intersezione si riduce al sottogruppo unita.

INTRODUCTION

By group we shall always mean finite group and we shall use throughout the nota-
tions of [2]; in particular if G is a group and T < G we set sT ={§<G:S< T},
sSTC={S<G:S<T¢ for some ge G}, snT={S<G:SsnT}, nT®={S<G:
SsnT# for some ge G} where SsnT means that § is a subnormal subgroup of T.

A Fitting set of a group G is a collection F of subgroups of G such that: 7) f TS e
eF,thenTe F i) fT,S e Fand S, T2ST, then ST € &F; 7i7) if S € Fandg € G, then
S¢ e &. This definition was introduced and developed by Anderson in [1]. The most fa-
miliar example of Fitting set of a group G is given by the set of the p-subgroups of G;
more generally, given a Fitting class ¥, the so called #race of ¥ in G tr3(G) = {H <

< G: H e &} is a Fitting set of G. We shall focus on the case § = N* with £ € N, where
N!' =N is the class of nilpotent groups and N* is defined inductively by N* =
= (G: G/F(G) e N*~1). Let G be a group and F a Fitting set of G: V < G is called
Fmaximal if Ve Fand from V< U < G with U € &, it follows U = V; V < G is called
an Finjector if for every Ksn G, V N K is Fmaximal in K; V < G is called an injector if
V is a Finjector for some Fitting set of G.

A fundamental result in the theory of Fitting sets guarantees that if G is a solvable
group and F a Fitting set of G, then F-injectors exist and constitute a conjugacy class [2,
VI, 2.9]. This means that the theory of Fitting sets is, in particular, a generalization of
the classical theory of Sylow and Hall subgroups.

There is a very strong link between Fitting sets and injectors: namely if G is a
solvable group and H < G, H is an injector of G if and only if s#H® is a Fitting set
of G[2, VIII, 3.3].

(*) Nella seduta del 3 novembre 1994.
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We shall call elementary a Fitting set F of a group G if there exists H < G such that
F=snHC . By the result quoted above, we can deduce that every Fitting set of a solv-
able group contains an elementary Fitting set; moreover most of the well-known Fitting
sets are elementary. These two facts have been the initial motivation for our research.
To be more precise let us introduce the following definition: if G is a group and &
for 7 =1, ..., n are Fitting sets of G such that N & = {1} for i #, then the set

F= U F; of subgroups of G is called the disjoint union of the & and it is denoted by

n i=1

U J;. Then the problem is the following: how many Fitting sets can we construct via

i=1

the disjoint union of elementary Fitting sets or, from another point of view, can we clas-
sify those solvable groups for which every Fitting set is given by the disjoint union of el-
ementary Fitting sets? A first useful observation is that a solvable group is nilpotent if
and only if every Fitting set is an elementary one. The next step is to investigate the
structure of solvable groups in which the Fitting set of the nilpotent subgroups is a dis-
joint union of elementary Fitting sets. This will be described in section 1. In the next
section 2 we shall treat the analogous problem for the Fitting set trgz (G) and this will
shortly lead to the solution of our general problem. These topics and others related to
them also constitute a section of my PhD thesis on Fitting sets [5].

1. SOLVABLE GROUPS IN WHICH THE TRACE OF ER IS THE DISJOINT UNION
OF ELEMENTARY FITTING SETS

In what follows if 7, for 7 = 1, ..., # are sets of primes with =; N\ 7; = @ for 7 # 7,

then we shall write U1 7; instead of U ;.
= i=1

t
Lemma 1.1. Let G be a solvable group with trg (G) = _Ul sME | where sMF are ele-

mentary Fitting sets of G and n, = n(|M, | ). Then the M, are nilpotent Hall subgroups
t
of G and =(|G|) = ,l:Jl ;.

Proor. First of all we observe that if P is a p-subgroup of G, then P < M¢ for some
t

i=1,...,nand g e G. Therefore n(|G|) = ‘U1 ;. We show now that the M; are Hall

subgroups of G. If p| |M; |, then there exists a p-group P; # 1 with P, < M;. Let P e
e Syl, (G) with P = P;; then P < M{forsomek =1, ...,nandg e G.Ifk # i, then P; €
e sM N sM{ = 1 contrary to the assumption; it follows that # =7 and |P| = |G|, =
= |M;|. To show that =, N 7; = @ for 7 # /, let p be a prime such that p| [M; |, |M;|.
Then, since M;, M; are Hall subgroups of G, there exist l1 # P e Syl,(G) and x € G such
that P < M, and P* < M,. It follows P < M; N M}  and consequently P esMf N
NsM} =1, a contradiction. ]
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Lemma 1.2. Let G be a solvable group and let N; for 7 = 1, ..., ¢ be nilpotent Hall
t
subgroups of G such that =(|G|) = ‘l—J1 n;, with 7; = n(|N; |). Then the following

statements are equivalent:
t

7) trg (G) = .l_Jl sNE, with sNE elementary Fitting sets of G;
i) Cg(x) is a m;-group for every 7 =1, ...,¢ and 1 #x e G w;-element;

i) every element in G is a 7-element for some 7 =1, ..., ¢

Proor. /) =>7i) Let' 1 # x € G be a n;-element and 7| |C¢ (x)| a prime; then there
exists y € Cg (x) with o(y) =7 and (x, y) = (x) X (y) € N. It follows that (x,y) < N}
for somej =1, ..., # and g € G: we cannot have ; # 7 because x would be a 7 -element
contradicting 7, N ;=@ and x # 1. Hence i =7 and #| [N, |, that is re ;.

i) =>77) Let 1 # x € G, with o(x) = m,m where 1 # m; is x;-number and 1 # m
is a 7r;-number. Then there exist y # 1 and z # 1 in G such that yz = zy with y a 7 -ele-
ment and z a x;-element, contrary to 7).

#z)=>7) By assumption N; is a nilpotent 7,-Hall subgroup of G. It follows that

t
sNE is the Fitting set of the 7,-subgroups of G and trg (G) 2 Ul sNE. Let M e N with
M < G; then we have M = M, X ... X M,, with M; a x,-Hall subgroup of M making
t
use of ‘l—Jl m; = 7(|G|). Assume M, # 1 # M, for 7 # j; then there exist x; e M;, x; € M;

with o(x;) = p; € =, 0(x;) = p; € =; and x,x; = x;x, . Therefore o(x;x;) = p,p, contrary to
#i7). Hence M = M, for some i = 1, ..., ¢ and then M < N} for some g € G. This means
t

try (G) € _U1 sNF . Finally the fact that sNF N sN ,G = 1fori #; is a trivial consequence
e

of m; N=; = 0. n

1~

sNE with N; # 1.

1

Lemma 1.3. Let G be a solvable group such that trg (G) =
Then ¢ < 2. t

Proor. Let r; = n(|N;|) fori = 1, ..., t. We have =, # @ and, by Lemma 1.1, it fol-
lows that 7; N\ 7z, = @ for 7 # ;. Assume ¢ = 3; let p; e =, for7 = 1, 2, 3 and let H be a
{p1, P2, ps }-Hall subgroup of G. By 1.2 every element in G is a ,-element for a suit-
able7 e {1, ..., ¢}, hence every element in H is a p,-element for a suitable / € {1, 2, 3}.
Then using the theorem on page 172 in [4], we deduce that the order of H is divisible at

most by two primes, a contradiction. L]

This lemma allows us to consider only those solvable groups for which the trace of
N is a disjoint union of two elementary Fitting sets. It also leads to a very useful result

about the behaviour of quotients of this type of group.
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Cororrary 1.4. If G i 1s a solvable group with try, (G) = sN G U sN§ and N=G,
then try (G) = sNC UsN ¢, where H stands for HN/N for every H < G.

Proor. Let G be a solvable group with tre (G) = sN& UsNE . By Lemma 1.1 N,
N, are nilpotent Hall subgroups of G such that =, U 7, =n(|G|), where x; =
= (| N;|), and therefore G = N; N, . Moreover, by Lemma 1.2, every element in G is a
7,-element or a 7,-element. We set H = HN/N for each H < G, 7, = =(|N; |) for; =
=1, 2 and observe that N; and N, are nilpotent Hall subgroups in G. Then, by 7, ¢ ;
and G = N, N,, it follows that 7, U %, = 7(|G|). Now choose ¥ = xN # 1 in G; then

we have o(x) |0(x) and X is a 7;-element or a 7,-element. Therefore, by Lemma 1.2, we
obtain that try (G) = sNC U sNe. u

In order to prove our main result, that is Theorem 1.7, we need the following two

lemmas. We shall omit the proof of the second which may be obtained by induction on
the order of the group.

Lemma 1.5. Let G be a solvable group such that try, (G) = sNZ U sNY and let
m;=n(|N;|) fori=1,2. 1f 1 2L <G is a n-group and 1 # M < Ng(L) is a 7,-
group, then LM is a Frobenius group with Frobenius complement M.

Proor. Obviously LM < G and 1 < L <LM. On the other hand if 1 # x € L, then
we have Cy(x) = M N Cg(x) = 1 because, by assumption, M is a w,-group, while by
Lemma 1.2 Cg(x) is a m-group and, by 1.1, n; Nz, = @. ]

LemmMa 1.6. Let G be a solvable group such that try (G) = sNT U sN§ and let
m; = n(|N;|) fori =1, 2. If O, (G) > 1, then the ascending nilpotent series coincides
with the 77 ,-series: in particular F(G) = O, (G), F,(G) = O,,(G), F;(G) =
= Onlﬂirzl(G)-

Tueorem 1.7. Let G # 1 be a solvable group. Then the following statements are
equivalent:

7) there exist 1 < N;, N, < G such that trg (G) =sNF& U sN§;

i) Ny, N, are nilpotent Hall-subgroups of G, G =N;N, and =, U T, =
=7(|G|), where =, = =(|N;|) for =1, 2.

If O,,(G) > 1, then there are two possibilities for the structure of G:

a) G =F,(G) is a Frobenius group with Frobenius complement N,;

b) G =F;(G), F,(G) is a Frobenius group whose complement, N, is cyclic of
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odd order and G/F(G) is a Frobenius group whose complement N; /F(G) is cyclic of
order dividing ] (p; — 1).

pieT2
a) . F(G) ; b) _ F(G)
=N, cyclic, | vaIelﬂz(p,- -1)
i¥:te) L F,(G)
11 cyclic, odd,
1 F(G)
11.

Proor. i) =) Let G # 1 solvable with try, (G) = sNT U sNfand1 < N; < G. Let
;= 7(|N;|) fori = 1, 2. By Lemma 1.1, the N; are nilpotent Hall subgroups of G and
7 U 7, =7n(|G|), hence G=N;N, and =, =r]. The solvability of G implies
0,,(G) > 1or O,,(G) > 1 and, reordering the 7,, we can assume O, (G) > 1. There-
fore by Lemma 1.6, F(G) = O, (G), F,(G) = O, (G), F5(G) = O, =, (G). Now
N, is a 7;-Hall subgroup of G: this implies N; = F(G) = F and, by Lemma 1.5, N, is a
Frobenius complement in the Frobenius group N, F. Therefore the Sylow subgroups of
N, are cyclic or generalized quaternion[3, V. 8.7]; but N, € . and therefore we can
have either N, cyclic or N, = C X Q with C cyclic, Q generalized quaternion and
(|Cl,2)=1.

Now set H = HF/F for each H < G and 7; = =(|N; |) fori = 1, 2. Obviously 7 ¢
Cmyand 7, = m,. Because N; # 1, Gis not a mlpotent group and therefore 1#G =
= N, N,; moreover, by 14, tI‘ge(G —SNG U sNS.

Let us show that N, <G. Let L < G minimal normal: then L is nilpotent and this
implies L < F(G) = O, (G) < NZ, since N, is a 7,-Hall subgroup of G.In particular
the elementary abelian p-group L is contained in a p-Sylow P of N, = N, ; but P is cyclic
or generalized quaternion. Consequently it contains only one subgroup of order p
which moreover is inside the centre of P. This gives L cyclic and L < Z(P); then by
nilpotency of Nz ,we have L < Z(N,). Assume N, # G. Theng € G exists so that N§ #

# NzandfrornL Lec Z(N, ¥ = Z(N%), it follows that Cg ( (L) = <N2> N%) > N,.Now
G = N;N,, hence there exists 1 = b e Cz(L) N N, . Taking 1 # / € L, we obtain a 7,-
element whose centralizer in G is not a 7,-group, contrary to Lemma 1.2.

Thus we have N, <G and N, € i, hence F(G) = N,; on the other hand we have
already observed that F= 0, (G) and F,(G) =0, (G), therefore FG) =
=0, (G) < N, . Itfollows F(G) = N,, namely F, (G) = N, F and F, (G) is a Frobenius

group with Frobenius complement N,.
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If N, = 1, we obtain G = N, and therefore G = F,(G) has the structure a).

IfN, # 1, we obtain G = F(G) N, and, applying Lemma 1.5 to G, we get that G is a
Frobenius group with nilpotent Frobenius complement N;; hence G = F;(G).

We observe that 2{ | N, | : otherwise N, = N, would contain only one subgroup ()
of order 2, characteristic in N, =G and therefore normal in G. It follows that {7} <
< Z(G); hence 2| |Cg(x)| for every x € G. Then, by Lemma 1.2, G does not contain
non-trivial 7,-elements and, in particular N; = 1, a contradiction.

It follows then that N, is cyclic of odd order.

Finally we consider N, : this is a nilpotent Frobenius complement in G, hence N, is
cyclic or Ny = C x Q with C cyclic, Q generalized quaternion and (|C|, 2) = 1. We
observe now that N, is embedded in the automorphism group of the Frobenius kernel
F,(G)=N, of G; but N, cyclic implies Aut(N,) abelian and therefore N, is
cyclic.

Moreover if |N,|= Il p#, we obtain |N;|||Aut(N,)|=e(|N,|) =

Piem2

= [I p# *(p;— 1), and from this, considering that 7, C =, and =; N7, =@, we

have |N, | I IT (p; — 1). This means that if N, # 1, then G has the structure de-

i7)=>7) We start with G a solvable group and N;, N, two nilpotent Hall sub-
groups of G such that G = N, N, with =, Uz, = n(|G|), where ; = =(|N; | ). Taking
G of type ) or b) we can assume, without loss of generality, that O, (G) > 1. By Lem-
ma 1.2, proving 77) is equivalent showing that each element in G is a 7;-element or a 7,-
element. We analyse separately the cases 4) and b).

If G is of type a), then G = F,(G) is a Frobenius group with complement N, and
kernel F(G); hence we have |F(G)| = |G|/ |N,| = |N; |. This means that F(G) is the
only 7;-Hall subgroup of G and therefore F(G) = N;. By the Frobenius partition, each
element in G is in F(G) or in a Frobenius complement. Then it is either a 7-element or
a m,-element.

If G is of type b), then the Frobenius complement N, of the Frobenius group F, (G)
is a m,-Hall of G. Therefore the Frobenius kernel F(F,(G)) = F(G) is a =;-Hall of
F,(G) while F,(G)/F(G) = N,, Frobenius kernel of G/F(G), is a ,-group. Further-
more each non-trivial 7,-element in G belongs to F, (G)\F(G): namely the elements in
F(G) are n;-elements and F,(G) 2 G contains N, which is a 7,-Hall of G and there-
fore F,(G) contains each m,-element of G.

Assume now that there exist 1 # x € G,p € 7, and g € 7, such thatp, g |o(x). Then
there exist also a 7;-element y # 1 and a 7,-element z € F,(G)\F(G) such that yz =
= zy = x. Notice that F, (G) is a Frobenius group with Frobenius kernel F(G), hence the
only element of F(G) centralized by z € F,(G)\F(G) is 1; theny ¢ F(G), thatis 1 #y =
=yF(G) € G = G/F(G). By hypothesis, G is a Frobenius group whose kernel is, as al-
ready observed, a 7,-group; therefore the 7;-element y must lie in a Frobenius comple-

ment and then it does not centralize 7 € F,(G)/F(G) — {1} contrary to the fact that y
centralizes z. n
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2. SOLVABLE GROUPS IN WHICH EVERY FITTING SET IS A DISJOINT UNION
OF ELEMENTARY FITTING SETS

If G is a group and Fis a Fitting set of G, we denote by G#the Fradical of G, that
is the union of all the normal subgroups of G belonging to &. We begin this section with
two easy but useful remarks.

Remark 2.1. Let Fbe a Fitting set of the group G and suppose that suMF are ele-
mentary Fitting sets of G for 7 =1,...,& such that F¢ 'U1 suMF. Then &F=
i=

= U1 sul(M;)#1°, with s#[(M;)#]¢ elementary Fitting sets of G.

i=

Remark 2.2. Let G be a solvable group.
k

a) If F2trgy (G) is a Fitting set of G such that F= il—:Jx suME | with suME # [ ele-
mentary Fitting sets, then 2<2 and the N;= F(M;) are such that trg(G) =
=sNf UsN g,

b) If there exists an elementary Fitting set of G containing try; (G), then G is
nilpotent.

TueoreMm 2.3. Let G be a solvable, but not nilpotent group. Then the following two
statements are equivalent:

7) trg2(G) is a disjoint union of elementary Fitting sets;

) G=[( 3:_ ):aeH$GF(p”)x,,BeGF(p”)} where # = ord p(g), for
o
each ¢| |H|.

Proor. 7)=>ii) Let G be a non-nilpotent solvable group with trgz (G) the disjoint
union of elementary Fitting sets. Try2(G) 2try(G) and Remark 2.2 imply that
trgz (G) = sanUsnMZG with M; # 1. Moreover, setting N, =F(M;), we have
trn (G) = sNEUsNE . By Theorem 1.7, if we put 7, = n(|N;|) for i = 1, 2, then we
obtain G = N} N, with 1 # N; # G nilpotent x,-Hall subgroups of G and 7r1U7r2 =
= (| G|). Furthermore G is of type 4) or of type 4) as in Theorem 1.7 7). We consider
separately the two types explaining the corresponding structure of G in the case 4) and
the impossibility of case 5).

G of type a). In this case G is a Frobenius group with kernel N; = F(G) and com-
plement N,. Then N, = F(M,) < M.,; it cannot be that N, < M, otherwise we would
have M, N N; <M, with M, N N; € N which gives N, = F(M,) = M, N N; # 1 con-
trary to 7, N 7, = @; therefore M, = N, is a Frobenius complement in G. We observe
that G € N2, that is G € trgp (G) = suME UmMZG, on the other hand G ¢ s#M§ | other-
wise G = N,, contrary to N; # 1. Hence G = M; and, using the fact that :t? is closed
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with respect to subgroups, we obtain sG = s»G UsHC with H a Frobenius complement
of G.But s#G = {T S F(G)} U{T < G: T>F(G)}[3,V, 8.16] hence if T < G, set-
ting F = F(G), the alternatives are: T < F, T > F, T < H* for some g € G. We show
that this implies F minimal normal in K for each K < G with K > F. Assume that there
exists K < GwithK > F>Fand 1 # F<<K.ThenKNH =H # 1, FH < G and also
FH ¢ F aswell as FH # F, because FHNF=FFNKNH) = F=F. Finally FH ¢
¢ H* since 1 # F ¢ H® for every g € G. It follows that FH ¢ s#G UsH® , a contradic-
tion. In particular F is elementary abelian, say |F| = p” with {p} = 7,7 = 1 and if we
consider H imbedded in Aut(F) = GL(#n,p), then F is an itreducible H-module.

If 2/ |H| then H is a nilpotent complement in the Frobenius group G, hence H is
cyclic. Then by II, 3.10 in [3], there exists a monomorphism ¢: H — GF(p” )™ such that
x? = a(h)x for each x € F, where we identify F with GF(p”) and the operation on the
right side is the product in the field. This gives

Gz[( X ):ﬁeGF(p”),aea(H) SGF(p”)X}].
ax + 3

Now, due to the fact that F is minimal normal in K for each K < G with K > F, the
same argument applies to every subgroup in H and enables us to deduce that # is the
order of p modulo ¢, for each ¢| |H]|.

If 2| |H|, then applying the same argument again to C < H with |C| = 2, we ob-
tain #» = ordp(2); but (|H|, |F|) = 1 implies p odd and therefore #» = 1, thus F = C,
and H is embedded in Aut(C,) = C, _ ;. In particular H is cyclic and |H| |p — 1; then
the argument applies to H itself and this leads to

G l(axer ﬂ):ﬂeGF(p), xe H < GF(p)*|,

with ¢|p — 1 for each ¢| |H].

G of type b). In this case it is G = F;(G), F,(G) is a Frobenius group with com-
plement N, and G/F(G) is a Frobenius group with complement N; /F(G). We ob-
serve, first of all, that N;e I and therefore N;e Jt?. On the other hand
Ne/r) (N1 /F(G)) = N, /F(G) and, due to the fact that a Frobenius complement is
selfnormalizing, it follows that N (N;) = N;. Hence N; = F(M, ) is not subnormal in
any subgroup of G in which it is properly included and therefore N; = M;. Now from
F,(G) e N? and F,(G) & N;, we obtain F,(G) e suM§ , hence s#F,(G) csnM5 : in
particular we have 1 # F(G) e suM5 N suM¢, a contradiction.

#)=>7) Let G be a group as in #), that is, up to isomorphism, G = GF(p”) XH
with H < GF(p”)*, x* =xb for each x € GF(p") and b € H, where # is the order
of p modulo ¢ for each g such that ql |H|. Obviously G is a Frobenius group
with kernel F = GF(p”) and complement H. We show that F is minimal normal
in K for each K < G with K > F. Assume that there exists K = FL with 1 # L < H
and N < F minimal normal in FL; without loss of generality we can assume |L| =g
with ¢ a prime. Then N is an irreducible L-module. Moreover, if |N|=p*,
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again by II, 3.10 in[3], we have & = ordp(g); but ¢| |H|, therefore ord p(g) =»
and N =F, a contradiction.

Now let T< G with T¢ F, T # F and consider TNF=T<=T. We have T <F
and Ng (T) = T, F since F is abelian; hence N (T) = TF and thus T <K = TF with
K > F. Using the fact that F is minimal normal in K, it follows that T = 1. Then
p }f |T|: otherwise, considering P € Syl, (T) we would have 1 # P < T N F since F is
the only p-Sylow in G, contrary to T N F = 1. Thus T is included in a p '-Hall subgroup
of G, namely in H* for a suitable g € G. Considering that s»G = {T < F} U{T <
< G: T > F}[3,V, 8.16], this shows that sG = G UsHC . But G is a Fitting set of G
and H nilpotent Hall subgroup of G implies that sH® = s»HC is a Fitting set of G.

Since G € N?, this means that try2(G) is a disjoint union of elementary Fitting sets
of G. u

CoroLrary 2.4. Let G be a non-nilpotent solvable group. Then the two following
statements are equivalent:

7) trge(G) is a disjoint union of elementary Fitting sets for some £e N,
k=2; '

i) G = [( ) BeGF(p"),ae H< GF(p”)x], where 7 = ordp(g), for
ax + 3
each ¢| |H|.

Proor. 7) =>ii) Since troyx (G) 2 trgpz (G) for each £ = 2 we obtain, by Remark 2.1,
that tre2 (G) is a disjoint union of elementary Fitting sets and then, by Theorem 2.3,
G has the structure described in 7).

i) =>7) If the structure of G is as in 77), then G € N? and so trge (G) = trgp (G)
for every £ = 2. Thus, by Theorem 2.3, trq4 (G) is disjoint union of elementary Fitting
sets, for each & = 2. n

Tuaeorem 2.5. Let G be a non-nilpotent solvable group. Then the following state-
ments are equivalent:

7) every Fitting set of G is disjoint union of elementary Fitting sets of G;

i) G = [( ) BeGF(p"),aeH< GF(p”)x], where 7 =ordp(g) for
each ¢| |H|; wtp

#i7) every Fitting set of G is a disjoint union of at most two elementary Fitting
sets.

Proor. 7)=>:) It is a trivial consequence of Theorem 2.3.
i) =>iii) Let G = [(acxjil- ﬁ):,@ e GF(p”),ae H < GF(p”)X] with # = ordp(gq)

for each ¢| |H| and ¥ a Fitting set of G. Due to the facts established in the proof of
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Theorem 2.3 #7) =>7) we have sG = snG UsnI:I G with s»G, snHC Fitting sets of G. But
FcsG and then, by Remark 2.1, F= mG&rU sn[Hy1C is the disjoint union of at most
two elementary Fitting sets.

7i) =>{) Straightforward. ]

Remark 2.6. In the groups as in Theorem 2.5 77), the condition #» = ordp(g) for
each ¢| |H|, does not force |H| to be prime. For example consider p = 29, # = 2.
Then |GF(p”)* |=2?+3-5-7 and there exists H < GF(p”)* with |H| = 15. The
group G = GF(29?) X{H, where the action is given by the product in the field, is of
type i), since 2 = ord 29(5) = ord 29(3).
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