ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Roberto Tauraso

On fixed points of C^1 extensions of expanding maps in the unit disc

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.4, p. 303–308.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1994_9_5_4_303_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Geometria. — On fixed points of C^1 extensions of expanding maps in the unit disc. Nota di ROBERTO TAURASO, presentata (*) dal Socio E. Vesentini.

ABSTRACT. — Using a result due to M. Shub, a theorem about the existence of fixed points inside the unit disc for C^1 extensions of expanding maps defined on the boundary is established. An application to a special class of rational maps on the Riemann sphere and some considerations on ergodic properties of these maps are also made.

KEY WORDS: Fixed point; Expanding map; Blaschke product; Invariant measure.

RIASSUNTO. — Punti fissi di estensioni C^1 di funzioni espansive nel disco unitario. Sulla base di un risultato di M. Shub, si dimostra un teorema riguardante la presenza di punti fissi all'interno del disco unitario per estensioni C^1 di funzioni espansive definite sul bordo. La Nota si conclude con un'applicazione ad una classe di funzioni razionali della sfera di Riemann e alcune considerazioni sulle proprietà ergodiche di tali funzioni.

1. Let $D^2 \stackrel{d}{=} \{z \in C : |z| \leq 1\}$ be the closed unit disk of C, $S^1 \stackrel{d}{=} \{z \in C : |z| = 1\}$ its boundary in C and int $(D^2) \stackrel{d}{=} D^2 \setminus S^1$ its interior in C.

Let X be a «nice» topological space (in our case X will be either D^2 or S^1) and $f: X \to X$ be a continuous map with a finite number of fixed points in X. It is possible to associate to each fixed point p of f an integer i(X, f, p), called the «index», which describes the way in which the map, locally, «winds around» the point. If U is a non-empty open set of X and ∂U is its boundary in X, then we denote by C(X, U) the set of all continuous maps $f: X \to X$ with a finite number of fixed points in U and, if ∂U is not empty, none of them in ∂U . Then, the index of $f \in C(X, U)$ on U, i(X, f, U), is the sum of the indices of the fixed points of f which lie in U.

Its main properties are (see [3]):

1) Localization: if $f, g \in C(X, U)$ and f(x) = g(x) for all $x \in U$ then i(X, f, U) = i(X, g, U).

2) Homotopy: if $H: X \times [0, 1] \to X$ is a homotopy and $f_t(\cdot) \stackrel{d}{=} H(\cdot, t) \in \mathcal{C}(X, U)$ for all $t \in [0, 1]$ then $i(X, f_0, U) = i(X, f_t, U) \quad \forall t \in [0, 1].$

3) Additivity: let $f \in \mathcal{C}(X, U)$ and U_1, \ldots, U_s be a set of mutually disjoint open subsets of U such that $U \setminus \bigcup_{j=1}^{s} U_j$ does not contain any fixed point of f, then $f \in \mathcal{C}(X, U_j)$ for $j = 1, \ldots, s$ and $i(X, f, U) = \sum_{j=1}^{s} i(X, f, U_j)$.

4) Normalization: if we denote by L(X, f) the Lefschetz number of $f \in \mathcal{C}(X, X)$ in X (see [3]), then i(X, f, X) = L(X, f).

(*) Nella seduta del 14 maggio 1994.

5) Commutativity: if $f, g: X \to X$ are continuous maps such that $g \circ f \in \mathcal{C}(X, U)$, then $f \circ g \in \mathcal{C}(X, g^{-1}(U))$ and $i(X, g \circ f, U) = i(X, f \circ g, g^{-1}(U))$.

Let $X = D^2$ and $f \in \mathcal{C}(D^2, U)$ with U open set of D^2 containing only one fixed point p, then, if we define for all $z \in C$

$$F(z) \stackrel{d}{=} \begin{cases} f(z) & \text{if } z \in D^2, \\ f(z/|z|) & \text{otherwise}, \end{cases}$$

the index i(X, f, U) = i(X, f, p) is the local degree of the map Id-F restricted to an appropriately small open set about 0.

Moreover, since D^2 is simply connected, every continuous map $f: D^2 \to D^2$ is homotopic to the constant map identically zero and we have $L(D^2, f) = 1$ for all $f \in \mathcal{C}(D^2, D^2)$.

2. Choose a fixed $C^1 \max \varphi \colon S^1 \to S^1$. If $p \in S^1$ is an isolated fixed point of φ we will say that φ is transversally fixed in p if the derivative of φ in p, $D_p \varphi$, is different from 1 (*i.e.* the multiplicity of the fixed point p is 1).

Let $E^1(\varphi)$ be the set of all smooth extensions of φ inside $D^2: E^1(\varphi) \stackrel{d}{=} \{f: D^2 \rightarrow D^2: f \in C^1(D^2) \text{ and } f|_{S^1} \equiv \varphi\}.$

If $f \in E^1(\varphi) \cap \mathcal{C}(D^2, D^2)$ then the following theorems hold (see [4, 5]):

THEOREM 2.1. If φ is transversally fixed in $p \in S^1$ then either $i(D^2, f, p) = 0$ or $i(D^2, f, p) = i(S^1, \varphi, p)$ which is either 1 or -1.

THEOREM 2.2. If φ is transversally fixed in $p \in S^1$ and $i(D^2, f, p) = 0$ then, chosen a neighborhood V of p in D^2 containing no other fixed point of f, there exists a homotopy $H: D^2 \times [0, 1] \rightarrow D^2$ such that, if $f_t(\cdot) \stackrel{d}{=} H(\cdot, t) \in \mathcal{C}(X, U)$ for all $t \in [0, t]$, then: $f_0 \equiv f$ in $D^2, f_t \equiv f$ in $(D^2 \setminus V) \cup S^1$ for all $t \in [0, 1]$ and $f_1 \in E^1(\varphi)$ has one and only one fixed point q in $V \cap$ int (D^2) . Moreover, $i(D^2, f_1, q) = -i(S^1, \varphi, p)$ while $i(D^2, f_1, p) = i(S^1, \varphi, p)$.

THEOREM 2.3. If $i(D^2, f, \text{ int } (D^2)) = 0$, there exists a $\tilde{f} \in E^1(\varphi)$ that has no fixed points in int (D^2) .

3. We shall say that a C^1 map $\varphi: S^1 \to S^1$ is expanding on S^1 (see [12, 9]) if there exist real numbers c > 0 and $\lambda > 1$ such that $|D_x \varphi^k| \ge c\lambda^k \forall x \in S^1$ and $\forall k \in N$, where $\varphi^k = \varphi \circ \ldots \circ \varphi$ is the k-th iterate of φ .

The most trivial example of expanding maps on S^1 are the «rotations» $\Phi_N(x) \stackrel{d}{=} x^N$ $\forall x \in S^1$, with N integer such that $|N| \ge 2$. We can easily note that $\Phi_N \in \mathcal{C}(S^1, S^1)$ and if $p \in S^1$ is a fixed point of Φ_N then, by Theorem 2.1 and the properties of the index stated in the first section,

(1)
$$i(S^1, \Phi_N, p) = \begin{cases} -1 & \text{if } N \ge 2, \\ 1 & \text{if } N \le -2. \end{cases}$$

Moreover, Shub has proved (see [12, 9]) that these «rotations» allow us to classify by conjugation the smooth expanding maps on S^1 . The crucial device we need is the to-

pological degree, deg φ , of a map φ : $S^1 \rightarrow S^1$, that is the number of windings around S^1 of the path $\varphi(e^{2\pi i t})$ with *t* from 0 to 1; a winding is counted positively if counterclockwise and negatively in the other case (see [7]).

THEOREM 3.1. If the C^1 map $\varphi: S^1 \to S^1$ is expanding on S^1 , then there exists a homeomorphism h of S^1 such that $h \circ \varphi \circ h^{-1} \equiv \Phi_N$ on S^1 where $N = \deg \varphi$ with $|N| \ge 2$.

Now, we can establish the main theorem of this *Note* that generalizes a similar result obtained in [4, 5] in the case of the «rotations»:

THEOREM 3.2. Let $\varphi: S^1 \to S^1$ be a C^1 map expanding on S^1 and $N = \deg \varphi$. 1) If $N \ge 2$, then every $f \in E^1(\varphi)$ has a fixed point in int (D^2) .

2) If $N \leq -2$, there exists a map $f \in E^1(\varphi)$ that has no fixed point in int (D^2) .

PROOF. By Shub's theorem there is a homeomorphism b that conjugates φ to the «rotation» Φ_N . By this conjugation, φ has the same number of fixed points of Φ_N , that is $|N| - \operatorname{sign}(N) \ge 1$. Hence the set Fix $\varphi \stackrel{d}{=} \{x \in S^1 : \varphi(x) = x\}$ is not empty and finite. This means that $\varphi \in \mathcal{C}(S^1, S^1)$ and, if $p \in S^1$ is a fixed point of φ , then b(p) is the corresponding fixed point of Φ_N and, by the commutativity of the index we have

(2)
$$i(S^1, \varphi, p) = i(S^1, h^{-1} \circ (h \circ \varphi), p) = i(S^1, (h \circ \varphi) \circ h^{-1}, h(p)) = i(S^1, \Phi_N, h(p))$$

To apply the theorems stated in the previous section we have to show that φ is transversally fixed in each fixed point $p \in S^1$. In fact: $D_p \varphi^k = D_{\varphi^{k-1}(p)} \varphi \cdot D_{\varphi^{k-2}(p)} \varphi \dots D_p \varphi = (D_p \varphi)^k$, and, since φ is expanding on S^1 , then for all $k \ge 1 |D_p \varphi|^k = |D_p \varphi^k| \ge c\lambda^k$; this implies that $|D_p \varphi| \ge \lambda > 1$.

Now we distinguish the two cases.

1) If $N \ge 2$, we assume that there exists a map $f \in E^1(\varphi)$ without any fixed point in int (D^2) .

Since $f \in \mathcal{C}(D^2, D^2)$, by the normalization property we have the contradiction

$$1 = L(D^2, f) = \sum_{p \in \operatorname{Fix}\varphi} i(D^2, f, p) \leq 0,$$

because, by Theorem 2.1, (2) and (1), either $i(D^2, f, p) = 0$ or $i(D^2, f, p) = = i(S^1, \Phi_N, h(p)) = -1$.

2) If $N \leq -2$, we extend φ inside D^2 in the following manner

$$f_0(z) = \begin{cases} |z|^2 \varphi(z/|z|) & \text{if } z \in D^2 \setminus \{0\}, \\ 0 & \text{if } z = 0. \end{cases}$$

It is easy to see that $f_0 \in E^1(\varphi)$ and that 0 is the only fixed point of f_0 in int (D^2) . Since $|z| > |f_0(z)|$ for $0 \neq z \in int (D^2)$, then $i(D^2, f_0, 0) = 1$. Moreover, if $p \in Fix \varphi$, by Theorem 2.1, (2) and (1), either $i(D^2, f_0, p) = 0$ or $i(D^2, f_0, p) = i(S^1, \Phi_N, h(p)) = 1$.

Since, by the normalization property,

$$\sum_{p \in \text{Fix}\varphi} i(D^2, f_0, p) = L(D^2, f_0) - i(D^2, f_0, 0) = 1 - 1 = 0$$

then $i(D^2, f_0, p) = 0$ for all $p \in \text{Fix } \varphi$. Choosing one of the fixed points $p \in S^1$ of φ then, by Theorem 2.2 there exists a map $f_1 \in E^1(\varphi)$ which coincides with f near 0, and therefore has the same index: $i(D^2, f_1, 0) = i(D^2, f_0, 0)$. Besides, f_1 has only another fixed point $q \in \text{int } D^2$ and $i(D^2, f_1, q) = -i(D^2, f_1, p) = -i(S^1, \varphi, p) = -1$. Hence, $i(D^2, f_1, \text{ int } D^2) = i(D^2, f_1, 0) + i(D^2, f_1, q) = 0$ and, by Theorem 2.3, there exists $f_2 \in E^1(\varphi)$ without any fixed point in int (D^2) . q.e.d.

Note that, in theorem, when $N \ge 2$, we can not weaken the hypothesis on the regularity of the extension f of φ because there exists a continuous extension which has no fixed point in int (D^2) (see [4]).

Besides, it follows directly from the definition of expanding map and the previous theorem that

COROLLARY 3.3. Let $\varphi: S^1 \to S^1$ be a C^1 map with deg $\varphi = N \ge 2$. If $\min_{x \in S^1} |D_x \varphi| > 1$ then φ and $\overline{\varphi}$ are expanding on S^1 and since deg $\overline{\varphi} = -N \le -2$, every $f \in E^1(\varphi)$ has a fixed point in int (D^2) , while there exists a map $f_0 \in E^1(\varphi)$ such that \overline{f}_0 has no fixed point in int (D^2) .

4. Let $\widehat{C} \stackrel{d}{=} C \cup \{\infty\}$ be the Riemann sphere and take a rational map $f: \widehat{C} \to \widehat{C}$ with degree ≥ 2 . The Fatou set of f, \mathcal{F} , that is the largest open set in \widehat{C} where the sequence of iterates $\{f^k\}$ is normal; let $\Im \stackrel{d}{=} \widehat{C} \setminus \mathcal{F}$ be the Julia set of f.

Classical properties of the Fatou set are that: \mathcal{F} is completely invariant (*i.e.* $f(\mathcal{F}) = f^{-1}(\mathcal{F}) = \mathcal{F}$) and, if it is not empty, then it has one, two or else infinitely many open connected components.

Moreover (see for example [13, 2]), if f is expanding on \mathcal{J} , *i.e.*

$$\exists c > 0, \lambda > 1: \left| \frac{df^k}{dz}(x) \right| \ge c\lambda^k \quad \forall x \in \mathcal{J} \text{ and } \forall k \in \mathbb{N}$$

and if \mathcal{F} has exactly two invariant components, then \mathcal{J} is the common boundary of the components and is a Jordan curve. It can be either a circle in \hat{C} or a highly irregular curve with tangents nowhere. In both cases, each component contains an attracting fixed point.

For example, a finite Blaschke product *B* (see for example [11]):

$$B(z) \stackrel{d}{=} e^{i\theta} \prod_{j=1}^{N} \left(\frac{z-a_j}{1-\bar{a}_j z} \right) \quad \forall z \in \widehat{C}$$

where N is a positive integer, $\theta \in \mathbf{R}$ and $a_1, \ldots, a_N \in \operatorname{int} (D^2)$, is a rational map with degree N such that $B(S^1) = S^1$, $B(\operatorname{int} (D^2)) = \operatorname{int} (D^2)$ and $B(\widehat{C} \setminus D^2) = \widehat{C} \setminus D^2$. Assume $N \ge 2$, then the Julia set of B can be either S^1 or a Cantor set contained in S^1 . It is worth to note that, $B|_{S^1}$ is expanding on S^1 iff B has a fixed point in $\operatorname{int} (D^2)$ iff B has a fixed point in $\widehat{C} \setminus D^2$. In this case the two fixed points in $\widehat{C} \setminus S^1$ are attracting and symmetric with respect to S^1 , while the Julia set of B is just S^1 and $\mathcal{F} = \operatorname{int} (D^2) \cup \widehat{C} \setminus D^2$.

Now we are ready to prove the following result.

ź

PROPOSITION 4.1. Let $f: \widehat{C} \to \widehat{C}$ be a rational map with degree $N \ge 2$ and assume that \mathcal{F} has exactly two invariant components, say V and W, f is expanding on \mathcal{J} and \mathcal{J} is a circle in \widehat{C} then if \widetilde{f} is a C^1 extension on \overline{V} (on \overline{W}) of $f|_{\mathcal{J}}$ then \widetilde{f} has a fixed point in V (in W).

PROOF. Let f be a C^1 extension on \overline{V} of $f|_{\mathfrak{I}}$. Since \mathfrak{I} is a circle in \widehat{C} and \mathfrak{I} is the boundary of the domain V there exists a fractional linear map T such that $T(\mathfrak{I}) = S^1$, $T(V) = \operatorname{int} (D^2)$ and $T(a_V) = 0$ where a_V is the attracting fixed point of f in V. If we conjugate f by T then we obtain a Blaschke product $B = T \circ f \circ T^{-1}$ with degree $N \ge 2$ and a fixed point in 0. Now, let $\varphi \equiv B|_{\mathfrak{I}^1}$ then for all $x \in S^1$ and $k \ge 1$

$$\left|D_{x}\varphi^{k}\right| = \left|\frac{dB^{k}}{dz}(x)\right| \ge \lambda^{k}$$

where $\lambda \stackrel{d}{=} \min_{S^1} |dB/dz| > 1$ (see [1]). Since deg $\varphi = N \ge 2$ and $T \circ \tilde{f} \circ T^{-1} \in E^1(\varphi)$, by Corollary 3.3, φ is expanding on S^1 and $T \circ \tilde{f} \circ T^{-1}$ has a fixed point in int (D^2) . This means that \tilde{f} has a fixed point in V. q.e.d.

5. The expanding maps have some interesting ergodic properties that are summarized in the following result which is a particular case of a general theorem due to Walters (see [14]):

THEOREM 5.1. Let $\varphi: S^1 \to S^1$ be a C^2 map expanding on S^1 . Then there exists an invariant probability measure μ for φ which is equivalent to the normalized Lebesgue measure σ . The following properties hold:

1) $\sigma \circ \varphi^{-k} \stackrel{*}{\rightharpoonup} \mu$ (where $\stackrel{*}{\rightharpoonup}$ denotes the convergence in the weak* topology).

2) φ is an exact endomorphism with respect to μ , that is: if $E \in \bigcap_{k=0}^{\infty} \varphi^{-k}(\mathcal{B})$ then $\mu(E)$ is either 0 or 1, where \mathcal{B} is the σ -algebra of the borelian sets of S^1 .

3) The entropy of φ with respect to μ is:

$$b_{\mu}(\varphi) = \int_{S^{1}} \log\left(\left|D_{x}\varphi\right|\right) d\mu(x) \, .$$

Now, if φ is the restriction of a finite Blaschke product *B*, we can ask ourselves if there is any connection, in this special case, between the fixed point $a \in \text{int} (D^2)$ of *B* (see the previous section) and the invariant measure of the Theorem 5.1.

In fact, since the sequence of iterates $\{B^k(0)\}$ converges to the fixed point *a* (see [1, 6]), then $\sigma \circ \varphi^{-k} = \sigma_0 \circ B^{-k} = \sigma_{B^k(0)} \xrightarrow{*} \sigma_a = \mu$, where σ_v is the harmonic proba-

bility measure associated to $y \in int (D^2)$ (see [10]),

$$\frac{d\sigma_{y}}{d\sigma}(x) = \frac{1 - |y|^{2}}{|y - x|^{2}} \quad \forall x \in S^{1}.$$

Again by Theorem 5.1, the entropy formula is:

$$b_{\sigma_a}(\varphi) = \int_{S^1} \log\left(\left|\frac{dB}{dz}(x)\right|\right) d\sigma_a(x) \,.$$

Moreover, following [8] (see also [15]), by the conjugation property of the entropy and the variational principle (see also [15]) $0 < \log \lambda \le b_{\tau_a}(\varphi) \le h(\varphi) = h(\Phi_N) = \log N < \infty$.

References

- [1] M. ABATE, Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Commenda di Rende 1989.
- [2] H. BROLIN, Invariant sets under iteration of rational function. Ark. Mat., vol. 6, 1965, 103-144.
- [3] R. F. BROWN, The Lefschetz Fixed Point Theorem. Scott, Foresman and Co., Glenview 1971.
- [4] R. F. BROWN R. E. GREENE, An interior fixed point property of the disc. Amer. Math. Monthly, vol. 101, 1994, 39-47.
- [5] R. F. BROWN R. E. GREENE H. SCHIRMER, Fixed points of map extension. In: Topological Fixed Point Theory and Applications. Prooceedings (Tianjin, 1988). Lecture Notes in Mathematics, vol. 1411, Springer-Verlag, Berlin 1989.
- [6] R. B. BURCKEL, Iterating analytic self-maps of discs. Amer. Math. Monthly, vol. 88, 1981, 387-460.
- [7] T. W. GAMELIN R. E. GREENE, Introduction to Topology. Saunders College Publ., Philadelphia 1983.
- [8] N. F. G. MARTIN, On Finite Blaschke Products whose restriction to the unit circle are exact endomorphisms. Bull. London Math. Soc., vol. 15, 1983, 343-348.
- [9] Z. NITECKI, Differentiable Dynamics. The M.I.T. Press, Cambridge, Mass. 1971.
- [10] C. POMMERENKE, Boundary behaviour of Conformal Maps. Springer-Verlag, New York 1992.
- [11] W. RUDIN, Real and Complex Analysis. McGraw-Hill, New York 1966.
- [12] M. SHUB, Endomorphisms of compact differentiable manifolds. Amer. J. Math., vol. 91, 1969, 175-199.
- [13] N. STEINMETZ, Rational Iteration. De Gruyter, Berlin 1993.
- [14] P. WALTERS, Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc., vol. 236, 1978, 121-153.
- [15] P. WALTERS, An Introduction to Ergodic Theory. Springer-Verlag, New York 1982.

Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA