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Meccanica dei continui. — O consistency, stability and convergence of staggered sol-
ution procedures. Nota di Ewa Turska e BERNARDO A. SCHREFLER, presentata (*) dal
Corrisp. G. Maier.

Asstract. — The simultaneous and staggered procedures of solving a partitioned form of a coupled
system of ordinary differential equations are presented. Formulas for errors are compared. Counter-exam-
ples for convergence with a constant number of iterations at each time step are given.

Key worps: Coupled problems; Systems of linear simultaneous equations; Numerical solution
procedures.

Russsunto. — Sulla consistenza, stabilita e convergenza di procedure di soluzione con partizione matriciale.
Vengono discussi due metodi di soluzione di un sistema di equazioni differenziali ordinarie che descrivono
problemi di interazione nel campo dell'ingegneria. Si presentano formule per la valutazione dell’errore e
contro esempi concernenti la convergenza ottenuta con un numero costante di iterazioni per passo
temporale.

InTRODUCTION

Many engineering problems involve some time dependent interacting fields. Typical
examples relating to slow phenomena are thermomechanical coupling and isothermal
or non-isothermal consolidation. For their quantitative solution numerical procedures
are often applied which consist of finite element discretization in space and finite dif-
ference discretization in time. The effectiveness of them depends to a great extent on
algorithms used for the solution of the algebraic system of equations resulting from the
discretization process. Usually the solutions of these equations are obtained by
iteration.

One of the iterative methods is the staggered procedure. It allows to solve large
problems of coupled fields using available numerical codes made for single field prob-
lems, and is easily transferable from linear to non-linear equations. From a large num-
ber of papers on the topic it can be concluded that the staggered scheme is accurate
and efficient, but in some cases can cause difficulties.

The main aim of the paper is to find satisfactory criteria to test the staggered proce-
dure and to compare them with ones for the simultaneous procedure and a direct sol-
ution process. The properties shall be illustrated by examples in which the generalised
mid-point (GM-P) method is used as time discretization, thus the presented counter-
examples cover a large range of finite difference schemes.

We present a detailed study of linear problems, without assuming symmetry or po-
sitive definiteness of matrices appearing in the semi-discrete problem. This allows to
extend the conclusions to non-linear problems treating them as linear at each time
instant.

(*) Nella seduta del 12 febbraio 1994.
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CONDITIONS SUFFICIENT FOR GLOBAL CONVERGENCE

Let us consider the following differential equation. It may represent e.g. a thermo-
mechanical problem or a semi-saturated isothermal or non isothermal consolidation
problem (see[1]):

(1) BX+CX=F

where matrices B = [4;], C = [¢;], F = [ f;] have been obtained by the FE discretiza-
tion, the nodal variables vector X being a point in a vector space with Euclidean norm.
Symmetry or positive definiteness of matrices B and C is not assumed.

On use of a one-step finite difference operator endowed with consistency, for the
time derivative (e.g. the backward or forward Euler, arbitrary Runge-Kutta etc.) we ob-
tain the discrete equation:

(2) ax,,, - BX,-F=0
where @ = [a;], = [b;]. Equation (2) will be called the monolithic equation. Sub-
scripts # and # + 1 refer to the subsequent time instants.

In the following we shall focus our attention on three solution algorithms of eq. (1):
a direct one [in which X, , ; is directly evaluated from the monolithic equation (2)] and
two iteration schemes — simultaneous and staggered ones — resulting from a partitioning
of the monolithic equation (2).

Direct solution scheme

"The error introduced when solving eq. (2) directly is of form: &, , 1 = X(2,,) —
— X, .1, where X(¢, , ;) is the exact solution of eq. (1) and X, , ; is the numerical sol-
ution of eq. (2). It satisfies the following equation:

3) I+G)E,,,=HE, +r,,.

The stability condition ||[(I + G) 'HJ| < 1 and consistency property, 7, ,; = O(4¢?)
(see[3]) are sufficient for the direct process to be globally convergent (see [2]). |-
represents the spectral norm. The matrices G and H are defined in the following and
7, +1 is the local truncation error.

Partitioned solution schemes

The partitioning of matrix @ is chosen in such a way that the staggered scheme can
be used:

(4) a=ar+ak,
a 0 0 a
gL = 11 , gR - 12 )
©) [ 0 azz] [azl 0

Then eq. (2) can be written as:

(6) arx,.,=BX,+F-aX,,,.
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After some rearrangements we obtain the partitioned form of eq. (2):
7) X1 = _GlyrH-I +H, X, + 1, Yni1= —Go%, 1 T H, X, + I,
where:

Xn+l = [xn+1:yn+1]T)
J?z[jrufz]T, F=ay' T, F,=a3' ),
G, =aj'a,, G,=ap'a,,

H,=a;'[by,b,], H,=a5;"[by,b,].

(8)

Matrices G, G, depend on the time increment Az

Stmultaneous iterations

The simultaneous iteration scheme for eq. (7) is defined by:
(9) = -GiyEii+ H X, x+ ¥, Ve =— szf;%'i‘HzXn,K‘f‘sz

where £ is the index of iteration, K is the last performed iteration K = K(#),

(10) [x2+1,3’2+1]T=X2+1=‘goﬁan—i

and B; are appropriate weighting coefficients.

Usually, the last obtained solution is used as the predictor. The error E, . x =
=X(¢,,,) — XX, |, where XX, | is the numerical solution of eq. (9), can be written as
(see [3]):

(11) En+l,K=
=(=GXE, ;1 o+ I - (-G))I+G) 'HE, x + I - (-G))T+ G) 'r, .,

where:
w e g e

and 7, . is the local truncation error.

Sufficient conditions for the simultaneous process to be globally convergent are:
stability [|(I — (=G )*)(I + G)™'H]| < 1, iteration convergence [|G|| < 1 and consis-
tency 7, 4, = O(Ar?).

Staggered iterations

The staggered iteration pracess is defined as follows. First we predict the value of
%, , 1 appearing on the r.h.s. of the second of eq. (7) x); =%, ¢, and from this
equation we calculate the value of y, ;1 o, then substitute it into the first equation of
(7), which is solved for x, 4 ;. Now %, ; is used as a predictor in the second of
eq. (7) and the whole process is repeated until a required tolerance 7 is attained; we de-

note K as the number of performed iterations, K = K(#). The last step is to calculate
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Vu+1,x> then X, oy =[x, 1k, ¥ +1,x]". The predictor x,; ¢ has the form:

(13) xn+l,0=l_§oﬁixn‘[,l('
The following two alternative sets of equations represent the staggered scheme:
(14) Xp11,6= —GYur1,6-1 T H1 X, x + Fq,
(15) Ynith-1= —GoXy i1 -1 TH X, x + 5>,
or:
(16) X116 =G1Gx, 141t (-G H,+H\)X, x — G, F, + Fy,
(17) Yn+1,k= —Go%y sk T H X, k + 5>,

where eq. (16) is iterated and eq. (17) is used only once to evaluate y, , 1 x . The global
error e, 1k = X(#4,4+1) — X, 41k, where X, ¢ is the numerical solution of eq.
(14) and eq. (15) satisfies (see[3]):

(18) €, 1.k =G™ e, 1,0+ I -G*)I+G) 'He, x + (1 - GF)I+G) 'r, .

The sufficient conditions for global convergence are: iteration convergence ||G|| < 1,
stability [|Q, || = [|(I — G*)(I + G)"'H|| < 1, and consistency 7, , ; = O(4¢?). In the
limit case K — o for ||G|| < 1 the equations (11) and (18) have the same forms as the
expression for the error €, of the direct method equation (3).

In concise form the error for the staggered scheme equation (18) can be written
as:

(19) e i1 k=P,r1€,010T Qi€ kTR, 1700

Recursively for » we have from eq. (18) that:

n

(20) en+1,K:Pn+len+l,()+lzo Qﬂ+l"’Qﬂ+1—1Pﬂ—leﬂ*1,O+

n

+Qn+1"'Qle0,0 +120 Qn+1 "'Qn+l~/Rnflrnfl+Rn+lrn+l .

We can recognise that e, q is the initial round-off error made at the starting step.
Notice that the local truncation error 7, ,; is the same for all the above errors.

The conditions of convergence and stability for each of the solution schemes are in-
dependent and it is generally not possible to replace one by the other. In[3] it has been
shown that if G has real positive eigenvalues, and the iterations are convergent, since
|G|l < 1, then the condition of stability for the staggered scheme can be replaced by
the stability condition for the simultaneous iteration scheme with K =1, Ze.
I < 1. o

For the simultaneous scheme, the assumption of real and positive eigenvalues of G
permits us to check the stability condition for one iteration K = 1, instead of checking
it for the performed number of iterations, because then ||(I — (= G)X)(I + G)™'|| < 1
so also [|[(I — (—-G))I+G) 'H| < 1.

For the staggered scheme, even for G with real and positive eigenvalues and
|G| < 1, the stability condition for one iteration i.e. (1 — G)H|| < 1, does not give
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stability for arbitrary K. This is caused by the fact that ||(I — G )(I — G?)"!|| may be
larger than 1, so |[(I — G*)I + G)'H| = (I - G*)I -~ G*)"'(I - G) H| may
also be larger than 1.

Other convergence conditions

In the case of partitioned solutions some authors (see [4-6]) verify stability in a dif-
ferent way than the one presented above. First they assume the form of the predictor,
then they check the stability of an equation which is obtained from the partitioned
equation (6) by substituting into it the specific form of the predictor.

Let us illustrate this on an example, with the predictor taken as the last obtained
solution X?, , = XX. Examples of this type of predictor can be found in[1,4-7].
Equation (7) with the above predictor becomes:

(21) X,.1=—-GX,+HX,+F
and the stability condition is:
(22) -G +H|<1.

It is easily seen, that if G and H have real and positive eigenvalues and satisfy
eq. (22) and ||G|| < 1, then also the condition for stability is fulfilled for the staggered
scheme ze. ||(I — G*)(I + G)"'H|| < 1. For the simultaneous scheme in addition an
even number of iterations K is required, because then |(I — (—G))(I +
+ G)'H| < 1. Generally, for arbitrary G and H, the above facts are not true.

To achieve a given accuracy it has often been recommended to cut the time step A#
instead of performing more iterations K. This is permissible only if the procedure is
globally convergent for a constant number of performed iterations K. We recall that
the process is globally convergent when the global error ¢, x = X(z,) — X,, tends to
zZero iLe.

(23) lle,. — 0 with #4¢ = const, K = const
and for all solutions X, satisfying the starting conditions, }20’ 0= X(). In (2/3) lle, |l
is a norm of the global error vector. ‘

In paper [3] it has been shown that the global error is bounded but does not tend to
zero. This fact suggested that the partitioned procedure is convergent for a fixed num-
ber of iterations, but to a solution of another equation. In the following we find the
equation in the case of the last solution predictor. Following the same procedure such
equations can be found for other predictors of type egs. (10), (13).

For the time discretization we have chosen the generalised mid-point (GM-P)
method because it is a member of many classes of one-step algorithms, z.e. implicit sin-
gle step methods [2], SSP] methods (SSPJ-single step p-order polynomial, 7 = 1, the
order of the equation)[8], Runge-Kutta methods (see[9]) or a degenerate case of
collocation schemes[10]. It also has good stability properties, it is unconditionally
stable (A-stable) for 6 = 1/2 and is nonlinearly B-stable, contrary to the trapezoidal
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method which is not B-stable (see[11]). The GM-P method is constructed with the
use of:

(24) Xﬂ+0=(Xn+1_Xn)/At>

(25) X, .= (1-0)X,+0X,,,

where § is a parameter, usually 0 < 6 < 1. Substituting eq. (24), (25) into eq. (1) at
time instant #,,, we obtain:

(26) [B+64tC1X,,,=[B—(1-6)A:C]1X,+ AtF,,,
thus:
(27) @=B+04:C, B=B-(1-64AC, F=A4aF,,,.

Let us find the equation which is consistent with the equation representing the si-
multaneous scheme for one performed iteration K = 1 z.e. with eq. (6). For this pur-
pose we expand X(#,,;) and X(z,) in Taylor series about £, ,:

(28) X(t, 1) = X(t, 1) + (1= 0) 4 X(2, 4 o) + O(41?),
(29) X(t,) = X(t,+4) — 04:X(2,4) + O(4¢2)

and substitute eqgs. (28), (29) into:

(30) A“X(t,41) =BX(,) + Fpy— AX(y 1) + ry sy

The obtained equation with condition 7, , ; = O(4z?), yields that eq. (6) is consist-
ent with the following equation:

(31) BLX+CX=F
0 bzz ’

This means that if we perform only one iteration and diminish 4# then we calculate
the solution of eq. (31), not eq. (1).

Similarly, supposing that only two iterations of eq. (9) are performed and then the
time step Az is diminished, we obtain a convergent process (one with a decreasing resid-
ual), but to the following equation:

where Bl = [

(32) BLX + B(BE)"'CX =F.

Applying the same method we can construct an equation the solution of which is the
limit of the staggered scheme egs. (14), (15) with one performed iteration. This equa-
tion reads:

(33) (B—B*)X+CX=F

where B* =

BIZBZ_ZI BZI 0
0 0
As we see eq. (33) differs from eq. (1) by term B*.
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CONCLUSIONS

When matrix G has real and positive eigenvalues and the iterations are convergent,
then the stability condition for the simultaneous scheme with K = 1 is equivalent to the
staggered stability condition for arbitrary K or the simultaneous stability condition for
arbitrary K.

For the staggered scheme when G has real and positive eigenvalues the stability
condition for K = 1 does not give the stability condition for arbitrary K. For arbitrary B
and C (e.g. in the non-linear case) both of the conditions: convergence and stability,
must be verified for the K used in the calculations.

The stability condition obtained from the equation with the last solution predictor,
for G with real and positive eigenvalues, gives convergence and stability for the simulta-
neous and staggered schemes with predictor of general form egs. (10), (13).

For a fixed number of iterations the staggered and simultaneous schemes give a sol-
ution to another differential equation than the one originally considered.
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