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Rend. Mat. Acc. Lincei
5. 9, v. 5:255-264 (1994)

Meccanica. — On control problems of minimum time for Lagrangian systems similar to
a swing. II. Application of convexity criteria to certain minimum time problems. Nota di
A1po Bressan e Monica Mortra, presentata (*) dal Socio A. Bressan.

Asstract. — This Note is the Part II of a previous Note with the same title. One refers to holonomic
systems ¥ = @ U U with two degrees of freedom, where the part @ can schemetize a swing or a pair of skis
and U schemetizes whom uses @. The behaviour of U is characterized by a coordinate used as a control.
Frictions and air resistance are neglected. One considers on ¥ minimum time problems and one is interest-
ed in the existence of solutions. To this aim one determines a certain structural condition I" which implies a
well known convexity condition (briefly WCC) just ensuring the afore-mentioned existence. These proofs
are based on the results of Part I. The condition I' becomes equivalent to the WCC in both the cases of the
swing or of the ski having constant curvature trajectory. An other equivalent structural condition is estab-
lished in a simple case regarding the ski. The WCC fails to be verified, e.g., for the simple pendulum of vari-
able length. One observes that, also in the absence of the WCC, for certain initial and terminal data, the
solution still exists.

Key worps: Analytical mechanics; Lagrangian systems; Control theory.

Riassunto. — Su problemi di controllo di tempo minimo per sistemi Lagrangiani simili a un’altalena. II.
Applicazione di criteri di convessita a certi problemi di tempo minimo. Questa Nota & la Parte II di una prece-
dente Noza dallo stesso titolo. Ci si riferisce a sistemi olonomi ¥ = @ U U a due gradi di liberta, ove la par-
te @ puo schematizzare un’altalena o un paio di sci € U schematizza chi usa @. Il comportamento di U & ca-
ratterizzato da una coordinata usata come controllo. Si trascurano l'attrito e la resistenza dell’aria. Si consi-
derano su X problemi di tempo minimo e ci si interessa dell’esistenza di loro soluzioni. A tale scopo si de-
termina una certa condizione strutturale I' che implica una ben nota condizione di convessita (brevemente
WCC) appunto assicurante la suddetta esistenza. In tali dimostrazioni ci si basa sui risultati della Parte I.
La condizione I" diviene equivalente alla WCC nel caso dell’altalena o dello sci avente traiettoria con curva-
tura costante. Un’altra condizione strutturale equivalente viene stabilita in un caso semplice riguardante lo
sci. La WCC risulta non verificata, per es., per il pendolo semplice con lunghezza variabile. Si osserva che
anche in assenza della WCC, per certi dati iniziali e finali, la soluzione esiste lo stesso.

4. ON F(s, #)’s CONVEXITY IN THE CASE ¢ Z0=c¢"Zy’

This Part II is the continuation of Part I of the Note of the same title. Please refer
to Part I for definitions, annotations and references (see Rend. Mat. Acc. Lincei, s. 9,
vol. 5, 1994, 247-254).

Case c # 0 =¢'#9'. By (2.9), and (B) below (3.4), the C-function n = n(x) de-
fined by (3.4), can be inverted into a C*function # = #(n) defined on the segment
G(s, #, U) =Y - see (€) below (3.11). By introducing it in (3.4), we obtain a C2-func-
tion z = z(x) defined on Y. Since

(4.1) ﬁuzsc—su5> Buu=2’(3uc_’(\\suu£» Y=O) 77=2mgy’ﬁ> \/5’2=%,

(*) Nella seduta del 12 febbraio 1994.
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by (3.2), we deduce (1)

4.2)  4VPmy' Pz = (SuBy = SuBu) B = (8.3 = 232) (S — 3,872
Furthermore, by (2.9),, ¢(SJc — 3, £) > 0 for both ¢ > 0 and ¢ < 0. On the other hand
F(s, ®) is z(+)’s epigraph. We conclude that

(9C) when ¢ =0 =c"#y', the closed set F= F(s, P) is convex iff z,,(n) Z 0Vne
e G(s, ?, U), and hence iff we have the first of the relations

(4.3) F.322%, ie (I&+I0)IY), =282 Vuel.

Let I¢ and I [I# (#) and I(#)] be @’s [U’s] moments of inertia w.r.t. the axes paral-
lel to z passing through C and through @’s [U’s] center of mass P(s) [P(s) + on] re-
spectively. Of course, denoting @’s [U’s] mass by »z; [7,] we have (for ¢ # 0)
(44) mu=mys, I&=1"+mir?*, 1) =1u)+m(r—0o)?, I8),=0
furthermore J = ¢2(I& + I#) by (2.8),. Then (4.3), is equivalent to (4.3),. To check
the convexity condition (4.3) it is useful to write explicitly that
45) S =c2I%+ my + 2 1(u) + my (1 — ca)?, I, =c?I,(u) — 2m(1 — ca)c,

Stm =c?L,(u) + 2¢2m? [my, (do/du=m]m,).

Exameie 1 (Simple pendulum of variable length). [ =1 and I(-) = 0. One has
m=my, c=u, [*=0, I =mE?. Thus (4.3); becomes 2mc?&* = 8mc?e? Yu e U.
Hence F(s, P) fails to be convex for all ¢ #0 #y'(s).

Exameie 2. (a) (Natural or unnatural simplified revolutory swing). I(+) = 0. In it, by
(4.5), condition (4.3); is equivalent to (?)

(4.6) c*IV+my = 3m,(1 —co)? Voeloy,o,], where o, =mu;/m, (i =1,2);
hence (4.3); holds iff
(47) CZIa + my = 37772 62

where either c < 0and C =1+ |c|o,,0rc > 0and Cis 1 — ca,0or 1 — cay according to
whether or not a, + o, = 2r, 1.e. m(uy +uy) = 2m,r ().

Exampere 2. (b) (Simplified skis-skier system when | is a circle arc). I(+) = 0 again.
Hence the conclusions involving (3.10)-(3.11) are still holding. Of course / is concave
up [down] for ¢ >0 [c <0].

In the examples above by «simplified systems» one refers to U being reduced

( ) Indeed by (41) and (3. 2 \/é_f’z,, (BB — S8 Bu) 2y’ )28.7% = [, (e = 3,8) —
3, (23,6 = S, 01 2mgy' ) 28,72 = (3, — 232) c(2mgy’ ) 2B, . Hence (4.2) follows.
® Indeed by (4.5);, (4.3) becomes [c2I% + my + my (1 = ca)?12mc? [ my = 8m? (1 — ca)*c?
VueU.
(®) Indeed the function o+ (1 — ¢5)? has a minimum for ¢ = 7. Furthermore, for ¢ > 0, (1 — ¢o,)? =
2(1—co ) iff co,—121—cay.
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to a mass point. Furthermore the revolutory swing is called unnatural by footnote
1 of previous Note.

5. ON F(s, ®)’s CONVEXITY FOR ¢ # 0 # ¢’
In this section we consider the case ¢ # 0 # ¢’ . First we note that, by (3.3),,4
& &
ol Sc + "Su E %36'
(5.1) 2o Tu=m R o Y= ST+ 2(8c + 3,93, .

Hence by (4.1);, (still holding) and (3.3-4)

“= Z:ZC_(SC + 3,8 @+ 2mgy’ (Sc — 3, 8),
(5.2) ~23 ¢
N = (3T, + 2(3c + 3,6 3,19 + 2mgy’ (23,0 — 3,,9).
N

Now having fixed s € 4 and & > 0, the alternative (b)* above (3.7) can always be used,
as is observed below (3.10). In the following simple example, conditions (3.7)* are not
always fulfilled and we have to deduce F(s, #)’s convexity by (5)*.

We consider the special case where U can be regarded as a point: I =0
(fe. 3 =mE* — see (2.8);); however we assume c’cy’#0. Then either (3.5)*
or (3.5)” holds and (5.2) together with (3.4), yields

(5.3)

N, = —2c P+ 6mgey’ £2, 2, = — 2mcEP~V?
N = — 4cc' PE2 = 12m2gc?y' &, 2, = 2mc? ™2,

By (5.3), (3.10); can be written as follows
(5.4)  fw)=n,@)2mc? P~V (=2c" PE2 + 6mPgey' E2) — 2mcEP~ 2+

(4" PET + 12mPge?y )] = — 12mc? PV 22, (u)(c' @ + mPgey' £*).
We set — see (3.5)i ,

g=1—-cu', & =1—-cu",

{:P' Smigle/ @IES, 8w’ @)@
Now by a straightforward calculation one obtains that if either (/) both ¢’cy’>0
and Pe (0,32 1U[39", + ), or (i) c'cy' <0, then

(5.6) N, (u)ey'>0 Vue(u,u,);

otherwise, Ze. in case (i7)* ¢'cy’'>0 with 'S0 but Pe (39, 39"), we have
that

(5.7) 0,u)Z20 Yuzu, n,u)>0 VYu3u,

(5.5)

where # € (u;,u,) is given by

(5.8) u=(1- \4/0'3’/3m2gcy')c‘1.

Let us first assume (/) [()]. Then in particular 0, (z) # 0 Vu € (u;,u,) and by
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(5.4) and (5.6), conditions (3.7); are equivalent to
(59 cP+mgey S0 YueU if oy 20.
Hence Theor. 3.1 yields that the set F(s, ?) is convex [iff = &"].

In the case (7)™, none of conditions (3.7); is verified and in order to test the con-
vexity of F(s, &) we have to check the validity of the alternative ()™ below (3.7)*. The
value % defined by (5.8) satisfies (3.8);" and by (5.7) and (5.9) it follows that f(z) = 0
Vu e [u', ul, ie. condition (3.10) of Theor. 3.1 is verified. Furthermore, by (5.7) con-
dition (3.9) is equivalent to

=0 ifc'>0
(5.10) A= - ’

Since (5.10), is equivalent to
(5.11)  A=2[uy —w {c' PE)E) T —mPgey [(EV +E "+ (&)1},
condition (5.10) - ze. (3.9) — reads
(5.12) @2 P=mlgey’ () EVE+EPE P +EE)P] (2'<P<O"),
so that, by (5)* in Theor. 3.1, the set F(s, ®) is convex iff = .

We can summarize the above results as follows.

Treorem 5.1. Let I = 0. Then in case c'cy’ < 0 the set F(s, &) is convex iff $ 2 9",
while in case c'cy' >0 it is comvex iff P = P.

6. ON THE EXISTENCE OF THE SOLUTION TO THE PROBLEM
OF MINIMUM TIME FOR THE SWING. PRELIMINARY CONSIDERATIONS ON 21 .
CASES OF EXISTENCE WITHOUT CONVEXITY

In order to treat the swings ¥ * , using 6 = s/ || instead of 5, we refer to the version
(&) above (2.21) of problem (a). First let us note that for ¥ * there are choices of
[6y, 6,1 for which the optimization problem (2) has a solution even in the absence of
the convexity condition.

THEOREM 6.1. Assume that (i)Y ¢ > 0=c" and [0,,0,]1c[0, 7] or (/)" c< 0=
and [0y, 0,1cl—mx, 0], and (i) U* # 0 — see (2.23), -, i.e. some admissible process
rendering the functional (2.21) meaningful exists. Then ¥ (+) = $* (-, Py, 0,) defined be-
low (2.23) solves problem (P) above (2.21).

Remark 6.1. The above solution @ () — see the assertion below (2.18) — solves the
problem expressed by (2.22)-(2.23) and

(6.1) @(Bl,u)—)sup.

Proor. Assume 6 € [6,, 6,] and either hypothesis (/) * or (7) ~. Then by [6, sect. 10,
pp. 173-175] we have that # ¥ (6) =u, or # " (6) = u; respectively. Then, in case
(1)* for a(*) e U*, (2.9)F yields I[#(6)] = J[z* (6)]. Furthermore (by definition)
(0, u) < & (9). Hence, by (221), T[&(,4), a()]1 = T (-),u* (). O
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Through Theor. 6.1 we have proved the following assertion on the skis-skier system
— see Example 2(b) — with negligible friction and air resistance.

(@) In order to describe an ascending circle arc that (belongs to the skis” trajectory |
and) is concave up [concave down) in the minimum time, the skier must stay in bis most up-
right [bent down] position.

Now, in connection with X'; we set — see also the definitions below (2.23)
(6.2)  Tipyg, = Te=inf{TLP(, & a),u(")]: a(*) € Uf,y,} for UE, = 0.

Since for every £e R, &* (-, £) solves the ODE (2.22) with # = # * (6), by the cor-
responding uniqueness theorem
(63)  P*(0,&) <P (6,&,) V9elby,0,], UL, CUEL, when & <&,

We shall use only a part of the following theorem, brief to prove, which states a
property (having the opposite) of the Lipschitz type and possibly useful for other
purposes.

THEOREM 6.2. Assume 0 < & < &, and ﬂ? # 0, problem (P) above (2.21) being con-
sidered for P, =&, (and for P, = ,2) Then

(6.4) T: — T, = minJ(U) J[?* (6,2,)"Y2 — 97 (6, £,)"Y21do >0,
fo

0% being 0, for S;+ =0 and inf S;+ otherwise, where
(6.5) i+ ={0e o, 6,): 97 (0,&,) =" (6,2,)}.

Proor. Fix &€ > 0 arbitrarily. Then the first of the relations
61
66) e+ T, —T. = f%wl(em@(e, £, a) V2= 90,8, 4,) V2 1do =

fo

g
> mm?s(U>J[5>+ (6,£,)7 12— (9, 5,)"/21db
o
holds for some #; € ﬂl (and hence e ‘l]") Furthermore, 6*’s definition yields
(6.7) PO, 81,4,) SPH(0,8) <P (6,&,) VYoelby,6%].
Furthermore by (6.3), the first integrand in (6.6) is positive. Then (6.6), too holds.
By &’s arbitrariness, (6.6) implies (6.4). O

Now assertion (@) above (6.2) can be strengthened as follows.

(B) If the skis-skier system X describes the whole trajectory [ in the minimum time
(under given initial conditions), then along any ascending czrcle arc belonging to | the skier
must bebave according to assertzon (a).

Indeed, let [s,, 551 ¢ [s, 5;] be an ascending circle arc and let # € U* be an optimal
control for the minimum time problem. If &, =P (5, #) < &, =&P* (5) for somes € (s,, 53),



260 A. BRESSAN - M. MOTTA

then by Theor. 6.1 it follows that

J?S[s,u(S)] Pls,u) 2 ds = J?S[s,zﬁ (1P (s, Psz, u),5,) "M ds,

52 52
while Theor. 6.2, which in particular states that the function &+ T [#(-)] is strictly de-
creasing, implies that

f?s‘[s\, u(s)1P(s, u)"/?ds > J%[s, ut ()P (s, sy, u),5,) V2 ds .

Hence if we consider the control #Z € U* that equals # on [sy, 5,1 U [s3, 5] and #* on
(s5,53), one has

TIP(, u), ()] < TLP(, u), u(-)],

in contradiction to the optimality of #. Thus assertion ($B) is proved. O

7. EXISTENCE THEOREM FOR THE SKIS-SKIER PROBLEM OF MINIMUM TIME

As a preliminary, we prove the following lemma.

Lemma 7.1. Given & 20 and s', se€d, let {F,()},en be a sequence with
P (=P, &,s" ,u,) and u,€ U Vre N. This implies (a) below.

(@) If ()" A" # 0 with A* ={s25} N A and
(7.1)* lm £,6)=0, ()20
hold, then there exist some s€ A* and ¥e N such that $,(5) <0 for all r =7.

(b) If the sequence {P,(*)}, < n satisfies (1.1){ and P,(s) = 0 Vs € A and Vr e N,
one has

(7.2) 9'(5)=0 i se(so,s); yE)<O0 #fs=s5; )20 Ffs=5.
(c) Assume that (i) u, e U5, Nre N, and for some t >0

(7.3) JS[&, u,(s)19,(s)"V2ds<t VreN.

Then the sequence {P,(*)},c N satisfies
(7.4) inlf] P, (5) >0 when 5€(sq,51)VE=5gA9'(50)=0)V =5, \y'(s;)<0).

Proor. Assume (7)™ . Then for some n >0

(7.5) M*=min{2mg3(s, u)&|y'(s)|:se;/,ueU}>0  where §=[ " =[s*n,s)cd.
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For = &,(s), u =u, and s eI,;" , (2.12), yields the first of the relations

(7.6)  &,()=2G)exp f(%S/S)[G, u,(s)]do +

N

—2mgj§y'(o*)(:$[cr, u, ()] exp I(SS/%)[G',u,(G’)]dG' do <

g

max {s, s}
< P, (5) e @O MIs =51 _ pr+ I e Ms =3l g =

min {5, s}

— yr(g)esign(é?,(})).mleﬂ _ Agr: (1 _ e—mzls—§| ) < 0,

where sign a=a/ || if « € R\{0} and signa=0 if « = 0. Then, as it is easy to check,
(7.6),; hold under the definition (4)

(7.7) M= max { |, /I|(o,v):cedveU} +1.

Lastly, by (7.1), for any fixed s € I,” some sufficiently large r also satisfies condi-
tion (7.6)4. Therefore part (a) is proved.

Ifs € (s9, 5, ) we have both of the conditions (7)™ (4* # @ and) I,© # . Hence part
(a) yields (7.2), . Otherwise, if 5 = 5, [s = 5, ] only condition (zz7)* [(¢z7)~ ] is satisfied so
that part («) yields (7.2), [(7.2);]. Thus part () is also proved.

Assume condition (7) above (7.3) and suppose the falsity of (7.4),. Then, for some
s € 4 such that either 5 € (sy, 5;), or both s = 55 and y’ (s5) = 0, or else both s = s5; and
9" (s5;) <0, and for some subsequence of {& (*)},cn, which we identify with
{&, ()}, < n for the sake of simplicity, (7.1); is satisfied. Furthermore, (7.3) implies that
&P, (s) =2 0 Vs € 4 and Vr € N. Hence condition (7.2) holds, and together with (2.12), it
yields

(7.8) | = 2mg8' (5)3(s,u)| = |G(s, 0,0)| S HN|s —s| V(s,v)edxU,

where 9= max{|G,(s, 0,2)]|:(s,») edX U} + 1.

(%) Note that Vo, BeR and re N

£
exp{—M|a—pB|} < explj?&l/fs[s, u,(x)]dx] <exp {IMm|a—pg|}.

Hence, for s eI7, by (/)* and (7.5) one has

s s max {5, s}

Ingéy' () Lo, u,(a)lexp [ J(SX/S‘)[O", u,(c')]dc'] do = J 2mgtly' (0)|Slo, #,(2)]-

> ’ 5 min{é, ) max {5, s} .
-eXP[J(S:/S)[@',u,(c')]da']dc2M* J exp { —IM|c —s|}do.

L min {5, s}
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Furthermore by @* (-, &,s')’s definition above (2.18) with s’ replaced by s, for all
u € Uf ; the first of the relations

(7.9) &(s,&,5,u) =& exp [ J(?S,/C:S)[a, #(o)] do-] +

s

+ jG[a, 0, u(c)] exp [ j(&/%)[f, u(f)]df]da <

o —5|e™ =5l 4o

=& e =5l 4+ gt f(]s —5])

S el 4

holds Vs € 4 and V& = 0. The second follows from (7.6) and (7.8),. We set # = |s — 5|
and

(7.10) fO)=m2[e™ — 1 - oz, gt, &) =8 e™ + If(2).
Then (7.9); is easily checked.
By (7.10) /(0) =0 =#"(0) and ”(0) = 1 so that, for any " > 0, If(t) V24 =

= + o. Hence for some #'€(0,¢"), (7w) (290)~ 1/ZJ'f(t ’/zdt>t/3!l where

I =min {J(s,u): (s,u) e AX U} (>0). In addmon, by setting £=9Uf(¢")e ™
(>0), g(¢, &) < 23f(¢) Veelt',t"]. Hence by (i)
(7.11) jg(t, B2 > (231)'1/2Jf(t)_1/2dt >3/

By (7.1)§ for some 7re N (v) 0 < &,(5) <& Vr =7. Hence by (7.9)-(7-10)

(7.12) 0< 8,(5) = 9, 2,6),5,u,) <g(|s—s|,5) Vsed.
Then, by setting
s+t 54
(7.13) s'i{f y s"i{f.’-i, with 5o <s'<s" <5,
— i

the first of the relations
1

(7.14) j%[a, 4,(2)] 8, ()" 2 do > jS[a, 4,(0)] 8. ()" V2 do =

S0
s” t"
=9 J«f}’,(a)_l/zdd = Jg(t, £)" V24 >
; ;

holds. Furthermore the definition of 9~ above (7.11) yields (7.14),, while (7.14);.4
follow from (7.11)-(7.12). Since (7.14) contrasts to assumption (7.3), we conclude that
(7.4) bholds. Thus part (¢) holds and Lemma 7.1 is proved. O
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TuroreMm 7.1. Let {u,},cn C U be a minimizing control sequence for problem (P)
above (2.15) (on X,). Then (a) for any ee (0, (s, —s0)/2), setting P,(*)=P(*,u,)
(reN), there are some 6 =28(¢) >0 and r =7(c) e N such that in case y'(s;) >0
[y'(s1) < 0]

P(s)=z8 Yrzr, Vsed, =[s§,si] where

(7.15) . [% 9 (s) =0, L[5 i y'(s) <0,
S0 = 1=
0 So+€ l‘.fy'(sO) <O, ! ‘Yl — & l:fy,(-yl) > 0;

(b) under the above assumptions there is some P(-) € AC(A) such that #(-)"/? e
e L1(A), and moreover
(7.16) [2¢) = @, ()llo=sup{|P(s) — &, (s)|:5€4} =0 as r— o,
up to passing to subsequences; and the following holds.

(c) Assume further the comvexity of the sets F(s, P) — see (3.1). Then, for some
u=u()e U, P()=P(,u) and the process (P(-),u(-)) solves problem (P) above
(2.15).

Proor. Suppose that part () fails. Then, for some ¢ > 0, some sequence s, € 4.,
some § € 4., and some subsequence of {#, },. 5 which is not restrictive to identify with
{#,},cn, the first two of the equalities
(7.17) ,lirr%o &.(s,) =0, r]ingo 5, =5, ,]jﬂo P.(5) =0,
hold. They imply the third because

5;  lim @[5, 2.(,),51=0.

r— o

(718) 9405, .().512 9.G) for s,{

WV /A

Since {#,},.n is a minimizing sequence for problem (&), for some ¢z > 0 condition
(7.3) is satisfied. Then by part (c) of Lemma 7.1 above (7.3), (7.17); contradicts (7.4),
and the thesis in part (2) holds.

To prove part (5) we first note that if y' (sy) < 0, for some ¢, € (0, (s; —59)/2) and
Co > 0 one has(°)
(7.19)  2.(5) =29 () ZColPy+ (s —s50)] Vse(sy,s0+¢e0l, (P=0,reN).

-1/2 to [S0,50+ Eo] iS 1n £1.

Hence the restriction of s+— @~ (s)
(®) Indeed, let €, > 0 be such that y' (s) < 0 Vs € [s,, 5 + €o]. Then together with (2.12), it yields the

first two of the relations — see also (7.5) and ftn. (%) with § and » replaced by s, and e, respect-

ively

77 (6) = By exp (/e u (@)]de + [2mgSle,u™ (@1Ely’ ()] -

S0 S0

E

-exp [ J(SJ/?S)[O", u (o )]dcr']da = Ppe o170l 4 M J.e“m” 0 da 2= Co( Py + (s —50)) ;
50

the third holds under the definition C, = min {¢ ~®¢17%) M * ¢ ~%61750)} Condition (7.21), can be proved

in the same way.
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Furthermore, by setting
(7.20) /= inlfl P,(sy) (=0),

if 9’ (s;) > 0, then there are some ¢; € (0,(s; —s,)/2) and C; > 0 such that

(721) @)= @ (s, L,s1) = ll+ (5, —5)] Vsels;—ey,5], (reN).
Hence also the restriction of s+ P* (s,/,5,)" % to [s; — ey, ;] is in £.

By the regularity properties of the Cauchy problem (2.12); U (2.14),, the sequence
{#,(*)},<n is uniformly bounded and uniformly Lipschitz continuous. Hence, by As-
coli-Arzela’s theorem, passing to subsequences, it is not restrictive to assume that
(7.16) holds for some #(+) € AC(4). Furthermore, by (7.15), (7.19), and (7.21) one can
deduce that P(-)~Y/2 exists and is in £'(4). Thus thesis (b) holds.

To prove part (c) we fix any ¢ € (0, min{eg, 1 }). Then by (7.15) possibly with
&,(+) replaced by &(+), the RH.S. of (2.12), is regular enough on 4., to enable us to
apply Filippov’s theorem — see e.g [16]. Since F(s, #) — see (3.1) — is convex for
(s, ?) €4 X (0, + ®), for some #, e U* the trajectory P(-) solves on 4, the ODE
(2.12), for # = u,. By setting e, = 2 ¢, calling #, the analogue of , for ¢, , and setting
u(s) =ug(s) on A, and u(s) = u,(s) on [so + e5,51 — e, N\so + 51,51 — ¢, 11 (b e
e N* ), we easily see that the process (P(+, #), #(+)) solves the original problem (&) above
(2.15). Thus thesis (¢) too is proved. a

Remark 7.1. Part (¢) of Lemma 7.1 and (7.19), (7.21) in Theor. 7.1 generalize the
result below, still obtained in[6] in case X schemetizes a revolutory swing.

Given £2 0 and s'e A, let ue U Then u e U, — see (2.17) — iff
P(s, &5 u) >0 Ysel(s,s),

7.22
( ) { P(so, &5 u) >0V y' (s0) <0, Py, & s ,u4)>0Vy'(s;)>0.
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