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Equazioni a derivate parziali. — Remarks on positive solutions to a semilinear Neu­
mann problem. Nota di ANNA MARIA CANDELA e MONICA LAZZO, presentata!") dal 
Corrisp. A. Ambrosetti. 

ABSTRACT. — In this paper we study the influence of the domain topology on the multiplicity of sol­
utions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is 
stable under small perturbations of the domain. 

KEY WORDS: Neumann problem; Variational methods; Multiple solutions. 

RIASSUNTO. — Osservazioni sull'esistenza di soluzioni positive di un problema di Neumann semilineare. In 
questo lavoro studiamo l'influenza della topologia del dominio sul numero delle soluzioni di un problema di 
Neumann semilineare. In particolare, mostriamo che il numero delle soluzioni positive è stabile per piccole 
perturbazioni del dominio. 

1 . I N T R O D U C T I O N A N D S T A T E M E N T O F T H E R E S U L T 

In last years, there has been an increasing interest in studying non constant sol­
utions of the Neumann problem 

(Pi) 

-dAu + u = \u\p 2u in<D, 

u > 0 in CD, 

% = 0 on d(D, 
ov 

where (D is a bounded smooth domain in RN (N ^ 3), d is a positive constant, v is the 
unit outer normal to dCO and 2 < p < 2N/ (N — 2). This problem is a simpler version of 
the system proposed by Gierer and Meinhardt as a model of biological pattern forma­
tion, where d plays as a diffusion coefficient (cf. [7]). 

An existence result for (Pj) is proved in [10,12], where it is shown that it has at 
least a non constant solution for d sufficiently small, and it has no such solution for d 
large. Lately, motivated by similar results concerning a Dirichlet problem (for instance, 
see [1-3] and references therein), several authors have been studying the relations be­
tween the multiplicity of solutions to (P^ ) and the topology of the boundary of the do­
main Q (cf. [9,11,13]). Roughly speaking, in all these papers it is shown that the num­
ber of solutions to (Pj) is affected by the topological «richness» of d(D. 

In this paper, inspired by [3], we aim to go further in this direction, investigating the 
stability of the number of solutions under perturbations of the domain (D. More pre­
cisely, as an application of Theorem 1.1 below, we prove that there can be many sol­
utions even in a topological^ trivial domain (D, provided 0) is obtained by adding a 
«small» set to a «rich» domain. 

(*) Nella seduta del 12 marzo 1994. 
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To clarify what we mean by «small» set, we introduce a function fx (cf. [3]). 

DEFINITION 1.1. Let L, i) cRN be two bounded domains and 

VLn = ueH1(OUL):j(u+)pdx= l j 

(as usual, u+ = max {a, 0}). We define 

tfl.fl) = { ( . # „ S <|V«I2 + «2>*)_ I *VL.°**. 

[ 0 otherwise . 

REMARK. The function p defined above is slightly different from the one introduced 
in [3]. In fact, as we deal with Neumann boundary conditions, we need to add the term 
u2 into the integral in order that [x is well defined. 

The following lemma states that small values of [x(L, i)) yield «small» L. From now 
on, we set BR = {x E RN : \X\RN < R} for any R > 0. 

LEMMA 1.2. Let i) c RN be a bounded domain and let R > 0 be such that i) cBR. Let 
£ = {L cBR : \L | > 0}. Then: for any L e £ there results (j.(L, Q) > 0 and 

lim | L | = 0 , 
ti(L,Q)-+0 

^eré ' | • | is the Lebesgue measure in RN. 

PROOF. For any L e £, let « = |L | _1/ /p; plainly, ^ e V L ) û , hence 

/ 
iW1 + "2^~^~WJTi*i'(L-0}--

therefore LcBR implies |L | 2 / p ^ |J3^ |//(L,iQ), which proves our claim. D 

We recall some notation: for any A, rcRN, AcT, catrA is the Ljusternik-
Schnirelman category of A in I\ that is, the least number of closed and contractible sets 
in r which cover A; cat A is the Ljusternik-Schnirelman category of A in itself. 

Now we can state the main result of this paper. 

THEOREM 1.3. Let Q c RN (N ^ 3) be a bounded smooth domain and R > 0 be such 
that Q c BR. For d > 0 sufficiently small there exists //* > 0 such that, if Lis a subset ofBR, 
Q U L is smooth and /x(L, Q) < //*, then problem (Pd ) has at least cat di) + 1 #cw constant 
solutions in CD = i) U L. 

REMARK. By definition, m(0,i)) = 0; then Theorem 1.3 implies the following result, 
which includes [11,13]. 

COROLLARY 1.4. Le/ i) C J?N (N ^ 3) be a bounded smooth domain. For d > 0 j«^i-
ciently small, problem (Pj) has at least catSÛ 4- 1 <̂9̂  constant solutions in i). 
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EXAMPLE. Assume Q is the union of two disjoint balls 13 ! and B2 in RN; by Theorem 
1.3, if d is small enough and L is a «thin» handle joining Bx and B2, then problem {Pd ) 
has at least cat dû + 1 = 5 non trivial solutions. We remark that, as Q U L is con­
traetele, multiplicity results in [11,13] would provide cat 3(û U L) = 2 as a lower 
bound to the number of non constant solutions. 

2. THE VARIATIONAL SETTING 

Let H 1 {(D) be the standard Sobolev space endowed with the norm 

We define the functional 

Ed,a>W = \{d\Vu\2 + u2)dx, u^Hl{(D) 

and the set 

V{Q) = L e H1 {(D): [(« + )pdx = l ] . 

The following lemma can be easily proved. 

LEMMA 2.1. /) V{(D) is a C2 manifold in H 1 {(D), i.e.: for any u e H 1 {(D) such that 

g{u) = \{u + )pdx - 1 = 0, there results g' («) ^ 0; 

ii) Edt(Q is a C2 functional on V{(D); 

Hi) EdQ satisfies {PS) condition on V{(D), that is: any sequence {un} cV{(D\ such 
that {EdjQ{un)} is bounded and Edy®{un) goes to 0 in H _ 1 {(D) as n —> o° , is relatively 
compact; 

iv) if u e H1 {(D) is a critical point ofEd>® constrained on V{(D\ then the function 
v = ku is a solution of {Pd)} where k = {EdyQ{u))1^p~2\ 

By Lemma 2.1, looking for solutions of {Pd) corresponds to looking for critical 
points of EdQ on the manifold V{(D). To this aim, we will use an abstract citical point 
theorem which is obtained by simple changes in Theorem 3.1 of [3]. 

THEOREM 2.2. Let E be a C2 functional on a C2 manifold V such that E is bounded 
from below and satisfies {PS) condition on V. Let AcRN be bounded. Assume that there 
exist a closed set A + including A, a real m and two continuous maps 

$:A->{ueV:E{u) ^ m} , p: {u e V: E{u) ^ m) -» A + 

such that A + is homotopically equivalent to A and /3 o $ is homotopically equivalent to the 

embedding j : A-+A+ .Then: E has at least cat A critical points constrained on V. 

PROOF. We denote Em = {u e V: E{u) ^m}. First of all we prove that cat£w ^ 
^ cat A. Let catEm = n, thus n is the least integer such that Em cAlU ... UAny 
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where each A{ is closed and contractible in Em. For any / = 1, . . . , « , if we set 
Kt• = § ~l {Ai ) c A, then K{ is closed and there results 

n 

(2.1) cat1 + A ^ E catA + X,- . 
/ = l 

We prove that for any / = 1, ..., n the set Kt is contractible in A + . Since each At is con­
tractible in Em, there exist H,-:[0, 1] X 4 - - » F * and w,- e £ w such that 

Ht-(0,u) = u for any u eA;, 

HjilyU) = Wj for any u eAt-. 

By the hypothesis it follows that for any te [0, 1] the map 

Gt(tr)=PoHt(tr)o$:K1-*A + 

is an homotopy between /3 o $ and one point in A + ; moreover the imbedding map of K; 
in A + is homotopically equivalent to Po$\K. in A + , hence cat^ + X, ^ 1 and, by (2.1), 
cat A = cati + A ^ n. 

As E is bounded from below and satisfies (PS) condition, by standard Ljusternik-
Schnirelman arguments we deduce the existence of at least cat A distinct critical points 
of E in the sublevel Em. • 

3. THE MAPS $ AND fi 

In this section we define two maps candidate to fulfil the requirements in 
Theorem 2.2. 

The map [3®. 

For u e V(CD), we define the mass center of u: 

Pa>W = Uu + )pxdx; 

plainly, ftQ is a continuous map from V(Q) to RN. 
To introduce the second map $, we need some facts about solutions of problem 

(Pj) in RN; for the proofs, see [4-6, 8]. 

PROPOSITION 3.1. The equation: —Au + u = \u\p~2u in RN has (up to translations) a 
unique solution co satisfying 

i) coeC2(RN)nH1(RN)y co>0 in RN; 

//) co is radially symmetric and decreasing; 

Hi) co and its first derivatives decay esponentially at infinity, i.e. there exist C, A > 0 
such that \Dkco(z)\ ^ Ce~xizl for z e RN with \k\ ^ 1. 
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The map $dia>-

Let r > 0 be such that the set dû + = {x G RN : dist (x, dû) ^ r} is homotopically 
equivalent to 3Û. 

Let fj be a smooth nonincreasing function defined on [0, +00) such that rj(t) = 1 if 
0 ^ * ^ 1/2, 77(f) = 0 if t ^ 1 and rj' is bounded. 

For any y G i?N and for x G (D, we set 

, ( w x / l * - y | g M / * 
^,o()0U) = *?l : w 

and 

Qd,a>(y)W = 

\fd 

<l>d,a>(y)W 

Ud,D(y)\\LP((D) ' 

By construction, $dy® Is a continuous map from RN to H1((D). 
From now on, we assume OD = Û U L, where Q is a bounded smooth domain in R 

and L is a bounded set such that Û U L is smooth. In order to prove some properties of 
PQUL

 a n d $d,QUL> w e recall some results concerning the maps PQ and ^ Q . We 
denote 

(3.1) m(d,Q)= inf [ W|V«|2 + u2)dx, a = N ( - ^ - | i . 
« e V(û) J \ 2 P 

0 

LEMMA 3.2. TZ?ere £x£tf ^ > 0, dx > 0 such that, for any de. (0, dx ) and u G V(Q), 
if EdtQ(u) ^m{dyQ) + £ l J a , flk?» / 3 D ( ^ ) G 3 û + . 

PROOF. See [13, Proposition 2.3]. • ' 

LEMMA 3.3. Uniformly for y e. dû, there results 

lim d-*(EdtQ{$dtQ(y)) -m(d,Q)) = 0 . 
d^O 

PROOF. It follows by a straight combination of Propositions 2.1 and 2.2 
in [13]. • 

In the next propositions we will prove that, if fx(L,Q) is small enough, then the maps 
PQUL a n d $d,QuL fulfil the assumptions of Theorem 2.2. 

PROPOSITION 3.4. There exist s* > 0, dx > 0 such that for any de (0, dx ) there exists 
[x1 > 0 such that, if L cBr, Q U L w smooth and (x(L, Q) < fi.1, £&<?« 

(3.2) « e V ( Û U L ) , E ^ r } U L U ) ^ ^ W , Û ) + r ^ a ^ / 3 r } U L ( ^ ) G 3 û + . 

PROOF. Let £ l > 0, dx > 0 be as in Lemma 3.2. Let s* < ^ , fix 5 G (0, i i ) and 
define m*Q) =m(diQ) + £*5a . 
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By contradiction, suppose that for any n e N there exist Ln c BR and u„ e V(Q U L„ ) 
such that Q U L„ is smooth, 

(3.3) 0<fx(LnyQ)<l/ny 

(3.4) Ë , û u i „ k ) ^ ^ W ) ? 

(3.5) ^ U L > J < é S D + . 

Let un = u„ \Q ; by (3.4), («« ) is bounded in H1 (Û), thus there exists 2 eH1 (Q) such 
that (up to subsequences) 2n—>2 weakly in H1 (Q) and 2n^>2 strongly in U (Q). We 
claim that 

(3.6) lim \(u„+)pdx = 0. 
n —» oo J 

Indeed, if (3.6) does not hold, up to a subsequence it is 

f (un
+ )pdx^e>0; 

by (3.3) and Definition 1.1, if d ^ 1 (which is not restrictive to be assumed) there 
results 

m*G)& \ G\Vu„\2+^)dx^(tx(L„,Q))-l( j(u„+ydxY/PZnE2??; 
QULn L„ 

letting n —» + oo yields a contradiction, hence (3.6) is proved. 
Moreover, by (3.6) and L„cBR it follows 

(3.7) lim ( x(uH
+)pdx = 0 . 

K 

By (3.6) 

f (uH
+)pdx^>\(u + )pdx, 

QUL„ Q 

hence « E 7 ( û ) ; by (3.7) 

Jim PQyjLn{un) =PQ(U), 

therefore, by (3.5) 

(3.8) pQ(u)*dQ+l. 

On the other hand, it is easy to see that Ed> Q\jLn{un) ^ Edy Q (2) + o( 1 ) (here o(1)—> 0 
as #—>+oo)? whence, for n sufficiently large E ; / , û (« ) ^ ê ^ û U L » ^ » ) + °(1) ^ 
^ m*(d) + o( l ) ^ /#(5, Û) + £ j5 a ; then Lemma 3.2 implies^^(^) e 30 + , which con­
tradicts (3.8). • 

PROPOSITION 3.5. Let s* he as in Proposition 3.4. There exists d2> 0 such that for any 
de (0,d2) there exists (JL2 > 0 such that, if LcBR, Q U L is smooth and fx(L, Û) < (JL2> 
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then for any y e dû there results 

(3.9) EitQUL{9dtQuLiy))*km(d9Q) + **d*. 

PROOF. By Lemma 3.3, there exists d2> 0 such that, for any 0 < d < d2 and for any 
y e dû, there results 

(3.10) Edtû($dtû(y))<m(d9Q) + {z*/2)d«. 

Next we fix 0 < 2 < d2 and evaluate £^,GUL ( ^ G U L O O ) - Without loss of generality, 
we can suppose that \Q C\ L\ = 0. By definitions: 

\ (d\V*lauL(y)\2 + (*2,QUL(y))2)dx 

Ed,QUL($d,QUL(y)) = 
DDL 

r V/P 
J (<Pd,QUL(y)Ydx\ 

( j(td,a(y)Ydx + j($lL(y)Ydx 
2/P 

Q L 

By simple computations and by taking into account the properties of r] and o>, we 
obtain 

J(3|V#3pI.(y)|2 + (^I.(y))2)^«£:1|i|, j {^LW dx ^ c2 \L\ , 
L L 

that is, the left-hand side terms above go to 0 uniformly in y e dû as \L\ goes to 0. This 
yields that Edt Q y L ($2, Q u i (y ) ) tends to E^ 0 ($^ Q (y ) ) as | L | -» 0 uniformly in y e dû. 
Then by Lemma 1.2 there exists [x2 > 0 such that for any LcBR and (x(L,Q) < (x2> 
there results 

| E j , D U L ( ^ , D U L ( j ) ) - Ê î , D ( ^ ^ ( ^ ) ) | < ( ^ 7 2 ) 5 a . 

A simple combination with (3.10) gives (3.9). • 

4. PROOF OF THE MAIN THEOREM 

We divide the proof into three steps. 

STEP 1. Existence of cat dû solutions. 

Let Û be as in Theorem 1.3. Let e*, ^ and J2 be as in Proposition 3.4 and Pro­
position 3.5, let J* = m i n ^ , d2} and fix J e (0, J*). Then there exist (x1 and [x2 

such that, taken /x* = mm{(JLlf (j.2}, if LcBR is such that £) U L is smooth and 
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lx(L9Q)^[jL*, then (3.2) and (3.9) hold. Thus, considered the sublevel Vm*{d) = 

= {ueV(ÛUL): Ed>QUL(u) ^m*(d)}, where m*{d) = m(d, Û) + s* da, there results 

^ , û U L ( S Û ) C V W * W ) , .pQuL(Vm*{d))cdQ+. 

By construction, dû + is homotopically equivalent to dû and PQUL °®d,QUL ls homo-

topically equivalent to the imbedding/: dû —> 3Û + . Then, by Lemma 2.1 and Theo­

rem 2.2, it follows that Ed0 U L has at least cat dû critical points in V(û U L), whose en­

ergy is less than m*(d). 

STEP 2. Existence of one more solution. 

We claim that there exists a constant M*{d) > m*[d) such that <Pd>Q UL {dû) is con­

tractible in VM*{d). If this claim holds, as §d>Q U L (dû) in not contractible in yw*W ) (note 

that dû is not contractible in itself and PQUL °$d,QuL ~J)> then VM'"{d) cannot be re­

tracted into ym'^d\ At this point, (PS) condition yields the existence of at least one 

more critical level between m*(d) and M*(d). 

Now we turn to find M*(d). It is not restrictive to assume that O e f l and that r, 

fixed in Section 3, is so small that Br c e {x e û: dist (x, dû) > r}. Let 

S(d,r) = mmi j (d\Vu\2 + \u\2)dx: u eH^(Br)y j(u + Y dx = l ) . 

It is well known that S(d, r) is achieved in a positive function, radially symmetric around 

the origin; let u* be a such a minimizer: obviously, #* £ $d,QUL- Define F : [0, 1] X 

x ^ f û U L ( 3 û ) - > y ( Û U L ) by setting 

F(t,u) = (tu*+{l-t)u)/\\(tu*+(l-t)u)\\p 

(as #* ^ 0, /#* + (1 — / ) « is positive and not identically zero i n f l U L for any (t,u)). 

Let 

(4.1) M*(d)=ms^{EdtuuL{F{t9u)):te[09llue§dtQUL(dQ)}.. 

It is easy to see that F is an homotopy between $</; & uL (3Û) a n d u* i n V(® U L ) ; there­

fore $ < / , û U I ( 3 Û ) is contractible in 

F ( r f ) = { « 6 y ( Û U L ) : ^ > Û U L ( « ) ^ M * W ) } . 

This proves the claim. 

STEP 3. Nontrivialityof solutions. 

Observe that the solutions found in Steps 1 and 2 lie in the sublevel VM'^d) ; we aim 

to prove that, for d small, M*{d) is less than the critical level | û U L\l _ 2 / p , corre­

sponding to the constant solution. 

To this purpose, we need some estimates. By combining Lemma 2.1 in [1] and a 

simple rescaling argument, there results 

(4.2) S(dyr)=da[m(l,RN)+o(l)] as J - > 0 
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(m( 1, RN ) is defined as in (3.1)). Moreover, it is possible to prove (e.g. cf. [10,13]) that 
m(dy Û) ^ C0d

a, where C0 > 0 depends only on Û and p. This implies that it is not re­
strictive to choose d* in such a way that for any de(Q,d*) there results 

(4.3) S{d, r) + m*(d) = S(d, r) + m(d, Q) + ed* < \Q\1 ~2/p . 

Let 0 ^ t ^ 1 and u e $J ,ûUL'(90);
 t n e n there exists3; e dû such that « = $d,ovL(y)' 

We remark that supp(w) cBr{y), supp(#*) cBr, and, by our choise of r, the supports 
of u and u* are disjoint. This implies 

[ (J|V(*»* + (1 - / )* / ) | 2 + («* + (1 - / )«) 2 )^c = 
QUL 

= t2^(d\Vu*\2 + (u*)2)dx + (l-t)2 J W|.V«|2 + «2)ic = 
5 r Br(y)n(QUL) 

= t2Ed)QVJL(uk) + (l-t)2Ed)QUL(u)^t2S(d,r) + (\-t)2m*(d) 

and 

[ {tu*+(l-t)u)pdx = tpUu*)pdx + (\-t)p [ updx = tp + (l-t)p. 
QUL Br Br(y)n(QVL) 

Then 

E J . O U L U 7 ^ ) ) ^ (t2S(d,r) + (l-t)2m*(d))/(t* + (l-ty)2/p^S(d,r)+m*(d); 

along with (4.1) and (4.3) this inequality implies 

M*(d)^S(d,r)+m*(d)< l û l 1 " 2 7 ^ I ^ U L l 1 " 2 ^ . D 

Sponsored by MURST (fondi 60% «Problemi differenziali nonlineari e teoria dei punti critici»; fondi 

40% «Equazioni differenziali e Calcolo delle variazioni»). 
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