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Analisi matematica. — On a nonlinear equation of the vibrating string. Nota di
AnGELA IanNELLI, GIOVANNI PROUSE e ALESSANDRO VENEZIANI, presentata (*) dal
Corrisp. G. Prouse.

AssTracT. — A nonlinear model of the vibrating string is studied and global existence and uniqueness
theorems for the solution of the Cauchy-Dirichlet problem are given. The model is then compared to the
classical D’Alembert model and to a nonlinear model due to Kirchhoff.

Key worps: Vibrating string; Weak solution; Approximable solution.

RiASSUNTO. — S un’equazione non lineare della corda vibrante. Si studia un modello non lineare della
corda vibrante e si enunciano teoremi di esistenza ed unicita in grande della soluzione del problema di Cau-
chy-Dirichlet. Si esegue poi un confronto tra questo modello ed i modelli di D’Alembert e di
Kirchhoff.

1. InTRODUCTION

In this Note we wish to present some results relating to a nonlinear model of the vi-
brating string introduced in[1, 2]; details of proofs, together with some results of nu-
merical computations, can be found in[3].

Let us consider a string of length /, and mass M, stretched on the x-axis and fixed at
the points x = 0 and x = / = /;, subject to an external force f(¢, x) normal to the x-axis.
Assuming that the motion is transversal and denoting by # (¢, x) the displacement of the
point x at the time #, the equation we consider is

(1.1)  (M/Duy — (1 + u2)? = Ig)u, (1 + u2) 2)/3x — f=
=(M/l)u, — Db(Du) —f=0
having set D = 3/3x, b(&) = o(/(1 + )2 — [)) 5(1 + £2)712,

The function ¢ defines the stress-strain law, ie. the elastic properties of the
string:

(1.2) S=o(r), 20().

Equation (1.1) is obtained by considering a discrete model of the string, constituted
by # springs of length //#, linked by frictionless hinges of mass 7z = M/ (n + 1). The
motion of this system is governed by a system of ordinary differential equations in the
variable #; letting # — o, this system «converges» to (1.1). Details of the procedure
are given in[1,2].

We shall make on the function ¢(7) the following assumptions, of obvious physical
interpretation:

a) ¢(z) e CL[0, =), $(0) =0, 0 < ¢'(z) <M < + =}
b) o(t) grows asyptotically like =7, with 0 < y < 1.

(*) Nella seduta del 23 aprile 1994.
(1) For the sake of simplicity, we assume that the function ¢ does not depend explicitly on x and that
the density is constant. The general case could however be treated in a similar way.
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It should be noted that the classical Hooke’s law (perfectly elastic material, ¢(7) =
= g7, ¢ > 0) corresponds to y = 1, while, in general, the behaviour of elastic materials
cotresponds to values of y < 1 (Z.e. the stress grows asymptotically at most linearly with
the strain); the case y = 0 (which we do not consider here), would correspond to a ma-
terial which tends to become perfectly plastic as 7— .

We shall consider, for eq. (1.1), the following Cauchy-Dirichlet problem, corre-
sponding to the string fixed at both ends and with given initial position and
velocity

(13) {”(0”‘)”(’6), 1(0,) = Blx) (0<x<D),

u(t,0)=u(t,])=0, (0<¢<T),
with the obvious compatibility conditions a(0) = a(/) = 8(0) = (/) = 0.

A fundamental role in the study of (1.1), (1.3) is played by the «approximate»
equation

(1.4) (M/l)v, — Db(Dv) + eD*v —f=0 (¢>0)
with the initial ad boundary conditions
{U(O,x)=a(x), v,(0,%) = B(x) (0sx</),

(1.5)
v(¢, 0) =wv(t, ) = D?v(t, 0) =D?v(t,[) =0, (0<¢<T),

corresponding to the motion of a rod with flexional rigidity ¢ > 0 and hinged at both
ends; the solutions of (1.1), (1.3) will, in fact, be obtained as limits, when ¢ — 0, of sol-
utions of (1.4), (1.5), by a procedure of obvious physical interpretation.

2. BASIC NOTATIONS AND DEFINITIONS

In the sequel, we shall denote by H*? the classical Sobolev space of functions e L?
together with their derivatives of order < s and by (, ) the duality between L * V7 and
L*"1(0< y<1).

Assuming that fe L?(Q)(Q = (0, T) x (0,1)), a € H}, B € L?(?), we shall say that
u is a weak solution in Q of (1.1), (1.3) #:

) u(t)eL* (0, T; HX"* Y NHY*(0, T; L?), u(o) = a;

i7) u(t) satisfies almost everywhere on (0, T) the equation
(2.1) j{ —(u',b")2 + (b(Du), DbY — (f, b)2}dn +
0
+(u' (), b(£))12 — (B, h(0))12 = Vh(¢)e L*(0, T; Hy "+ ) NH' (0, T; L?).

(3) For the sake of simplicity, we set L?(0,/) = L?, H*?(0,/) = H*?, H*? = H* and assume that
M/l =1. Hy? is the closure of ®(0,/) in H"”.
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We shall, on the other hand, say that v is a weak solution in Q of (1.4), (1.5)
i) v(t)eL® (0, T;Hi NH?) NH"*(0,T;L?, v(0) =ae H} N H?;
i1, ) v(t) satisfies, a.e. on (0,T), the equation

(2.2) j {= (', k)2 + (b(Dv), Dk)2 + (D2, D?k)y 2 — (f, k)2 }din +

0

+@'(2), k(¢))2 — (8, k(0))2=0 Vk(z)eL?(0, T; HHNH?) NH'(0,T;L?).

Finally, we shall say that u is an approximable solution in Q of (1.1), (1.3) if it satisfies
conditions 1), i) and, moreover,

i) There exists a sequence {Ue,,} of weak solutions of (1.4), (1.5) such that
(2.3) lim v, =u

ey, —0

in the weak-star topology of L= (0, T; HP* )N H* (0, T;L?) and in the strong
topology of C°(0, T;L?).

3. ExXisTENCE AND UNIQUENESS THEOREMS

Consider, to begin with, the case of the hinged rod. The following existence and
uniqueness theorem holds:

Tueorem 1. Assume that o(t) satisfies a), b) of section 1 and that « € Hy N H?,
BeL?, fe L*(Q). There exists then, e > 0, a weak solution of (1.4), (1.5) in Q; more-
over, this solution is unique.

Letting now € — 0, it is possible to show that there exists a sequence of weak sol-
utions of (1.4), (1.5) which converges to a weak solution z of (1.1), (1.3). We have,
precisely,

Tueorem 2. If ¢(7) satisfies a), b) and a € H} , B e L?, fe L*(Q), there exists in Q an
approximable solution of (1.1), (1.3).

The problem of the uniqueness of a weak solution is still open; a «weak» uniqueness
result can however be given for the approximable solution, as expressed by

Tueorem 3. Under the bypotheses of Theorem 2 and assuming, moreover, that ¢(7) is
analytic, there exists, for nearly all fe L*(Q), a unique approximable solution.

This theorem does not, therefore, exclude the existence of other weak solutions,
which however are not approximable by the weak solutions of the vibrating rod
problem.
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4. COMPARISON WITH ORDER VIBRATING STRING MODELS

Many models have been proposed for the study of the transversal motion of a
string. Of special interest, among these, are the ones proposed by D’Alembert and by
Kirchhoff, leading, respectively, to the equations

(4.1) (M/ Dy — ol = Iy)ug = f
and

!
4.2) (M/ D) uy — | ol = 1) + (E/21) J w2 dv|u, =f.

0

Equation (4.1) is deduced under the assumption that either /, <</, or |z,| <1,
while (4.2) assumes that the tension along the string is constant; both equations sup-
pose that Hooke’s law holds, in which case (1.1) becomes
(4.3) (M/Dtty — cltrg + oy (1 +u2) 2 =f.

While the properties of D’Alembert’s equation are classical and well known,
eq. (4.2) has been the object of very recent studies (see, for instance, [4,5] and the rel-
ative bibliography). It is therefore interesting to study, especially from a numerical
point of view, the different behaviour of models (4.1), (4.2), (4.3); this study, of which
we shall give here only a general indication, is carried out in[3].

First of all, it can easily be seen that the three models tend to coincide when /; <</,
and this circumstance is fully confirmed by numerical experiments. If this condition is
not met (as in most cases of physical interest) the results may vary considerably, espe-
cially if the initial data are not «small». In particular:

a) The frequency of the oscillations is appreciably higher for the two nonlinear
models than for the linear one. This feature has been confirmed by measurements
made on a «real» string at the Dipartimento di Meccanica of the Politecnico di Milano.

b) If the initial position is a sine wave and f = 8 = 0, the motion, according to the
D’Alembert model, remains sinusoidal. A very similar behaviour is found for the Kirch-
hoff model, while the motion, according to model (4.3), loses very rapidly its original si-
nusoidal shape.

These features are clearly shown in the pictures which illustrate the motion, in the
time interval 0-10 ms, of a steel string of length 500 mm, with initial position corre-
sponding to a sine wave of amplitude 15 mm and no initial velocity and external force.
Figure 1:1, corresponds to the motion according to the model of D’Alembert, fig. 1:2,
to the model studied in the present Note, fig. 1:3, to the Kirchhoff model.

It is interesting to note that numerical experiments on the D’Alembert equation
with an added nonlinear term have been performed by Fermi, Pasta and Ulam [6], who
also found that the presence of a nonlinearity completely disrupted any initial regularity
of the motion.

This work was financially supported by MURST 40% and 60%.
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