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Analisi matematica. — On a nonlinear equation of the vibrating string. Nota di 

A N G E L A I A N N E L L I , G I O V A N N I P R O U S E e A L E S S A N D R O V E N E Z I A N I , p resen ta ta (*) dal 

Corr isp . G . P rouse . 

ABSTRACT. — A nonlinear model o£ the vibrating string is studied and global existence and uniqueness 
theorems for the solution of the Cauchy-Dirichlet problem are given. The model is then compared to the 
classical D'Alembert model and to a nonlinear model due to Kirchhoff. 

KEY WORDS: Vibrating string; Weak solution; Approximate solution. 

RIASSUNTO. — Su un'equazione non lineare della corda vibrante. Si studia un modello non lineare della 
corda vibrante e si enunciano teoremi di esistenza ed unicità in grande della soluzione del problema di Cau­
chy-Dirichlet. Si esegue poi un confronto tra questo modello ed i modelli di D'Alembert e di 
Kirchhoff. 

1. INTRODUCTION 

In this Note we wish to present some results relating to a nonlinear model of the vi­
brating string introduced in [1,2]; details of proofs, together with some results of nu­
merical computations, can be found in [3]. 

Let us consider a string of length l0 and mass M, stretched on the x-axis and fixed at 
the points x = 0 and x = I ^ /0, subject to an external force f(t, x) normal to the x-axis. 
Assuming that the motion is transversal and denoting by u(t, x) the displacement of the 
point x at the time t, the equation we consider is 

(1.1) {M/l)utt - d(?(l(l + ux
2)1/2 - / o K U + ux

2)~1/2)/dx - / = 

= {M/l)utt- Db(Du) -f= 0 

having set D = d/dx, b(S) = p(/( 1 + f2)1/2 - /<,) f( 1 + f2)"1/2. 
The function <p defines the stress-strain law, i.e. the elastic properties of the 

string: 

(1.2) S = <p(r), T ^ 0 ( 1 ) . 

Equation (1.1) is obtained by considering a discrete model of the string, constituted 
by n springs of length //«, linked by frictionless hinges of mass m = M/(n + 1). The 
motion of this system is governed by a system of ordinary differential equations in the 
variable t; letting n —> oo t this system «converges» to (1.1). Details of the procedure 
are given in [1,2]. 

We shall make on the function ç>(r) the following assumptions, of obvious physical 
interpretation: 

a) <p(r) e C 1 [0 , oo ), ? ( 0 ) = 0, 0 < ?'(r) < M < + oo ; 

b) <p(r) grows asyptotically like r r , with 0 < y ^ 1. 

(*) Nella seduta del 23 aprile 1994. 
C1) For the sake of simplicity, we assume that the function 9 does not depend explicitly on x and that 

the density is constant. The general case could however be treated in a similar way. 
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It should be noted that the classical Hooke's law (perfectly elastic material, <p(r) = 
= or, <j > 0) corresponds to 7 = 1, while, in general, the behaviour of elastic materials 
corresponds to values of 7 ^ 1 (i.e. the stress grows asymptotically at most linearly with 
the strain); the case 7 = 0 (which we do not consider here), would correspond to a ma­
terial which tends to become perfectly plastic as r —> 00. 

We shall consider, for eq. (1.1), the following Cauchy-Dirichlet problem, corre­
sponding to the string fixed at both ends and with given initial position and 
velocity 

M 0 , x ) = a(x), ut(0,x) = p(x) (Q^x^I), 

\u(t, 0) =« ( / , / ) = 0, (O^t^T), 

with the obvious compatibility conditions a(0) = oc(l) =/3(0) = fi(l) = 0. 
A fundamental rôle in the study of (1.1), (1.3) is played by the «approximate» 

equation 

(1.4) (M/l)vtt - Db(Dv) + sD4v - / = 0 (e > 0) 

with the initial ad boundary conditions 

fv(0,x) = a(x), vt(0,x) =p(x) (O^x^l), 

[v(t, 0) = v(t, I) = D2v(t, 0) = D2v(t, I) = 0, (O^t^T), 

corresponding to the motion of a rod with flexional rigidity s > 0 and hinged at both 
ends; the solutions of (1.1), (1.3) will, in fact, be obtained as limits, when e —» 0, of sol­
utions of (1.4), (1.5), by a procedure of obvious physical interpretation. 

2. BASIC NOTATIONS AND DEFINITIONS 

In the sequel, we sfiall denote by Hs,p the classical Sobolev space of functions e Lp 

together with their derivatives of order ^ s and by (, ) the duality between L ( r + 1)/r and 
L r + 1 ( 0 < r ^ l ) . 

Assuming tha t / e L2 (Q)(Q = (0, T) X (0, /)), OCEH^PEL2 (2), we shall say that 
u is a weak solution in Q of (1.1), (1.3) //: 

/) u(t)eL"(0,T;He>r + l)nHl'"(0,T;L2), u(o) = a; 

ii) u(t) satisfies almost everywhere on (0, T) the equation 

t 

(2.1) | { - («', b')L2 + (b(Du), Dh) - ( / , h^drj + 

0 

+ (uf(t),h(t))L2-(p,h(0))L2 = 0 V ^ ) G L 2 ( 0 , r ; H 0
1 ^ + 1 ) n H 1 ( 0 , T ; L 2 ) . 

(2) For the sake of simplicity, we set 1/(0,7) = Lp, Hs'p{0,1) = Hs'p, Hs'2 = Hs and assume that 
M/l = 1. Hs

0'
p is the closure of <D(0, /) in Hf'p. 
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We shall, on the other hand, say that v is a weak solution in Q of (1.4), (1.5) 

if. 

i,) v{t)&L°"(0,T;Hl
0r\H2)r\Hl'"{0,T;L2), v(0) = a e He D H2; 

iit ) v(t) satisfies, a.e. on (0, T), the equation 

t 

(2.2) [{ - (*', k')L2 + (b(Dv), Dk)L2 + e(D2u, D2k)L2 - ( / , k)L2}'drj + 

o 

+ (v'{t),k(t))L2-(p,k(0))L2 = 0 V i W e L ^ O j j H j n H ^ n H ^ O j j L 2 ) . 

Finally, z ^ .sto/ ^ j / t o « /!$• an approximable solution in Q of (1.1), (13) if it satisfies 

conditions / ) , //) tfW, moreover, 

in) There exists a sequence {v$n} of weak solutions of (1.4), (1.5) swcÂ / t o 

(2.3) lim vE = u 

in the weak-star topology of L00 (0, T; HQ,T+1) Pi H1, °° (0, T; L 2 ) ^W /« ró<? 5#r>«g 

topology o / C ° ( 0 , T ; L 2 ) . 

3. EXISTENCE AND UNIQUENESS THEOREMS 

Consider, to begin with, the case of the hinged rod. The following existence and 

uniqueness theorem holds: 

THEOREM 1. Assume that <p(r) satisfies a), h) of section 1 and that OCBHQ H H2, 

/ 3 G L 2 , / G L 2 ( Q ) . There exists then, Vs > 0, a weak solution of (1.4), (1.5) /« Q; more­

over, this solution is unique. 

Letting now e —> 0, it is possible to show that there exists a sequence of weak sol­

utions of (1.4), (1.5) which converges to a weak solution u of (1.1), (1.3). We have, 

precisely, 

THEOREM 2. If <p{r) satisfies a), b) and a e HQ , /3 G L 2 , / G L 2 (Q), /to<? erasfr /» Q an 

approximable solution of (1.1), (1.3). 

The problem of the uniqueness of a weak solution is still open; a «weak» uniqueness 

result can however be given for the approximable solution, as expressed by 

THEOREM 3. Under the hypotheses of Theorem 2 and assuming, moreover, that p ( r ) is 

analytic, there exists, for nearly all f G L 2 (Q), a unique approximable solution. 

This theorem does not, therefore, exclude the existence of other weak solutions, 

which however are not approximable by the weak solutions of the vibrating rod 

problem. 
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4. COMPARISON WITH ORDER VIBRATING STRING MODELS 

Many models have been proposed for the study of the transversal motion of a 
string. Of special interest, among these, are the ones proposed by D'Alembert and by 
Kirchhoff, leading, respectively, to the equations 

(4.1) (M/l)utt-v(l-l0)uxx=f 

and 

(4.2) {M/l)utt - L(l - l0) + (E/21) \u2
x dx\uxx=f. 

Equation (4.1) is deduced under the assumption that either / 0 « / , or \ux\ « 1 , 
while (4.2) assumes that the tension along the string is constant; both equations sup­
pose that Hooke's law holds, in which case (1.1) becomes 

(4.3) (M/l)uu - dUxx + dQUxx{ 1 + u2
x)-"

2 = / . 

While the properties of D'Alembert's equation are classical and well known, 
eq. (4.2) has been the object of very recent studies (see, for instance, [4,5] and the rel­
ative bibliography). It is therefore interesting to study, especially from a numerical 
point of view, the different behaviour of models (4.1), (4.2), (4.3); this study, of which 
we shall give here only a general indication, is carried out in [3]. 

First of all, it can easily be seen that the three models tend to coincide when /0 « / , 
and this circumstance is fully confirmed by numerical experiments. If this condition is 
not met (as in most cases of physical interest) the results may vary considerably, espe­
cially if the initial data are not «small». In particular: 

a) The frequency of the oscillations is appreciably higher for the two nonlinear 
models than for the linear one. This feature has been confirmed by measurements 
made on a «real» string at the Dipartimento di Meccanica of the Politecnico di Milano. 

b) If the initial position is a sine wave and/ = /3 = 0, the motion, according to the 
D'Alembert model, remains sinusoidal. A very similar behaviour is found for the Kirch­
hoff model, while the motion, according to model (4.3), loses very rapidly its original si­
nusoidal shape. 

These features are clearly shown in the pictures which illustrate the motion, in the 
time interval 0-10 ms, of a steel string of length 500 mm, with initial position corre­
sponding to a sine wave of amplitude 15 mm and no initial velocity and external force. 
Figure 1:1, corresponds to the motion according to the model of D'Alembert, fig. 1:2, 
to the model studied in the present Note, fig. 1:3, to the Kirchhoff model. 

It is interesting to note that numerical experiments on the D'Alembert equation 
with an added nonlinear term have been performed by Fermi, Pasta and Ulam [6], who 
also found that the presence of a nonlinearity completely disrupted any initial regularity 
of the motion. 

This work was financially supported by MURST 40% and 60%. 
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Fig. 1 
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