ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

SALVATORE A. MARANO

Fixed points of multivalued contractions with
nonclosed, nonconvex values

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni,
Serie 9, Vol. 5 (1994), n.3, p. 203-212.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1994_9_5_3_203_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per motivi
di ricerca e studio. Non & consentito 1'utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLIN_1994_9_5_3_203_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1994.



Rend. Mat. Acc. Lincei
5. 9, v 5:203-212 (1994)

Matematica. — Fixed points of multivalued contractions with nonclosed, nonconvex
values. Nota di SaLvaTore A. Marano, presentata (*) dal Corrisp. R. Conti.

AsstrACT. — For a class of multivalued contractions with nonclosed, nonconvex values, the set of all
fixed points is proved to be nonempty and arcwise connected. Two applications are then developed. In par-
ticular, one of them is concerned with some properties of the set of all classical trajectories corresponding
to continuous controls for a given nonlinear control system.

Key worps: Multivalued contraction; Fixed point; Arcwise connectedness; Nonlinear control
system.

RiassUNTO. — Punti fissi di contrazioni multivoche con valori non chiusi e non convessi. Si studia una clas-
se di contrazioni multivoche con valori non necessariamente chiusi né convessi e si dimostra che I'insieme
dei punti fissi non & vuoto ed & connesso per archi. Del risultato si fanno due applicazioni una delle quali ri-
guarda la struttura dell’insieme delle traiettorie in senso classico corrispondenti a controlli continui di un si-
stema di controllo non lineare.

INTRODUCTION

Let E be a complete metric space and let I' be a multivalued contraction from E
into itself, with nonempty values. If I'(x) is closed for all x € E, Corollary 3 of [7] en-
sures that the set Fix(I") of all fixed points of I' is nonempty. Since, contrary to the sin-
glevalued case, Fix(I") may have many elements, it is of interest to perform a qualitative
study of it, for instance, from a topological point of view.

In this framework, some years ago, B. Ricceri established the following result
(see [13, Théoreme 1]).

Tueorem A. Let E be a Banach space, let X be a nonempty, convex, closed subset of E
and let T' be a multivalued contraction from X into itself, with convex, closed values. Then
the set Fix(I') is a retract of E; consequently, it is arcwise connected,

Later on, several papers have been devoted to possible extensions and applications
of Theorem A[4,9,11,12,15]. For instance, if X = L!(T) for some measure space T,
the basic assumption

(ay) I'(x) is convex and closed for all x e X
may be replaced by
(ay) I'(x) is bounded, closed and decomposable for all x € X

and a satisfactory theory, including applications to multivalued differential equations,
developed (see [4]).

To the best of our knowledge, there are not other significant theorems concerning
topological properties of the set Fix(I').

(*) Nella seduta del 12 marzo 1994.
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In the present paper we consider a multivalued contraction I" of the form
I'ix) = V(P(x)), xeX,
where @ and ¥ are multifunctions satisfying the assumptions of Theorem A. Obviously,
in this case, condition (z;) may be not at all verified. Nevertheless, we prove that the
set Fix(I") is nonempty and arcwise connected (really, more sophisticated results are es-
tablished; see Theorems 2.1 and 2.2).

Next, we present two applications. The first of them (Theorem 3.1) deals with the
arcwise connectedness of the solution set to a nonlinear equation of the type
w € G(x) + F(x), where w is a given element of X, F is a multifunction satisfying hy-
potheses like those of Theorem A, and G is a convex process.

The second application (Theorem 3.2) exhibits some properties of the set S(2) of all
trajectories x € C' ([, b1, R*) corresponding to controls # € C°([4, b1, R™) for the
nonlinear control process x' = f(¢, x, #(¢)), with control constraint #(¢) € U(¢, x) and
initial condition x(2) = A. In particular, the arcwise connectedness in C! ([, b1, R") of
the sets S(1) and AEJR” S(X) is achieved.

For measurable controls and Carathéodory’s trajectories, results of this kind are al-
ready known [5, 16]. Moreover, continuous controls have been previously employed to
study the controllability of various nonlinear control systems by many authors (see, for
instance, [1,8] and the references given therein).

1. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Let (E, d) be a metric space. For every z € E and every nonempty set X ¢ E, we de-
fine d(z, X) = in§{ d(z,x). If X and Z are two nonempty subsets of E, we define
d*(X,Z) = sup d(x, Z) anddy (X, Z) = max {d* (X, Z), d* (Z, X)}. A simple compu-

xeX
tation shows that the following proposition is true.

ProrosrmionN 1.1. Let (Ey, d;) and (E,, d,) be two metric spaces and let E = E; X
X E,, equzpped with the metric

dl(x",9"),(x",»")) = max{d, (x',x"),dy(y",9")}, (x',9"),(x",9")eE.
Then, for every pair of nonempty sets X' X Y', X" X Y" CE, one bas

dy (X' X Y', X" X Y") < max{dy, (X', X"), dy,, (Y', Y")} .

Let E; and E, be two nonempty sets. The symbol @: E; — 22 means that @ is a mul-
tifunction from E, into E,, namely a function from E; into the family of all subsets of
E,. The range of @ is the set ®(E;) U O(x). When ®(E,) = E,, we say that the

multifunction @ is surjective. The graph of lp, denoted by gr(®), is the set {(x, y) € E; X
X E,:y e ®(x)}. IfE, = E,, we write Fix(®) for {x € E;: x € ®(x)}. A function ¢: E; —
— E, such that ¢(x) € @(x) for all x € E; is said to be a selection of @. For every set
Y CE,, we define @~ (Y) = {x € E;: ®(x) N Y # @}. If E; and E, are two topological
spaces and, for any open set Y C E,, the set ® ~ (Y) is open in E; , we say that the multi-
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function @ is lower semicontinuous. When (E;, d;) and (E,, d,) are two metric spaces
and there is a real number L = 0 so that d, (@(x'), D(x")) < Ld; (x',x") for all x’,
x" € E;, we say that @ satisfies a Lipschitz condition with constant L. If L < 1, the mul-
tifunction @ is said to be a multivalued contraction. It is a simple matter to see that any
multifunction verifying a Lipschitz condition is lower semicontinuous.

Now, let (E;, ||*|l;) and (E,, ||*|.) be two real normed spaces. The multifunction
® is said to be a convex process if, for every x’, x" € E; and every a, B e [0, + o[,
one has a®@(x') + fD(x") c P(ax’ + Ax"). If @ is a surjective convex process, d; is the
metric induced by ||, and 6; is the zero vector of E;, we define Ly =
=sup{d,(0,,9 (y)):y €E,, |ly|, < 1}. When E, and E, are Banach spaces and the set
gr(®) is closed in E; X E,, the Corollary p. 131 of [14] guarantees that Ly < + .

Given a positive integer 7, we write (R”, |+ |,) for the real Euclidean #-space and
8, for the metric induced by |+ |,,. If I is a compact real interval, the symbol C° (I, R")
is used to denote the space of all continuous functions #: I — R”, equipped with the
norm ||u||co gr) = max |u(t)|,. Moreover, C'(I, R") stands for the space of all

v e C°(I, R"), which are continuously differentiable in I. The norm in this space is de-
fined by |[vllc1q &) = llollcow, &) + 10" lco, k), where »” is the derivative of v.

Proposition 5 in[2, p. 44] combined with Theorem 3.2" of[10] yields the
following

Provosrrion 1.2. Let I be a compact real interval and let @: 1 — 2% be a lower semi-
continuous multifunction, with nonempty, convex, closed values. Suppose y: I — R" is a
continuous function and B: 1 — 1[0, + o[ is a lower semicontinuous function satisfying
8, (Y(2), D(¢)) < B(¢) for all t € . Then, for every € > 0 there is a continuous selection ¢ of
D such that |Y(t) — o(t)|, < B() + ¢ for all tel

Let E be a topological space and let X be a nonempty subspace of E. We say that X is a
retract of E if there exists a continuous function : E—X such that »(x) =x for all xe X.
The space X is said to be an absolute extensor for paracompact spaces if, for every para-
compact space A, every closed subset A, of A and every continuous function ¢¢:A (—X,
there is a continuous function ¢: A— X such that ¢(2) = ¢ () for all AeA . The following
proposition establishes a close connection between the concepts just defined.

Provrosrtion 1.3. Let E be a Banach space and let X be a nonempty subspace of E. Then X
is a retract of E if and only if it is an absolute extensor for paracompact spaces and is closed.

The proof is easily performed by using Example 1.3* and Theorem 3.2” of [10]; so
we omit it.

As a simple consequence of the preceding proposition, we obtain that cvery contin-
uous image of a retract of a Banach space is an arcwise connected space. It is also possi-
ble to prove [6] that any arcwise connected space is a continuous image of an absolute
retract, according to[3,p. 85].

Finally, we observe that Proposition 1.3, together with Theorem 1 of [13], produces
Theorem A of Introduction.
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2. MAIN RESULT

In this and in the following section, A denotes a paracompact space, (E;, ||*||;) and
(E,, ||*]l,) are two Banach spaces, d; (i = 1, 2) stands for the metric induced by ||-]|;, X

is a nonempty, convex, closed subset of E; and Y is a nonempty, convex, closed subset
Of Ez B
We are in a position now to establish the main result of this paper.

Treorem 2.1. Suppose @: A X X —2¥ and ¥: A X X X Y — 2% are two nonempty,
convex, closed-valued multifunctions, with the following properties:

(a1) The multifunction A — P(X, x) is lower semicontinuous for every x € X.

(ay) There is a continuous function L: A — [0, 1[ such that dy, (P(X,x"), D(A,x")) <
SLO)|x"=x"|, for all xe A, x', x" e X.

(a3) The multifunction 1— V(X, x,y) is lower semicontinuous for every (x,y)eX X Y.

(ag) There is a continuous function M: A — [0, 1[ such that
le('I/'()\,x',y’), 71[/,()596”)3)”)) < M(2) max{”x, “‘96””1, ”y’ _y”“2}
Jorall Ae A, (x',y"), (x",y")eXXY.

For every (A, x) e A X X, we define I'(%,x) = V(X x, DX, x)). Then
(7,) The set Fix(I'(%, ) is nonempty and arcwise connected for all ) € A.

(4,) Forevery Ay, ..., A, € Aand every x; € Fix(I(X,,+)), i = 1, ..., p, there is a continuous
function y: A — X such that y(A;) = x, for eachi = 1,...,p, and y(1) € Fix(I'(2, *))
for all xe A

Proor. Fix AeA and set, for every (x,y)e X XY, X(A,x,y) = ¥(4,x,y) X
X @(2, x). Owing to Proposition 1.1 and assumptions (4,) and (44), one has

dy(E,x',9"), 2(4,x",9")) <
< max {d,, (¥ (X, x",9"), P4, x",y")), doy (D(2,x"), DA, x"))} <

< max {L(3), M(1)} -max {|" = x"[,, " ="}
forall (x', y"), (x", ") € X X Y, so that the multifunction (x, y) — X(2, x, y) is a mul-
tivalued contraction on X X Y, with nonempty, convex, closed values. Therefore, by
Theorem A, the set Fix(X(2A,+)) is nonempty and arcwise connected in E; X E,. If
p1: E; X E; — E; denotes the projection onto the first coordinate, a simple computa-
tion shows that Fix(I'(%, -)) = p; (Fix(2(2, +))). Thus, assertion (7, ) follows immediately
from the continuity of p;.
Let us prove assertion (7,). Pick A;,..., A, €A and, for each 7 = 1,...,p, choose
x; € Fix(I'(2;, +)). Then, there are y,,...,9, € Y satisfying (x;,y;) € Fix(2(%,,)), i =
=1,...,p. We already know that, for any 2 € A, the multifunction (x, y) — X(X,x,y)isa
multivalued contraction on X X Y, with constant max{L(}), M(21)} and nonempty,
convex, closed values. Furthermore, because of assumptions (2;) and (a3), for any
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(x,y) € X X Y, the multifunction A — X(2, x, y) is lower semicontinuous. By [11, The-
orem 3.3], this yields a continuous mapping o: A — X X Y such that o(4;) = (x;, y,) for
each7=1,...,p, and o(}) € Fix(2(2, *)) for all A € A. We define y(1) =p,(a(1)), A
eA. Since y is a continuous function and one has y(4;) =x for every
i=1,...,p, Y(A) e Fix(I'(}, +)) for all A€ A, the proof is complete. A

The hypotheses of Theorem 2.1 do not imply that the set Fix(I'(2, +)), A€ A, is a
retract of E;, as the following example shows.

Exampie 2.1. Set (Ey, |-|l;) = (R%, |- |,) and (E;, ||-|l,) = (R, | - |1). Moreover,
choose X ={xeE;:|x|,<27'}, Y=1[0, 2%], ®(},x) =Y for all (1,x)eA xX,
V(X x,9) ={(2  cosy, 27 siny)} for all (X, x,y) e A X X X Y. It is a simple matter
to see that the multifunctions @ and ¥ satisfy all the assumptions of Theorem 2.1.
Hence, by conclusion (7;), the set {x € X:x € ¥ (X, x, ®(),x))} is nonempty and arc-
wise connected. Nevertheless, since one has

{xeX:xe PO, x, 0, %)} = {xeE: x|, =2""},

it is not a retract of E; (see, for instance, Proposition 3.9 in[3,p. 12]).

We conclude this section with Theorem 2.2 below, which is a version of Theorem
2.1 interesting enough to be stated explicitly.

TreoreM 2.2. Let @: X — 2¥ and ¥': Y — 2% be two nonempty, conve, closed-valued
multifunctions, satisfying a Lipschitz condition with constants L and M respectively. For
every x € X, we define I'(x) = ¥(D(x)). If LM < 1, then the set Fix(I') is nonempty and
arcwise connected.

Proor. Obviously, we may suppose M > 0. Choose £ €L, M ~'[ and associate to
each y € E, the norm (equivalent to the previous one) ||y, =% ~*|ly|.. A simple com-
putation ensures that

di, (D(x"), D(x")) S L Hlx' —x"|, and dy, (F(&'), ¥O")) < Mk|y' =",

forallx’, x"e X, y', y" e Y, where d, denotes the metric induced by |||l . Hence, the
multifunctions @ and ¥ are now multivalued contractions with constants Lt ~! and Mk
respectively, and nonempty, convex, closed values. So, the same arguments used in the
proof of Theorem 2.1 yield the desired conclusion. A

Remark 2.1. Of course, it is also possible to formulate versions of Theorem 2.1
where the composition of a finite number ¢, g > 2, of multifunctions is considered.
They are not in any way more difficult to prove than the special case ¢ = 2.

3. SOME APPLICATIONS

In this section we present two applications of Theorem 2.1. The first of them deals
with the arcwise connectedness of the solution set to a nonlinear equation.
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Tueorem 3.1. Let E, and E, be over the real number field. Suppose F: A X E; — 2F2
is a nonempty, convex, closed-valued multifunction, having the following properties:

(by) The multifunction A — F(X, x) is lower semicontinuous for all x € E; .

(b2) There is a continuous function L: A — 10, 1 so that dp, (F(X,x"), F(X,x")) <
SL)|x" = x"||, for every A€ A, x', x" € E;.

Moreover, let G:E,—> 25 be a nonempty-valued, surjective, comvex process, such
that

(b3) the set gr(G) is closed in E; X E; and Lg < 1.
Then

(/1) Theset S(A,w) = {x € E;: w € G(x) + F(, x)} is nonempty and arcwise connected
for all e A, wekE,.

(72) Forevery Ay, ..., A, €A, every w € E, and every x; € S(A;,w),7 =1, ...,p, there is a
continuous function s: A — E; such that s(A;) =x, for each i = 1,...,p, and s(A) €
eS(A,w) for all A€ A

Proor. Fix w e E,. For every Ae A, xe E;, y € E,, we define

(A, x) =w—F(x,x), ¥Pxy)=G (y), Ix)=¥x, 02 x)).
Since one has S(2, w) = Fix(I'(1, *)), A € A, to accomplish the proof it is sufficient to
verify that all the hypotheses of Theorem 2.1 are fulfilled. Of course, the multifunction
® has nonempty, convex, closed values. Moreover, conditions (4;) and (4,) are a sim-
ple consequence of () and (b,) respectively. Due to the assumptions, the multifunc-
tion ¥" has nonempty, convex, closed values and, by Theorem 6 of[14] and (b5), it is a
multivalued contraction from E, into E;, with constant L. Therefore, the conditions
(a3) and (a4) of Theorem 2.1 are verified too. A

The hypotheses of the preceding theorem do not guarantee that the set S(2, w),
AeA, wekE,, is a retract of E;. This may be concluded from the following

ExamprE 3.1. Suppose (E,, ||*|l,) is a nonreflexive Banach space and define B, =
={yeE: |yl <1}. K (E,, |-l;) = (R, |],) and ¢: E, > Ej is a continuous linear
functional such that ||¢|| = sup |¢(y)|; <1 and |¢(»)]; <||¢|| for all y € B,, we set

yeB;
F()x,x) =B, and G(x) = ¢ "1 (x) for all A € A, x € E;. A straightforward argument en-
sures that the multifunctions F and G satisfy all the conditions of Theorem 3.1. Never-
theless, since one has

{xeE,:0,eGlx) + FO,x)} ={xeE:Gx)NBy= 0} =1— ¢, I¢lll

(6, denotes the zero vector of E,), the set S(A, 0,) is not a retract of E;.

Using Theorem 2.2 in place of Theorem 2.1, it is possible to establish the following
result, which can be regarded as a multivalued version of Théoréme 4 in[13].
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TueOREM 3.2. Let E, and E, be over the real number field. Let F: E; — 252 be a
nonempty, convex, closed-valued multifunction, satisfying a Lipschitz condition with con-
stant L. Let G: Ey — 252 be a nonempty-valued, surjective, convex process, such that the set
gr(G) is closed in E\ X E;. If L*L¢ < 1, then, for any w € E,, the set {x e E:w e
€ G(x) + F(x)} is nonempty and arcwise connected.

The second application we wish to emphasize, is concerned with some properties of
the set of all classical trajectories corresponding to continuous controls for a given non-
linear control system.

We denote by m, #n two positive integers and by I the compact real interval

[a, 5].

TureoreM 3.3. Let f: I X R* X R” — R” be a continuous function and let U: I X
X R" — 28" be a nonempty, convex, closed-valued multifunction. Suppose the following con-

ditions hold:

(c1) There are M >0 and wel0, 1] such that |f(¢,x",y') —f(t,x",y")]|, <
Mlx"=x"|, +uly' =9" |, forall tel x', x"eR", y', y" e R”.

(c;) The multifunction t — Ul(t, x) is lower semicontinuous for every x € R”.

(¢3) There exists L > 0 so that 3,,, (U(¢,x"), U(¢,x")) S L|x"—x"|, forall tel, x',
x”ERn.

Then
(ky) For every A e R” the set
S(x) ={xe C'(I,R"):x(a) = X and there is u € C°(I, R") such that
x'(2) = ft, x(¢), u(2)), u(t) € U¢, x(2)) for all tel}
is nonempty and arcwise connected in C*(I, R").

(ky) For amy Ay,...,A, € R" and any x;€ S(X;), i = 1,...,p, there exists a continuous
function s: R"— C'(I,R") satisfying s(A;) =x; for each i=1,...,p, and
s(A) e S(X) for all e R".

(ks) The set S = AUR” S(A) 7s arcwise connected in C*(I, R").

(ky) If there is a convex compact set K C R” such that {x(b):x € S(1), 2 € K} K, then
there exist uwe C°(I,R") and x e C'(I,R") verifying x'(¢) =f(t,x(2), u(2)),
u(2) € Ule, x(2)) for all t €1, x(a) = x(b).

Proor. Choose £ > max{L, M(1 —u)~'}. Throughout this proof, we write A
to denote the space R”, E; for the space C°(I, R"), equipped with the norm
vl = max e ®|v(t)|,, and E, to denote the space C°(I,R”), with the norm

lull, = max e * |u(¢)],. Of course, these norms are equivalent to the usual ones.
tel
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We first define, for every A€ A, v e E;,

oA, v) = uEEZ:u(t)EU(t,)\+ J-V(T)d‘i) for all tel}.

Owing to the assumptions and[11, Proposition 1.2], we see that the multifunction
t
t—> U(t, A+ Jv(r)dﬂr) is lower semicontinuous and nonempty, convex, closed-
valued. Hencae, by [10, Theorem 3.2"], there is a continuous function #: I— R™ such
13
that #(¢) e Ul ¢, A + Iv(ri) dr) for all # € I. This implies ®(X, v) # @. Moreover, the set

®(2,v) is convex and closed in E,, as a simple computation shows. Let us prove that,
for any A € A, the multifunction » — @(A, v) is a multivalued contraction from E; into
E,, with constant L& ~'. Obviously, this is achieved by establishing the inequality

(1) X (®(x,v), ®(x, w)) < Lk~ — wl|

forallv,w e E,. Pick A € A, v, w € E; and choose # € ¢(2, v). Since, due to assump-
tion (cs;), for every t eI we have

2, u(;),U(t,H jw(f)dT) sLj lo(z) — w(z)|, dr

Proposition 1.2 guarantees that, for any ¢ >0 there is a function ze ®(A,w)
fulfilling

|u(2) —z(t)|m$LJ lo(z) —w(z)|,de+¢ for all rel.

The preceding formula yields

¢
e~ u(t) —z(t)],, s e¥ [L”v —wl| jekfd7+ s] SLE o—w|, +ece ™, tel.
Hence, d,(u, ®(x, w)) <Lk |v —w|, for every u € ®(1,v). This implies (1).
A quite similar argument may be used to conclude that, for any v € E;, the multi-
function A — @(A, v) satisfies a Lipschitz condition and so is lower semicontinuous.
Next, let ¥: A X E; X E, » E; be the mapping defined by

/4
(0, 2)() =f(t, A+ Ju(f)df, u(t)), tel,
forall (A, v,4) e A X E; X E,. It is a simple matter to see that,ﬂ for every (v, u) € E; X
X E,, the function A — ¥'(}, v, #) is continuous. Moreover, for any 2 € A, the mapping
(v, u) — (X, v,u) is a contraction from E, X E, into E;, with constant Mk ~! 4 ¢ To
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prove this, pick A € A and (v, #), (w, z) € E; X E,. Because of assumption (c; ), one
has
t
W, 0, 2)() — ¥, w,2)(2)], < Mj 0() = w(z)|, de + wlalt) — 2(2)],, <
t
<Ml — w|, jedeT + wlut) = 2(2)|,, < e Mkl — wlly + e — 2],) <

< e (Mk ™+ ) max {llo = wlly, v —ll;}
for all #e I. Consequently,
O 0, 0) = O, w, 2l < (ME™! + 1) max {[lo — wlly, fl« =2}

We have now showed that the multifunction @ and the function ¥ satisfy all the as-
sumptions of Theorem 2.1.

Let I'(A, v) = ¥ (X, v, D(X,v)), (A,v) e A X E;, and let T: E; — C'(I, R") be the
operator defined by

T(w)(¢) = Jv(f)df, tel,

a

for all v € E;. Since, for any A € A, we have
) S(x) = v, + T(Fix(I'(2, *)))

where v, denotes the function # — v, (¢) = A, ¢ € I, assertion (£, ) follows immediately
from the conclusion (7;) of Theorem 2.1 and the continuity of T.

To verify assertion (k,), pick Ay,...,A,eA and choose x; € 5(2;), 7 =1,...,p.
Owing to (2), for every7 = 1, ..., p, there is v; € Fix(I'(2,, *)) such that x; = v;, + T(v;).
Thus, the conclusion (z,) of Theorem 2.1 yields a continuous function y: A — E; with
the properties y(2;) =v, for each i =1,...,p, and (1) € Fix(I'(2, *)) for all X € A.
Clearly, the mapping s: A — C'(I, R") defined by s(1) = v, + T(y(1)), A € A, is con-
tinuous and one has s(A;) =x;,, 7=1,...,p, s(1) e S(1) for every A e A.

The proof of assertion (£5) is easily accomplished bearing in mind the arcwise con-
nectedness of A and conclusion (£, ).

Finally, we show that assertion (k) is true. Let K be a convex, compact subset of A
such that

(3) {x(b):xeS(1),»e K} cK.

For any 4 € K, we set a(A) = s(A)(&), where s is a function given by conclusion (&, ).
Obviously, the mapping o: K— A is continuous and, due to (3), one has o(K) ¢ K.
Thus, by the Schauder Fixed Point Theorem, there exists A* € K such that (A *) =
= ) *. This produces two functions, z € E, andx € C' (I, R”), with the required proper-
ties: x'(2) = f(¢, x(2), u(2)), u(t) € U(z, x(¢)) for all £ € I; x(a) = x(b). Therefore, the
proof is complete. A
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RemaRrk 3.1. It is of interest to note that the conclusion (&) of the preceding theo-
rem is no longer true without assuming the multifunction U convex-valued. In fact,
consider for instance the case when f(¢,x,7y) =x +27'y and U(¢,x) = {y1,92},
(¢,,x,9) eI X R” X R", where y, and y, are two different points of R”. An easy compu-
tation shows that the set §()) is not arcwise connected for all A € A, although the func-
tion f is continuous, the multifunction U has nonempty, closed values and the hypothe-
ses (c;)-(¢c3) of Theorem 3.3 are fulfilled.
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