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Matematica. — Fixed points of multivalued contractions with nonclosed, nonconvex 
values. Nota di SALVATORE A. MARANO, presentata (*) dal Corrisp. R. Conti. 

ABSTRACT. — For a class of multivalued contractions with nonclosed, nonconvex values, the set of all 
fixed points is proved to be nonempty and arcwise connected. Two applications are then developed. In par­
ticular, one of them is concerned with some properties of the set of all classical trajectories corresponding 
to continuous controls for a given nonlinear control system. 

KEY WORDS: Multivalued contraction; Fixed point; Arcwise connectedness; Nonlinear control 
system. 

RIASSUNTO. — Punti fissi di contrazioni multivoche con valori non chiusi e non convessi. Si studia una clas­

se di contrazioni multivoche con valori non necessariamente chiusi né convessi e si dimostra che l'insieme 
dei punti fissi non è vuoto ed è connesso per archi. Del risultato si fanno due applicazioni una delle quali ri­
guarda la struttura dell'insieme delle traiettorie in senso classico corrispondenti a controlli continui di un si­
stema di controllo non lineare. 

INTRODUCTION 

Let £ be a complete metric space and let F be a multivalued contraction from E 
into itself, with nonempty values. If r(x) is closed for all x E E, Corollary 3 of [7] en­
sures that the set Fix{F) of all fixed points of F is nonempty. Since, contrary to the sin-
glevalued case, Fix{F) may have many elements, it is of interest to perform a qualitative 
study of it, for instance, from a topological point of view. 

In this framework, some years ago, B. Ricceri established the following result 
(see [13, Théorème 1]). 

THEOREM A. Let E be a Banach space, let X be a nonempty, convex, closed subset of E 
and let F be a multivalued contraction from X into itself, with convex, closed values. Then 
the set Fix(r) is a retract of E; consequently, it is arcwise connected. 

Later on, several papers have been devoted to possible extensions and applications 
of Theorem A [4,9,11,12,15]. For instance, ii X = L1 (T) for some measure space T, 
the basic assumption 

(ai ) r(x) is convex and closed for all XEX 

may be replaced by 

(a2) r(x) is bounded, closed and decomposable for all x e X 

and a satisfactory theory, including applications to multivalued differential equations, 

developed (see [4]). 
To the best of our knowledge, there are not other significant theorems concerning 

topological properties of the set Fix{F). 

(*) Nella seduta del 12 marzo 1994. 
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In the present paper we consider a multivalued contraction r of the form 
r(x) = iF($(x)),- X G X , 

where $ and Y are multifunctions satisfying the assumptions of Theorem A. Obviously, 
in this case, condition {ax ) may be not at all verified. Nevertheless, we prove that the 
set Fix(r) is nonempty and arcwise connected (really, more sophisticated results are es­
tablished; see Theorems 2.1 and 2.2). 

Next, we present two applications. The first of them (Theorem 3.1) deals with the 
arcwise connectedness of the solution set to a nonlinear equation of the type 
w G G(x) + F(x), where w is a given element of X, F is a multifunction satisfying hy­
potheses like those of Theorem A, and G is a convex process. 

The second application (Theorem 3.2) exhibits some properties of the set S(X) of all 
trajectories x e C1 ([a, b\ Rn ) corresponding to controls u eC°([a, b], Rm) for the 
nonlinear control process x' = f(t,x, u{t)), with control constraint u(t) e U(t,x) and 
initial condition x{a) = X. In particular, the arcwise connectedness in C1 ([a, bi, Rn ) of 
the sets S(X) and U S(X) is achieved. 

AeR" 

For measurable controls and Carathéodory's trajectories, results of this kind are al­
ready known [5,16]. Moreover, continuous controls have been previously employed to 
study the controllability of various nonlinear control systems by many authors (see, for 
instance, [1,8] and the references given therein). 

1. BASIC DEFINITIONS AND PRELIMINARY RESULTS 

Let (E,d) be a metric space. For everyz eE and every nonempty set XcE, we de­
fine d(ZyX) = inf d(z,x). If X and Z are two nonempty subsets of E, we define 

x E X 

J * (X, Z) = sup d{x, Z) mddH(X, Z) = max {d* (X, Z), J * (Z, X)}. A simple compu-
xeX 

tation shows that the following proposition is true. 

PROPOSITION 1.1. Let {Ex, dx ) and (E2,d2) be two metric spaces and let E = Ex X 
X E2, equipped with the metric 

d((x',y'),(x"yy"))=max{d1(x',x"),d2(y',y")}, ( x ' j ' ) , ( x " j " ) e £ . 

Then, for every pair of nonempty sets X ' X Y', X" X Y" çE, one has 

dH(X' X y ,X" X Y") ^ maz{dlH(X',X"),d2H(Y', Y")}. 

Let Ei and E2 be two nonempty sets. The symbol $:El-^2El means that $ is a mul­

tifunction from Ei into E2, namely a function from Ex into the family of all subsets of 

E2. The range of $ is the set ${El ) = U $(x). When &(EX ) = E2, we say that the 
x e £ i 

multifunction $ is surjective. The graph of $, denoted bygr($)y is the set {{x, y) G EX X 
X E2 : y G $(x)}; HE1 = E2, we write Fix($) for {x eE1:x e <P(x)}. A function <p'.Ex-^ 
—> E2

 s u c n that p(x) G §(x) for all x G E ì is said to be a selection of $. For every set 
YcE2, we define $~ (7) = { x e £ j : $(x) fl 7 ^ 0}. If Ex and £2 are two topological 
spaces and, for any open set Yc E2, the set $ ~ (Y) is open in £ r , we say that the multi-
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function $ is lower semicontinuous. When (Ex, dx ) and (E2, d2 ) are two metric spaces 
and there is a real number L ^ 0 so that d2H($(xf), $(*")) ^ L ^ (*',*") for all x', 
x" E Ej , we say that $ satisfies a Lipschitz condition with constant L. If L < 1, the mul­
tifunction $ is said to be a multivalued contraction. It is a simple matter to see that any 
multifunction verifying a Lipschitz condition is lower semicontinuous. 

Now, let (Ely IHIi) a n d (E2, IHI2) De two real normed spaces. The multifunction 
<2> is said to be a convex process if, for every x', x" E EX and every a, /3 E [0, + °° [, 
one has a$(x ' ) + /3$(*" ) Ç $(ax ' + /&" ). If $ is a surjective convex process, dx is the 
metric induced by || - ||x and dx is the zero vector of Ely we define L$ = 
= supj^il^! , ^ " ( y D ^ Ë ^ , IMI2 ^ l } . When Ex and E 2

a r e Banach spaces and the set 
gr(<P) is closed in ElxE2, the Corollary p. 131 of [14] guarantees that L$ < + 0°. 

Given a positive integer n, we write (Rn, | • \„ ) for the real Euclidean n-space and 
S„ for the metric induced by | • \„ . If I is a compact real interval, the symbol C°(I, Rn) 
is used to denote the space of all continuous functions u: I—>Rn, equipped with the 
norm ||#||c°(i,in = max |#(/)|„. Moreover, C1(I9R") stands for the space of all 

t e I 

v eC° (I, Rn), which are continuously differentiable in I. The norm in this space is de­
fined by IMIcMi,!**) = lkllc°(J,Kw) + lk'llc°(i,m> where v' is the derivative of v. 

Proposition 5 in [2, p. 44] combined with Theorem 3.2" of [10] yields the 
following 

PROPOSITION 1.2. Let I he a compact real interval and let $: I —> 2R be a lower semi-
continuous multifunction, with nonempty, convex, closed values. Suppose ̂ : I —> R" is a 
continuous function and p: I - * [0, +<*>[ is a lower semicontinuous function satisfying 
Sn (<p(t), $(t)) ^ fi(t) for all t E I. Then, for every e > 0 there is a continuous selection <p of 
$ such that \<p(t) - <p(t)\„ ^ p(t) + e for all t E I. 

Let E be a topological space and let X be a nonempty subspace of E. We say that X is a 
retract of E if there exists a continuous function r: E—>X such that r(x) =x for all xeX. 
The space X is said to be an absolute extensor for paracompact spaces if, for every para-
compact space A, every closed subset A 0 of A and every continuous function 90:A0-^X, 
there is a continuous function 9 :A^X such that <p(X) = q>0(X) for all AEA 0 . The following 
proposition establishes a close connection between the concepts just defined. 

PROPOSITION 1.3. Let E be a Banach space and let Xbea nonempty subspace ofE. Then X 
is a retract of E if and only if it is an absolute extensor for paracompact spaces and is closed. 

The proof is easily performed by using Example 1.3* and Theorem 3.2" of [10]; so 
we omit it. 

As a simple consequence of the preceding proposition, we obtain that every contin­
uous image of a retract of a Banach space is an arcwise connected space. It is also possi­
ble to prove [6] that any arcwise connected space is a continuous image of an absolute 
retract, according to [3, p. 85]. 

Finally, we observe that Proposition 1.3, together with Theorem 1 of [13], produces 
Theorem A of Introduction. 
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2. MAIN RESULT 

In this and in the following section, A denotes a paracompact space, (E1, || • ||j ) and 
(E2, || • ||2 ) are two Banach spaces, d{ (i = 1, 2) stands for the metric induced by || • ||/, X 
is a nonempty, convex, closed subset o£ E1 and Y is a nonempty, convex, closed subset 
o f £ 2 . 

We are in a position now to establish the main result of this paper. 

THEOREM 2.1. Suppose $: A X X ^ 2 7 and T: A X X X Y —> 2X are two nonempty, 
convex, closed-valued multifunctions, with the following properties: 

{ai) The multifunction X^§{X,x) is lower semicontinuous for every x e l 

(a 2) There is a continuous function L: A—» [0, 1[ such that d2H($(X,x'), <P(X,x")) ^ 
^L(X)\\x'-x"\\1for all A G A , X ' , x " e l 

(a3) The multifunction X-^Y(X,x,y) is lower semicontinuous for every (x,y) eXx Y. 

{aA) There is a continuous function M: A —> [0, 1[ such that 

dlH(Y(X,x\yf),nX,x\yn)^M(X)mâx{\\xf-xff\\ly\\y
f-y''\\2} 

for all A e A, (x',yf), ( x " j " ) e X x Y 

For every (X,x) e A X X, we define r(X,x) = Y(X,x, $(X,x)). Then 

(ii) The set Fix(r{X, •)) is nonempty and arcwise connected for all A e A. 

(t2) For every X1,..., Xp e A and every X; G Fix(r(X;, •)), / = 1,..., p, there is a continuous 
function y: A -^Xsuch that y(Az) = x^for each i = 1, ...,p, and y(X) G Fix(r(X, •)) 
for all A G A . 

PROOF. Fix A G A and set, for every (x,y)eXx Y, H(X,x,y) = Y(X,x,y) X 
X $(X,x). Owing to Proposition 1.1 and assumptions (a2) and (a4), one has 

dH(Z(X,x',y'),Z(X,x",y"))^ 

^max{d1jnXyx\yf)yY(Xyx\y^)J2J^X,xf),0(Xyx
ff))}^ 

^max{L(X),M(X)}-mâx{\\x' -x"\\i,\\yf -y"\\2} 

for all (x', y '), (x", y") eX X Y, so that the multifunction (x,y) —>U(A,x,y) is a mul­
tivalued contraction on X X Y, with nonempty, convex, closed values. Therefore, by 
Theorem A, the set Fix(Z(X, •)) is nonempty and arcwise connected in Ex X E2. If 
pi'.Ei X E2->E1 denotes the projection onto the first coordinate, a simple computa­
tion shows that Fix(r(X, •)) = p\ (Fix(U(X, •)))• Thus, assertion (i1 ) follows immediately 
from the continuity of pi. 

Let us prove assertion (i2). Pick A1?..., Xp G A and, for each / = 1, ...,/>, choose 
Xi G Fix{r{Xi, •))• Then, there are yx,..., yp G Y satisfying (xt-,yt-) G Fix{H{Xiy •)), i ~ 
= 1,..., p. We already know that, for any A G A , the multifunction (x, y ) —> U( A, x, y ) is a 
multivalued contraction on X x Y, with constant max{L(A), M(A)} and nonempty, 
convex, closed values. Furthermore, because of assumptions [ax) and (a3), for any 
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(x,y) eX X Y, the multifunction À —»Ì7(À, x,y) is lower semicontinuous. By [11, The­

orem 3.3], this yields a continuous mapping cr: A —> X X Y such that cr( A, ) = (xiy y{ ) for 

each / = 1, . . . , p , and <r(A) e Fix(2(X, •)) for all A E A. We define y(A) = />! (<j(A)), A e 

e A. Since 7 is a continuous function and one has y(Xi)=xï for every 

i = 1, . . . , p , 7(A) eFix(r(X, •)) for all A E A, the proof is complete. A 

The hypotheses of Theorem 2.1 do not imply that the set Fix(r(X, •)), A E A, is a 

retract of E1, as the following example shows. 

EXAMPLE 2.1. Set ( £ i , | H l i ) = (R2, H 2 ) and (E2 , IMI2) = ( # , | • 11 ). Moreover, 

choose X={xsE1: | | x | | 1 ^ 2 " 1 } , Y= [0, 2TT], $ ( A , X ) ' = 7 for all (A,*) e A XX, 

F ( A , x , y ) = { (2 - 1 cos ) ; , 2_ 1sin3/)} forali (A, x, y) E A X X X Y. It is a simple matter 

to see that the multifunctions <P and Y satisfy all the assumptions of Theorem 2.1. 

Hence, by conclusion (i1 ), the set {x eX: x G Y(X, X, ^(A, X))} is nonempty and arc-

wise connected. Nevertheless, since one has 

{ x e X : x e F ( A , x , $ ( A , * ) ) } = {xeE1: \\x\h = 2~1}, 

it is not a retract of E1 (see, for instance, Proposition 3.9 in [3,p. 12]). 

We conclude this section with Theorem 2.2 below, which is a version of Theorem 

2.1 interesting enough to be stated explicitly. 

THEOREM 2.2. Let $: X —» 2Y and Y: Y^>2X he two nonempty, convex, closed-valued 

multifunctions, satisfying a Lipschitz condition with constants L and M respectively. For 

every x E X , we define r(x) = Y($(x)). If LM < 1, then the set Fix(T) is nonempty and 

arcwise connected. 

PROOF. Obviously, we may suppose M > 0. Choose k E ] L , M~l [ and associate to 

each y E E2 the norm (equivalent to the previous one) \\y ||̂  = k _ 1 \\y ||2 • A simple com­

putation ensures that 

dkH{<I>{x'),${x")) ^Lk~l\\x' - x'M and dlH(Y(y ' ) , Y(y")) ^ Mk\\y' - y"\\k 

for all x ', x" E X, y ', y" E Y, where <4 denotes the metric induced by || • ||^. Hence, the 

multifunctions $ and Y are now multivalued contractions with constants Lk ~1 and Mk 

respectively, and nonempty, convex, closed values. So, the same arguments used in the 

proof of Theorem 2.1 yield the desired conclusion. A 

REMARK 2.1. Of course, it is also possible to formulate versions of Theorem 2.1 
where the composition of a finite number q, q > 2, of multifunctions is considered. 
They are not in any way more difficult to prove than the special case q = 2. 

3. SOME APPLICATIONS 

In this section we present two applications of Theorem 2.1. The first of them deals 

with the arcwise connectedness of the solution set to a nonlinear equation. 
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THEOREM 3.1. Let Ex and E2 be over the real number field. Suppose F: A X Ex —» 2El 

is a nonempty, convex, closed-valued multifunction, having the following properties: 

(hi) The multifunction A —>F(A, x) is lower semicontinuous for all x EEX. 

(b2) There is a continuous function L:A—»[0, 1[ so that d2tì{F{X, x ' ) , F(X, x" )) ^ 
^ L(A)||* ' — x"^ for every A e A, xf, x" E EX . 

Moreover, let G: E1-^2El be a nonempty-valued, surjective, convex process, such 
that 

(b3) the set gr(G) is closed in Ex X E2 and LG < 1. 

Then 

(j\) The set S(Xyw) = {x E EX : w e G(x) + F(X, x)} is nonempty and arcwise connected 
for all X EL A, w EE2. 

(j2 ) For every Xi,..., Xp e A, every w e E2 and every x{ e S{Xiyw), i = 1,...,p, /£<?r<? ^ a 
continuous function s: A^>EX such that s(X{) — x^for each i = 1, ...,/>, and s(X) e 
G S(X, w) for all XEA. 

PROOF. Fix w EE2. For every X EA, X E E1, y EE2ì we define 

$(X,x) =w-F{Xyx), r{X,x,y) = G~{y), r{X,x) = Y(X,x, $(X,x)) . 

Since one has S(X,w) = Fix(r(Xy •)), A G A, to accomplish the proof it is sufficient to 
verify that all the hypotheses of Theorem 2.1 are fulfilled. Of course, the multifunction 
$ has nonempty, convex, closed values. Moreover, conditions {a± ) and (a2 ) are a sim­
ple consequence of {bx ) and (b2 ) respectively. Due to the assumptions, the multifunc­
tion Y has nonempty, convex, closed values and, by Theorem 6 of [14] and (b3 ), it is a 
multivalued contraction from E2 into Ex, with constant LG. Therefore, the conditions 
(a3) and (a4) of Theorem 2.1 are verified too. A 

The hypotheses of the preceding theorem do not guarantee that the set S(X,w), 
XEA, W EE2, is a retract of Ex. This may be concluded from the following 

EXAMPLE 3.1. Suppose (E2, || • ||2 ) is a nonreflexive Banach space and define B2 = 
= {y E E2 : \\y ||2 ^ 1}. If (Ex, || • \x ) = (R, | * 11 ) and <//: E2 —> Ex is a continuous linear 
functional such that ||<//|| = sup |^(^)|i < 1 and |</>(;y)|i < ||</>|| for all y EB2, we set 

yeB2 

F(X,x) = B2 and G{x) = <p - 1 (x) for all A G A, x E E1. A straightforward argument en­
sures that the multifunctions F and G satisfy all the conditions of Theorem 3.1. Never­
theless, since one has 

{x E E, : d2 E G(x) + F(A, x)} = { X G £ I : G(X) H E2 * 0} = ] - ||^||, ||^||[ 

(02 denotes the zero vector of E2), the set S(X, 02) is not a retract of Ej . 

Using Theorem 2.2 in place of Theorem 2.1, it is possible to establish the following 
result, which can be regarded as a multivalued version of Théorème 4 in [13]. 
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THEOREM 3.2. Let Ex and E2 be over the real number field. Let F: E1 —>2El be a 
nonempty, convex, closed-valued multifunction, satisfying a Lipschitz condition with con­
stant L. Let G: Ex —» 2Ez be a nonempty-valued, surjective, convex process, such that the set 
gr(G) is closed in ^ X E2. If L*LG< 1, then, for any w e E2} the set {x eE1:w G 
eG(x) + F(x)} is nonempty and arcwise connected. 

The second application we wish to emphasize, is concerned with some properties of 
the set of all classical trajectories corresponding to continuous controls for a given non­
linear control system. 

We denote by m, n two positive integers and by I the compact real interval 
[a,bl 

THEOREM 3.3. Let f: I X Rn X Rm -+Rn be a continuous function and let U: I X 
X Rn —> 2R be a nonempty, convex, closed-valued multifunction. Suppose the following con­

ditions hold: 

(cj There are M > 0 and p e [0, 1[ such that \f{t,x'yy
f) ~ f{t,x" yy")\n^ 

Mix1,-x"\n+(j.\yf-y"\mfor all tel, x\ x"eRn
y y\ y"eRm. 

(c2) The multifunction t-^U(t,x) is lower semicontinuous for every x G Rn. 

(c3) There exists L > 0 so that SmH(U(t,xf), U(t,x")) ^ L\x' - x" \nfor all tel, x', 
x"eRn. 

Then 

(ki ) For every X G Rn, the set 

S(X) = {xeCHl, Rn ): x(a)=X and there is ueC° (I, Rm ) such that 

x' {t) =f(t,x(t),u(t)),u(t) G U(tyx(t)) for all tel} 

is nonempty and arcwise connected in C1{I,Rn). 

(k2) For any Ax,..., Xp e Rn and any x^eS(Xj), i — 1, . . . ,p, there exists a continuous 
function s: Rn^>Cl{I,Rn) satisfying s{X{) = Xj for each / = l , . . . , p , and 
s{X) G S(X) for all XeRn. 

(k3) The set S = U 5(A) is arcwise connected in Cl{I,Rn). 
X&Rn 

(k4) If there is a convex compact set KcRn such that {x(b): x e S(X), X e K} ç K, then 
there exist u eC°{I,Rm) and xeCl{IyR

n) verifying x' {t) =f{t,x(t)yu(t))y 

u(t) e U(t, x(t)) for all t <=I, x(a) = x(b). 

PROOF. Choose k > max{L,M(l - f / ) - 1 } . Throughout this proof, we write A 
to denote the space Rn, Ex for the space C°(I, Rn), equipped with the norm 
IHIi = maxe~kt \v(t)\„, and E2 to denote the space C°(I, Rm), with the norm 

tel 

\\u\\2 = max e~kt\u(t)\m. Of course, these norms are equivalent to the usual ones. 
t&i 
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We first define, for every A G A, v G E1, 

<PU,*) = u (=E2: u{t) G [ J / , H V(T)CIT\ for all t G I 

Owing to the assumptions and [11, Proposition 1.2], we see that the multifunction 

t->U\t, A + f(r)<ÌT is lower semicontinuous and nonempty, convex, closed-

valued. Hence, by [10,Theorem 3.2"], there is a continuous function u: I-^>Rm such 

that u{t) e U It, A + J ^(T) J T for all / e I. This implies $(A, v) ^ 0. Moreover, the set 

${X,v) is convex and closed in E2, as a simple computation shows. Let us prove that, 
for any A G A, the multifunction v —> $(X, v) is a multivalued contraction from E1 into 
E2, with constant Lk ~1. Obviously, this is achieved by establishing the inequality 

(1) dt (<2>(A, v), <P(A, w)) ^ Lk ~l \\v - w\\x 

for all v, w G Ex. Pick A G A ^ ^ G ^ and choose u e$(X,v). Since, due to assump­
tion (c3 ), for every / G I we have 

aj«(/), UkA + J«;(T)</T U . i J k(T)-^(T)|,jT, 

Proposition 1.2 guarantees that, for any e > 0 there is a function ze$(X,w) 
fulfilling 

|«(f) - z(t)\m ^ L J |^ (T) - W(T) \n du + e for all / e l . 

The preceding formula yields 

-kt u(t)-z(t)\ ^e~kt \\v-w\\x y 7 dr + i ^Lk-1\\v-w\\1+. se'**, tel. 

Hence, d2(u, <2>(A, w)) ^ Lk'1 \\v — w\\i for every u G <P(A, t>). This implies (1). 
A quite similar argument may be used to conclude that, for any v G EX , the multi­

function A—><2KA,̂ ) satisfies a Lipschitz condition and so is lower semicontinuous. 
Next, let Y: AX Ex X E2^>El be the mapping defined by 

Y(X,vyu)(t) = / * , * + {v(r)dT,u(t) , f e l , 

for all (A, t;, u) G A X £x X E2. It is a simple matter to see that, for every (v, u) G Ex X 
X E2, the function A -> Y(X, 0, u) is continuous. Moreover, for any A e A, the mapping 
(#,#)—> Y(X, v, u) is a contraction from Ex X E2 into E1, with constant Mk ~1 4- f*. To 
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prove this, pick A G A and (v, u), (w, z) eEx X E2. Because of assumption (c1 ), one 
has 

I T(X, v, u)(t) - F(A, w, z)(t)\„ ^MJ \V{T) - w(r)\ndz + p\u(t) - z(t) \m =S 
a 

t 

^M\\v - w\l IekTdr + [j.\u{t) - z(t) \m ^ ekt (Mk ~l \\v - w\\x + ^||« - z||2 ) ^ 
a 

tZ ekt (Mk-1 + [Ji) max{\\v - w\\ly\\u - z\\2} 

for all tel. Consequently, 

| |FU, v,u)- T(X, wy z)\ ^(Mk-'+tJ.) max{\\v - w\\x, \\u - z\\2 } . 

We have now showed that the multifunction $ and the function Y satisfy all the as­
sumptions of Theorem 2.1. 

Let T(A, v) = T(X, v, $(A, v)), (A, v)eAx Eh and let T:E1-^C1 (I, R" ) be the 
operator defined by 

T(v){t) = \v(r)dTy tel, 

for all v e Ex. Since, for any A G A, we have 

(2) S(X)=vx + T(Fix(r(X,-))), 

where t> A denotes the function / —» t>A (/) = A, / e l , assertion ( ^ ) follows immediately 
from the conclusion (/]_ ) of Theorem 2.1 and the continuity of T. 

To verify assertion (k2), pick A1?..., A P G A and choose x^eSiX^), / = l , . . . ,p . 
Owing to (2), for every/ = 1,...,/?,.there is ^ e Fix(T{ A,-, •)) such that Xj = vx. + T(^). 
Thus, the conclusion (/2 ) of Theorem 2.1 yields a continuous function y: A —>£i with 
the properties y(Az-) = ^ for each / = 1, . . . ,p, and y(A) eFix(r(X, •)) for all A G A. 
Clearly, the mapping s: A —» C1 (I, J?" ) defined by s{X) = vx + T(y(A)), A G A, is con­
tinuous and one has s(X;) = xt-, i = 1,...,/?, j(A) E5"(A) for every A G A. 

The proof of assertion (k3 ) is easily accomplished bearing in mind the arcwise con­
nectedness of A and conclusion (k2). 

Finally, we show that assertion (k4 ) is true. Let K be a convex, compact subset of A 
such that 

(3) {x(b):xeS(X),XeK}cK. 

For any A e K, we set cr(A) = s(X)(b), where s is a function given by conclusion (k2 ). 
Obviously, the mapping a: K^A is continuous and, due to (3), one has <J(K) çK. 
Thus, by the Schauder Fixed Point Theorem, there exists A* G K such that cr(A*) = 
= A *. This produces two functions, u G E2 and x eCl{I,Rn), with the required proper­
ties: x'(t) = f(t,x(t),u(t)), u(t) G U(t,x(t)) for all tel; x(a) = x(b). Therefore, the 
proof is complete. A 
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REMARK 3.1. It is of interest to note that the conclusion {kx ) of the preceding theo­
rem is no longer true without assuming the multifunction U convex-valued. In fact, 
consider for instance the case when f(t,x,y) = x + 2~ly and U(t,x) = {yi,y2}, 
(t,x,y) el X Rn X Rn, where yx and y2 are two different points of Rn . An easy compu­
tation shows that the set S(X) is not arcwise connected for all À G A, although the func­
tion/is continuous, the multifunction U has nonempty, closed values and the hypothe­
ses (ci)-(c^) of Theorem 3.3 are fulfilled. 
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