ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

Roberto Tauraso

On fixed points of holomorphic maps of simply connected proper domains in ${\cal C}$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.2, p. 197–202.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1994_9_5_2_197_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Geometria. — On fixed points of holomorphic maps of simply connected proper domains in C. Nota di ROBERTO TAURASO, presentata (*) dal Socio E. Vesentini.

ABSTRACT. — A criterion for the existence of fixed point of one-dimensional holomorphic maps is established.

KEY WORDS: Fixed point; Holomorphic map; Wolff point.

RIASSUNTO. — Punti fissi di funzioni olomorfe. Si stabilisce un criterio di esistenza di punto fisso per funzioni olomorfe di un dominio proprio, semplicemente connesso di C.

Let *D* be a simply connected, proper domain in *C*, and let *f* be a holomorphic map of *D* into *D*, different from the identity map. According to the Denjoy-Wolff theorem, unless *F* is an elliptic automorphism of *D*, the iterates $f^k = f \circ f \dots \circ f$ of *f* converge as $k \to \infty$, for the topology of uniform convergence on compact sets, to a constant function, mapping *D* onto a point $c \in \overline{D}$ (the closure of *D*). If $c \in D$ then f(c) = c and *c* is the unique fixed point of *f*. In the present *Note*, a sufficient condition for the existence of a fixed point $c \in D$ of *f* will be established, together with a localization of *c*.

After collecting some known facts in 1, 2 will be devoted to investigating the case of the open unit disc and 3 to the general case.

1. Let $\Delta = \{z \in C : |z| < 1\}$ be the open unit disk of C. For $a \in \Delta$ the Möbius transformation

$$M_{a}(z) = \frac{z-a}{1-\overline{a}z} \qquad \forall z \in \Delta$$

is a holomorphic automorphism of Δ , which can be extended continuously to a homeomorphism of $\overline{\Delta}$ onto itself. This extension will be denoted by the same symbol M_a .

On Δ we introduce the Poincaré distance $\rho(z, w) = \tanh^{-1} |M_w(z)|$, $\forall z, w \in \Delta$ and define the open ρ -ball of center $w \in \Delta$ and radius R > 0: $B_{\rho}(w, R) = \{z \in \Delta : \rho(z, w) < R\} \subset \Delta$, and the horocycle of center $\tau \in \partial \Delta$ and radius R > 0: $E(\tau, R) = \{z \in \Delta : |\tau - z|^2 / (1 - |z|^2) < R\} \subset \Delta$. Then $\overline{E(\tau, R)} \cap \partial \Delta = \{\tau\}$ and the open sets $B_{\rho}(w, R)$ and $E(\tau, R)$ are euclidean disks contained in Δ such that

$$\bigcup_{R>0} B_{\rho}(w,R) = \bigcup_{R>0} E(\tau,R) = \Delta.$$

For any $f \in \text{Hol}(\Delta, \Delta)$, *i.e.* a holomorphic map f from Δ to Δ , let Fix f be the set of fixed points of f: Fix $f \stackrel{d}{=} \{z \in \Delta : f(z) = z\}$. We collect here some known facts (cf. *e.g.* [1]):

(*) Nella seduta dell'8 gennaio 1994.

1) f is a contraction for the distance ρ

(1)
$$\rho(f(z), f(w)) \leq \rho(z, w) \quad \forall z, w \in \Delta;$$

moreover, equality holds for some $z \neq w \in \Delta$ iff it holds for every $z, w \in \Delta$ iff $f \in Aut(\Delta)$.

2) (Julia's Lemma). Let $\sigma \in \partial \Delta$ and

$$\liminf_{z\to\sigma} \frac{1-|f(z)|}{1-|z|} \stackrel{d}{=} \lambda_f(\sigma).$$

If $\lambda_f(\sigma) < \infty$ then there exists a unique $\tau \in \partial \Delta$ such that $f(E(\sigma, R)) \subset E(\tau, \lambda_f(\sigma)R)$, $\forall R > 0$; moreover

$$\lim_{r \to 1^{-}} f(r\sigma) = \tau \quad \text{and} \quad \lim_{r \to 1^{-}} |f'(r\sigma)| = \lambda_{f}(\sigma).$$

3) (Wolff's Lemma). If Fix $f = \emptyset$ then there exists a unique point $\tau = \tau(f) \in \partial \Delta$, Wolff point of f, such that

(2)
$$f(E(\tau, R)) \in E(\tau, R) \quad \forall R > 0$$

4) As a consequence of 1), if f has two different fixed points in Δ then f is the identity map in Δ .

5) If f is not an elliptic automorphism then the sequence of iterates $\{f^k\}_N$ converges, uniformly on compact sets of Δ , to a point c of $\overline{\Delta}$. If Fix $f \neq \emptyset$ then $c \in \Delta$ and f(c) = c; if Fix $f = \emptyset$ then $c = \tau(f) \in \partial \Delta$, the Wolff point of f.

The next result was established by Goebel [6] in a more general context and will be useful in the following.

For α , $\beta \in \Delta$, let $K_{\alpha}^{\beta} \stackrel{d}{=} \{ z \in \overline{\Delta} : |1 - \overline{\beta}z|^2 / (1 - |\beta|^2) \le |1 - \overline{\alpha}z|^2 / (1 - |\alpha|^2) \}$, and let

(3)
$$K \stackrel{d}{=} \bigcap_{\alpha \in \Delta} K_{\alpha}^{f(\alpha)} .$$

If $\operatorname{Fix} f \neq \emptyset$ then $K = \operatorname{Fix} f$, otherwise $K = \tau(f)$.

Now, we conclude this first part with some classical results on bounded holomorphic function theory (see [8, 5, 7]). Consider a family $\{\alpha_j\}_J$ of points in Δ (not necessarily all different), indexed by a set J of consecutive positive integers starting from 1. With # J we will mean the cardinality of the set J.

Set for $1 \le n \le \#J$

$$B_n(z) \stackrel{d}{=} \prod_{j=1}^n \left(- |\alpha_j| / \alpha_j \right) \left((z - \alpha_j) / (1 - \overline{\alpha}_j z) \right) \quad \forall z \in \Delta$$

with the convention that $|\alpha_j|/\alpha_j = 1$ when $\alpha_j = 0$. If the family $\{\alpha_j\}_J$ is such that $\sum_{j \in J} (1 - |\alpha_j|) < \infty$ then we can define the Blaschke product *B* associated to that family: if *J* is empty then $B(z) \stackrel{d}{=} 1$ for all $z \in \Delta$, if *J* is finite then *B* is B_n with n = #J, while in

ON FIXED POINTS OF HOLOMORPHIC MAPS ...

the infinite case we set

$$B(z) \stackrel{d}{=} \lim_{n \to \infty} B_n(z) \quad \forall z \in \Delta.$$

REMARK. The definition of *B* is independent of the ordering of the elements α_j . The principal properties of the Blaschke product are:

1) when $\#J = \infty$ then the partial products $B_n \to B$ uniformly on compact sets of Δ ;

2)
$$B \in \operatorname{Hol}(\Delta, \Delta);$$

3) $|B(r\sigma)| \to 1$ when $r \to 1^-$ for a.e. $\sigma \in \partial \Delta$ with respect to the Lebesgue measure on $\partial \Delta$ (that is B is an inner map);

4) the zeros of B in Δ are exactly $\{\alpha_j\}_J$ and a zero in the family is repeated as many times as its multiplicity.

The map
$$f \in \text{Hol}(\Delta, \Delta)$$
 has a factorization of the form
(4) $f(z) = B(z)g(z) \quad \forall z \in \Delta$

where B is a Blaschke product with zeros the family $\{\alpha_j\}_J$ that are exactly the zeros of f with the same multiplicities and $g \in \text{Hol}(\Delta, \Delta)$ is without zeros in Δ .

2. It is easy to verify that if $\sigma, \tau \in \partial \Delta, t_0 > 0$ and $f(E(\sigma, R)) \subset E(\tau, t_0 R)$ for all R > 0then $0 < \lambda_f(\sigma) = \min \{t > 0: f(E(\sigma, R)) \subset E(\tau, tR) \forall R > 0\} \le t_0 < \infty$. For this reason $\lambda_f(\sigma)$ is called the boundary dilatation coefficient.

Hence, by Wolff's lemma, if f has not a fixed point in Δ then

$$\lambda_f(\tau(f)) \leq 1.$$

The next proposition follows easily from some basic results due to Carathéodory (see [3, Sections 298-300] and cf. also [2]):

PROPOSITION 2.1. Let f, g and b be maps \in Hol (Δ, Δ) , such that f = gb in Δ (g and b are divisors of f) then

(6)
$$\lambda_f(\sigma) = \lambda_g(\sigma) + \lambda_b(\sigma) \quad \forall \sigma \in \partial \Delta.$$

Moreover let $\{f_n\}_N \subset \text{Hol}(\Delta, \Delta)$, if f_n is divisor of f, *i.e.* $f = f_n g_n$ with $g_n \in \text{Hol}(\Delta, \Delta)$, for every n and $f_n \to f$ uniformly on compact sets of Δ , then

(7)
$$\lambda_{f_{\sigma}}(\sigma) \rightarrow \lambda_{f}(\sigma) \quad \forall \sigma \in \partial \Delta$$
.

Now, since the following relation holds

(8)
$$1 - |M_a(z)|^2 = \left((1 - |a|^2)(1 - |z|^2)\right) / |1 - \bar{a}z|^2 \quad \forall z, w \in \overline{\Delta},$$

it is easy to compute λ_f when f is a Blaschke product:

LEMMA 2.2. Let B be the Blaschke product associated to the family $\{\alpha_i\}_I$

then for all $\sigma \in \Delta$

$$\lambda_B(\sigma) = \sum_{j \in J} \left(1 - |\alpha_j|^2\right) / |\sigma - \alpha_j|^2.$$

PROOF. If the family $\{\alpha_i\}_I$ is empty then there is nothing to prove.

Assume that $\# J \ge n > 0$: we can write the partial product of order *n*, B_n as product of *n* Möbius transformations

$$B_n(z) = e^{i\theta_n} \prod_{j=1}^n M_{\alpha_j}(z) \quad \text{with} \quad e^{i\theta_n} = \prod_{j=1}^n \left(- \left| \alpha_j \right| / \alpha_j \right) \in \partial \Delta \,.$$

Hence (6) and (8) yield for $\sigma \in \partial \Delta$

$$\lambda_{B_n}(\sigma) = \sum_{j=1}^n \lambda_{M_{\alpha_j}}(\sigma) = \sum_{j=1}^n \left(1 - |\alpha_j|^2\right) / |\sigma - \alpha_j|^2.$$

If $\#J = \infty$, since $B_n \to B$ uniformly on compact set of Δ , then by (7)

$$\lambda_B(\sigma) = \lim_{n \to \infty} \lambda_{B_n}(\sigma) = \sum_{j=1}^{\infty} \left(1 - |\alpha_j|^2\right) / |\sigma - \alpha_j|^2. \qquad \Box$$

For $\alpha, \beta \in \Delta$ the set K_{α}^{β} (defined in § 1) depends essentially on the distance function ρ . In fact by (8) it is easy to prove that $K_{\alpha}^{\beta} \cap \Delta = \{z \in \Delta: \rho(z, \beta) \leq \rho(z, \alpha)\}$. Namely, in the case when β and α are different, the part of Δ that contains β and is delimited by the non-euclidean bisector of the non-euclidean segment with extreme points α and β , while $K_{\alpha}^{\alpha} = \overline{\Delta}$:

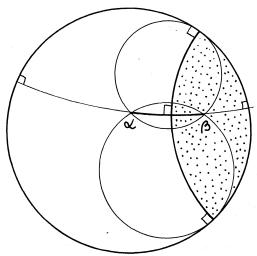


Fig. 1. – The set K_{α}^{β} is the dotted part of the picture.

3. If $D \in C$ is a domain we can define the Carathéodory pseudo-distance on D (see for example [4]) by $\rho_D(z, w) \stackrel{d}{=} \sup \{\rho(g(z), g(w)) : g \in \operatorname{Hol}(D, \Delta)\}$. This pseudo-distance is contracted by holomorphic maps, in the sense that if D_1 and D_2 are two domains of C and $F \in \operatorname{Hol}(D_1, D_2)$, then $\rho_{D_2}(F(z), F(w)) \leq \rho_{D_1}(z, w) \forall z, w \in D_1$. Since

200

 $\rho_{\Delta} = \rho$, Riemann's mapping theorem implies that if D is a proper simply connected domain of C and F is any biholomorphic map from D onto Δ then ρ_D is a distance in D and

(9)
$$\rho_D(z, w) = \rho(F(z), F(w)) = \tanh^{-1} |M_{F(z)}(F(w))| \quad \forall z, w \in D.$$

So, it is possible to define, likewise the case of $D = \Delta$,

(10)
$$K_{\alpha}^{\beta} \{D, \rho_{D}\} \stackrel{a}{=} \{z \in D : \rho_{D}(z, \beta) \leq \rho_{D}(z, \alpha)\} \quad \forall \alpha, \beta \in D.$$

Let *D* be a proper simply connected domain of *C* and $f \in \text{Hol}(D, D)$. Assume that *f* is neither constant nor the identity map. Then, for $\zeta \in D$, $f^{-1}(\zeta)$ is a descrete subset of *D*. Fixing arbitrarly an ordering and repeating each element with its multiplicity, we construct from this set the family $\{\alpha_j\}_J$ of the counterimages of ζ . The following theorem yields a sufficient condition about the geometrical behaviour of the counterimages of ζ for the existence and uniquess of a fixed point of *f* in *D*.

THEOREM 3.1. If there exists $R \ge 0$ such that

(11)
$$\# \{ j \in J : \alpha_j \in B_{\rho_D}(\zeta, R) \cup \{\zeta\} \} \stackrel{a}{=} C(\zeta, R) \ge (1 + \tanh R)/(1 - \tanh R)$$

then f has one fixed point in D. Furthermore, this fixed point belongs to the set $\bigcap_{j \in J} K_{\alpha_j}^{\zeta}(D, \rho_D)$.

PROOF. By (9) and (10), is is sufficient to prove the theorem in the case $D = \Delta$.

Uniqueness follows from § 1. Since the case R = 0 is trivial, assume that R > 0. The map f has a fixed point in Δ iff the same happens to $\tilde{f} = M_{\zeta} \circ f \circ M_{\zeta}^{-1}$. Moreover, by (4) \tilde{f} can be written as f = Bg, where B is the Blaschke product associated to the family of the zeros of \tilde{f} , that is to $\{M_{\zeta}(\alpha_j)\}_J$. By the previous lemma, and by (6), for every $\sigma \in \partial \Delta$

(12)
$$\lambda_{\tilde{f}}(\sigma) \geq \lambda_{B} = \sum_{j \in J} \left(1 - |M_{\zeta}(\alpha_{j})|^{2}\right) / |\sigma - M_{\zeta}(\alpha_{j})|^{2}.$$

Since by the hypothesis there exist $C(\zeta, R)$ elements of the family $\{\alpha_j\}_J$ such that $\rho(\zeta, \alpha_j) < R$, that is $|M_{\zeta}(\alpha_j)| < \tanh R$, we have by (12) and (11)

$$\lambda_{\bar{f}}(\sigma) \ge \sum_{j \in J} \frac{1 - |M_{\zeta}(\alpha_j)|}{1 + |M_{\zeta}(\alpha_j)|} > C(\zeta, R) \frac{1 - \tanh R}{1 + \tanh R} \ge 1.$$

By (5), this means that there does not exist the Wolff point of \tilde{f} . Hence f has a fixed point in Δ .

The second part of the theorem follows immediately from (3). \Box

For example, any map $f \in \text{Hol}(\Delta, \Delta)$ that has at least three zeros or a zero with multiplicity ≥ 3 in the set $\{z \in \Delta : |z| < 1/2\}$ satisfies the hypothesis and then has a fixed point in Δ .

Note that, if we want to construct a map $f = e^{i\varphi}B \in \text{Hol}(\Delta, \Delta)$, with $\varphi \in \mathbf{R}$ and B a Blaschke product having a pre-assigned Wolff point $\tau \in \partial \Delta$, it is sufficient that the zeros of B go to τ «fast» and «tangentially».

A possible choice is the following: for every integer $j \ge 1$ take $\alpha_j \in \Delta \setminus E(\tau, 2^j)$ such that $\lim_{j \to \infty} \alpha_j = \tau$. In fact

$$\lambda_{f}(\tau) = \lambda_{B}(\tau) = \sum_{j=1}^{\infty} (1 - |\alpha_{j}|^{2}) / |\tau - \alpha_{j}|^{2} < \sum_{j=1}^{\infty} 2^{-j} = 1,$$

and by Wolff's lemma, we can take $e^{-i\varphi} = \lim_{\tau \to 1^-} B(r\tau) \in \partial \Delta$.

References

- M. ABATE, Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Commenda di Rende 1989.
- [2] P. R. AHERN D. N. CLARK, On inner functions with H^p-derivative. Michigan Math. J., vol. 21, 1974, 115-127.
- [3] C. CARATHÉODORY, Theory of Functions of a Complex Variable. Vol. II, Chelsea Publ. Co., New York 1954.
- [4] T. FRANZONI E. VESENTINI, Holomorphic Maps and Invariant Distances. North-Holland, Amsterdam 1980.
- [5] J. B. GARNETT, Bounded Analytic Functions. Academic Press, New York 1981.
- [6] K. GOEBEL, Fixed points and invariant domains of holomorphic mappings of the Hilbert ball. Nonlinear Analysis, vol. 12, 1982, 1327-1334.
- [7] K. HOFFMAN, Banach Spaces of Analytic Functions. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1962.

[8] W. RUDIN, Real and Complex Analysis. McGraw-Hill, New York 1966.

Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA