Convex approximation of an inhomogeneous anisotropic functional

GIOVANNI BELLETTINI, MAURIZIO PAOLONI

Convex approximation of an inhomogeneous anisotropic functional

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1994_9_5_2_177_0>

ABSTRACT. — The numerical minimization of the functional $\mathcal{F}(u) = \int \phi(x, v_u) \|Du\| + \int_{\partial u} \mu u \, d\mathcal{H}^{n-1} - \int_{\Omega} ku \, dx$, $u \in BV(\Omega; [-1, 1])$, is addressed. The function ϕ is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \mathcal{F} can be equivalently minimized on the convex set $BV(\Omega; [-1, 1])$ and then regularized with a sequence $\{\mathcal{F}_\varepsilon(u)\}_\varepsilon$ of strictly convex functionals defined on $BV(\Omega; [-1, 1])$. Then both \mathcal{F} and \mathcal{F}_ε can be discretized by continuous linear finite elements. The convexity property of the functionals on $BV(\Omega; [-1, 1])$ is useful in the numerical minimization of \mathcal{F}. The $\Gamma - L^1(\Omega)$-convergence of the discrete functionals $\{\mathcal{F}_\varepsilon\}_\varepsilon$ and $\{\mathcal{F}_{\varepsilon,b}\}_\varepsilon, b$ to \mathcal{F}, as well as the compactness of any sequence of discrete absolute minimizers, are proven.

KEY WORDS: Calculus of variations; Anisotropic surface energy; Finite elements; Convergence of discrete approximations.

0. INTRODUCTION

Several problems in the Calculus of Variations that fall in the general framework proposed by De Giorgi [8], arising in phase transitions [4] and crystal growth [5] involve functionals depending in an inhomogeneous and anisotropic way on an interfacial energy. For instance, let Ω be a bounded smooth domain of \mathbb{R}^n, and let $\phi: \Omega \times \mathbb{R}^n \to [0, + \infty$ be a continuous function with linear growth, convex and positively homogeneous of degree one in the second variable. Given a smooth set $E \subseteq \mathbb{R}^n$, the typical interfacial term is of the form

$$\int_{\Omega \cap \partial E} \phi(x, v_{E}(x)) \, d\mathcal{H}^{n-1}(x),$$

where $v_{E}(x)$ denotes the outward unit normal vector of ∂E at the point x, and \mathcal{H}^{n-1} denotes the $(n-1)$-dimensional Hausdorff measure in \mathbb{R}^n.

The study of minimum problems involving such functionals is also related to the ap-
proximation of the motion of an interface, which propagates with a velocity depending on the position, the normal vector, and the mean curvature [1].

In this paper we generalize the numerical minimization via convex approximation presented in [2] to a model functional with an anisotropic and inhomogeneous surface term. This can be viewed as a preliminary step for the study of the geometric motion of fronts by anisotropic curvature.

More precisely, given two functions \(K \in L^\infty(\Omega) \) and \(\mu \in L^\infty(\partial\Omega) \), and assuming that \(\phi(\cdot, \xi) \) can be extended in a continuous way up to \(\partial\Omega \), we consider the minimum problem:

\[
\min_{u \in BV(\Omega; \{-1, 1\})} \mathcal{F}(u), \quad \text{where} \quad \mathcal{F}(u) = \int_{\partial\Omega} \phi(x, \nu_u) \, |Du| + \int_{\partial\Omega} \mu u \, d\mathcal{H}^{n-1} - \int_{\partial\Omega} \kappa u \, dx.
\]

If the solution to this problem is the characteristic function of a set \(A \subset \Omega \) (with values 1 in \(A \) and \(-1 \) in \(\Omega \setminus A \)) with smooth boundary, one can prove that \(\Omega \cap \partial A \) has mean curvature related to \(\kappa \) and \(\phi \), and that the contact angle at the intersection of \(\partial A \) with \(\partial\Omega \) is suitably related to \(\mu \) and \(\phi \).

Following the ideas in [2], we shall equivalently minimize \(\mathcal{F} \) on the larger convex set \(BV(\Omega; [-1, 1]) \). The (nonstrict) convexity of \(\mathcal{F} \) can be exploited for the numerical minimization of \(\mathcal{F} \) via linear finite elements discretizations. Since the numerical algorithms perform better for strictly convex functionals, \(\mathcal{F} \) is preliminarily regularized by a sequence \(\{\mathcal{F}_\epsilon\}_\epsilon \) of convex functionals.

The main result of this paper is the \(I^-\)convergence of the discrete functionals \(\{\mathcal{F}_{\epsilon, b}\}_\epsilon, b \) to \(\mathcal{F} \) when \(\epsilon \) and \(b \) go to zero independently. Since the compactness of each family \(\{u_{\epsilon, b}\}_\epsilon, b \) of discrete absolute minima is also proved, in view of basic properties of \(I^-\)convergence [9], the family \(\{u_{\epsilon, b}\}_\epsilon, b \) admits a subsequence converging to a minimum point \(u \) of \(\mathcal{F} \) and \(\mathcal{F}_{\epsilon, b}(u_{\epsilon, b}) \) converges to \(\mathcal{F}(u) \).

1. THE SETTING

Let \(\Omega \subset \mathbb{R}^n (n \geq 2) \) be a bounded open set with Lipschitz continuous boundary and denote by \(|\cdot| \) the \(n \)-dimensional Lebesgue measure and by \(\mathcal{H}^{n-1} \) the \((n - 1)\)-dimensional Hausdorff measure in \(\mathbb{R}^n \) [10]. If \(f: \Omega \to \mathbb{R} \) is a function and \(t \in \mathbb{R} \), we set \(\{f > t\} = \{x \in \Omega: f(x) > t\} \), \(\{f = t\} = \{x \in \Omega: f(x) = t\} \).

If \(\lambda \) is a (possibly vector-valued) Radon measure, its total variation will be denoted by \(|\lambda| \). If \(\lambda_0 \) is a scalar Radon measure on \(\Omega \) such that \(\lambda \) is absolutely continuous with respect to \(\lambda_0 \), the symbol \(\lambda/\lambda_0 \) stands for the Radon-Nikodym derivative of \(\lambda \) with respect to \(\lambda_0 \).

The space \(BV(\Omega) \) is defined as the space of the functions \(u \in L^1(\Omega) \) whose distributional gradient \(Du \) is an \(\mathbb{R}^n \)-valued Radon measure with bounded total variation in \(\Omega \). Since no confusion is possible, we denote by \(u \in L^1(\partial\Omega) \) the trace of \(u \in BV(\Omega) \) on \(\partial\Omega \) and set \(\nu_u(x) = (Du/|Du|)(x) \) for \(|Du| \)-almost every \(x \in \Omega \). We also set

\[
Du = \nabla u \, dx + D' u,
\]

where \(\nabla u \) denotes the density of the absolutely continuous part of \(Du \) with respect to
the Lebesgue measure and $D^1 u$ stands for the singular part. One can prove that ∇u coincides almost everywhere with the approximate differential of u.

Let $E \subseteq \mathbb{R}^n$ be a measurable set; we denote by χ_E the characteristic function of E, i.e., $\chi_E(x) = 1$ if $x \in E$, $\chi_E(x) = -1$ if $x \notin E$, and we set $1_E(x) = 1$ if $x \in E$, $1_E(x) = 0$ if $x \notin E$. We say that E has finite perimeter in Ω if $\int_{\partial^* E} |Du| < +\infty$, and we denote by $P(E, \Omega)$ its perimeter. We indicate by $\partial^* E$ the reduced boundary of E. We introduce the two closed subsets of $BV(\Omega)$ as $K = BV(\Omega; \{-1, 1\})$ and $K = BV(\Omega; [-1, 1])$.

Given $u \in BV(\Omega)$ we set $S(u) = \{(x, s) \in \Omega \times \mathbb{R}: s < u^+(x)\}$; it turns out that $S(u)$ is a set of finite perimeter in $\Omega \times \mathbb{R}$.

For the definitions and the main properties of the functions of bounded variation and of sets of finite perimeter we refer to [10, 12, 14, 16].

For any $\mathcal{E}: BV(\Omega) \rightarrow [\inf \mathcal{E}, +\infty]$ with $-\infty < \inf \mathcal{E}$, we denote by $\overline{\mathcal{E}}: BV(\Omega) \rightarrow [\inf \mathcal{E}, +\infty]$ the lower semicontinuous envelope (or relaxed functional) of \mathcal{E} with respect to the $L^1(\Omega)$-topology. The functional $\overline{\mathcal{E}}$ is defined as the greatest $L^1(\Omega)$-lower semicontinuous functional less than or equal to \mathcal{E} and can be characterized as

$$
\overline{\mathcal{E}}(u) = \inf \left\{ \liminf_{h \rightarrow +\infty} \mathcal{E}(u_h): \{u_h\}_h \subseteq BV(\Omega), \ u_h \overset{L^1(\Omega)}{\rightarrow} u \right\}.
$$

For the main properties of the relaxed functionals we refer to [3].

From now on $\varphi: \overline{\Omega} \times \mathbb{R}^n \rightarrow [0, +\infty]$ will be a continuous function satisfying the properties

\[
(1.1) \quad \varphi(x, t\xi) = |t| \varphi(x, \xi) \quad \forall x \in \overline{\Omega}, \ \forall \xi \in \mathbb{R}^n, \ \forall t \in \mathbb{R},
\]

\[
(1.2) \quad \lambda |\xi| \leq \varphi(x, \xi) \leq \Lambda |\xi| \quad \forall x \in \overline{\Omega}, \ \forall \xi \in \mathbb{R}^n,
\]

for two suitable positive constants $0 < \lambda \leq \Lambda < +\infty$, and such that $\varphi(x, \cdot)$ is convex on \mathbb{R}^n for any $x \in \overline{\Omega}$. Further regularity assumptions on φ will be required afterwards (see (1.9)).

Let us recall the following coarea-type formula

\[
(1.3) \quad \int_{\overline{\Omega}} \varphi(x, \nu_u) |Du| = \int_{\mathbb{R}} \int_{\partial^* \{u > t\}} \varphi(x, \nu_t) d\mathcal{H}^{n-1}(x) dt \quad \forall u \in BV(\Omega),
\]

where ν_t stands for the outer unit normal vector to the set $\Omega \cap \partial^* \{u > t\}$.

1.1 The continuous functional. Let $\mu \in L^\infty(\partial \Omega)$ be such that

\[
(1.4) \quad |\mu(x)| \leq \varphi(x, \nu_\partial(x)) \quad \text{for } \mathcal{H}^{n-1} - \text{ a.e. } x \in \partial \Omega,
\]

where $\nu_\partial(x)$ denotes a unit normal vector to $\partial \Omega$ at the point x. Let $\kappa \in L^\infty(\Omega)$. We define the functional $\mathcal{F}: BV(\Omega) \rightarrow [\inf \mathcal{F}, +\infty]$, for any $u \in K$, as

$$
\mathcal{F}(u) = \int_{\partial^*} \varphi(x, \nu_u) |Du| + \int_{\partial \Omega} \mu u d\mathcal{H}^{n-1} - \int_{\partial \Omega} k u dx,
$$

and set $\mathcal{F} = +\infty$ on $BV(\Omega) \setminus K$. As a consequence of the following semicontinuity result and the boundedness from below, \mathcal{F} admits at least one minimum point.
Theorem 1.1. The functional \mathcal{F} is lower semicontinuous on K with respect to the topology of $L^1(\Omega)$.

Proof. First we note that any $\mu \in L^\infty(\partial\Omega)$ verifying (1.4) can be approximated in $L^1(\partial\Omega)$ by a sequence of functions $\{\mu^\varepsilon\}_{\varepsilon > 0}$ of the form

$$
\mu^\varepsilon(x) = \varphi(x, \nu_\partial(x)) \sum_{i=0}^{N^\varepsilon} \mu^\varepsilon_i 1_{F^\varepsilon_i}(x),
$$

where $-1 = \mu^\varepsilon_0 < \ldots < \mu^\varepsilon_N = 1$, and $\{F^\varepsilon_0, \ldots, F^\varepsilon_N\}$ is a measurable partition of $\partial\Omega$. Here F^ε_0 and F^ε_N might be empty. Denoting by \mathcal{F}^ε the functional \mathcal{F} with μ replaced by μ^ε, we have, for any $u \in K$,

$$
|\mathcal{F}^\varepsilon(u) - \mathcal{F}(u)| \leq \int_{\partial\Omega} |u| |\mu - \mu^\varepsilon| d\mathcal{H}^{n-1} \leq \|\mu - \mu^\varepsilon\|_{L^1(\partial\Omega)} \to 0,
$$
as $\varepsilon \to 0$. Namely, $\mathcal{F}^\varepsilon \to \mathcal{F}$ uniformly on K as $\varepsilon \to 0$. Since the uniform limit of semicontinuous functions is semicontinuous, the assertion of the theorem is thus reduced to prove that any \mathcal{F}^ε is $L^1(\Omega)$-lower semicontinuous on K. Since no confusion is possible, we omit the superscript ε.

Set $\alpha_i = (\mu_i - \mu_{i-1})/2 > 0$ and $G_i = \{\mu \geq \mu_i\} \subseteq \partial\Omega$, for all $1 \leq i \leq N$. Note that neither $\mu_0 = -1$ nor $\mu_N = 1$ are necessarily assumed, namely, that $G_1 = \partial\Omega$ and $G_N = \emptyset$ are allowed. Since

$$
\sum_{i=1}^{N} \alpha_i = 1 \quad \text{and} \quad \mu(x) = \varphi(x, \nu_\partial) \sum_{i=1}^{N} \alpha_i \chi_{G_i}(x) \quad \text{for} \quad \mathcal{H}^{n-1} - \text{a.e.} \ x \in \partial\Omega,
$$

the functional \mathcal{F} can be represented as a convex combination of functionals \mathcal{F}^i as follows:

$$
\mathcal{F}(u) = \sum_{i=1}^{N} \alpha_i \left[\int_{\Omega} \varphi(x, \nu_u) |Du| + \int_{\partial\Omega} \varphi(x, \nu_\partial) \chi_{G_i} \mu d\mathcal{H}^{n-1} - \int_{\Omega} \kappa u dx \right] = \sum_{i=1}^{N} \alpha_i \mathcal{F}^i(u).
$$

To prove the lower semicontinuity of \mathcal{F} it will be enough to show that each \mathcal{F}^i is lower semicontinuous. For simplicity we omit the index i, thus denoting $G_i = G$ a measurable subset of $\partial\Omega$, and assume

$$
(1.5) \quad \mu(x) = \varphi(x, \nu_\partial) \chi_G(x).
$$

Let B be a ball containing $\overline{\Omega}$ and define

$$
\Phi(x, \xi) = \begin{cases}
\varphi(x, \xi) & \text{if } (x, \xi) \in \overline{\Omega} \times \mathbb{R}^n, \\
\Lambda|\xi| & \text{if } (x, \xi) \in (B \setminus \overline{\Omega}) \times \mathbb{R}^n.
\end{cases}
$$

Then Φ is lower semicontinuous on $B \times \mathbb{R}^n$ (recall (1.2)). We can extend $-\chi_G \in L^1(\partial\Omega)$ to a function $w \in W^{1,1}(B \setminus \overline{\Omega}; [-1, 1])$ with trace $-\chi_G$ on $\partial\Omega$, so that there exists $C > 0$ such that $\|w\|_{W^{1,1}(B \setminus \overline{\Omega})} \leq C \|\chi_G\|_{L^1(\partial\Omega)}$ [11, Theorem 1.12; 12, Theorem 2.16].
For any $u \in K$ we define $U \in BV(B; [-1, 1])$ as follows:

$$
U = \begin{cases}
 u & \text{on } \Omega, \\
 w & \text{on } B \setminus \Omega.
\end{cases}
$$

Obviously B and w do not depend on u, hence $\Lambda \int B \nabla w \, dx$ is a constant, and we shall denote it by c_1; set also $c_2 = \int_{\partial B} \phi(x, u) \, d\mathcal{H}^{n-1}(x)$. Recalling that $|u| \leq 1$, we find [7]

$$
\int_B \Phi(x, \nu_U) \, |DU| = \int_\Omega \phi(x, \nu_u) \, |Du| + \int_{\partial \Omega} \phi(x, \nu_u) \, |u + \chi_G| \, d\mathcal{H}^{n-1} + c_1 =
$$

$$
\int_\Omega \phi(x, \nu_u) \, |Du| + \int_{\partial \Omega} \phi(x, \nu_u) \, u \chi_G \, d\mathcal{H}^{n-1} + c_1 + c_2.
$$

Hence, recalling (1.5) we have

$$
\int_\Omega \phi(x, \nu_u) \, |Du| + \int_{\partial \Omega} \mu u \, d\mathcal{H}^{n-1} = \int_B \Phi(x, \nu_U) \, |DU| - (c_1 + c_2).
$$

Recalling the definition and the convexity of Φ, the functional $\int_B \Phi(x, \nu_U) \, |DU|$ is L^1-lower semicontinuous. Since the map $u \rightarrow \int_\Omega \kappa u \, dx$ is continuous with respect to the topology of $L^1(\Omega)$, the assertion follows. □

If ϕ is not convex in ξ then \mathcal{F} is not, in general, lower semicontinuous, and the lower semicontinuous envelope of the functional $u \rightarrow \int_\Omega \phi(x, \nabla u) \, dx$ on $W^{1,1}(\Omega)$ can be written on $BV(\Omega) \cap L^\infty(\Omega)$ as $\int_\Omega \phi^{**}(x, \nu_u) \, |Du|$, where ϕ^{**} denotes the greatest function that is convex in ξ and less than or equal to $\phi(x, \xi)$ for all $(x, \xi) \in \Omega \times \mathbb{R}^n$. In addition, as in [2], if condition (1.4) is not fulfilled, \mathcal{F} is not lower semicontinuous. Observe that \mathcal{F} admits at least a minimum point $u \in K$ (or \bar{K}, respectively), because of condition (1.2) and since \mathcal{F} is lower semicontinuous on K (on \bar{K}, respectively).

The following theorem shows that to minimize \mathcal{F} on \bar{K} is equivalent to minimize \mathcal{F} on the convex set K, and this reads as a (nonstrictly) convex problem.

Theorem 1.2. Suppose that $u \in K$ is a minimum point of \mathcal{F} on K. Then

$$
\mathcal{F}(u) = \mathcal{F}(\chi_{\{u > t\}}) \quad \text{for a.e. } t \in [-1, 1],
$$

namely, $\chi_{\{u > t\}} \in \bar{K}$ is a minimum point of \mathcal{F} on \bar{K} for almost every $t \in [-1, 1]$.

Proof. For all $v \in K$, from (1.3) and the Cavalieri formula we have

$$
\mathcal{F}(v) = \int_{-1}^1 \int_{\Omega \cap \{u > t\}} \phi(x, \nu_v) \, d\mathcal{H}^{n-1} \, dt + \frac{1}{2} \int_{-1}^1 \int_{\partial \Omega} \mu \chi_{\{v > t\}} \, d\mathcal{H}^{n-1} \, dt -
$$

$$
- \frac{1}{2} \int_{-1}^1 \int_\Omega \kappa \chi_{\{v > t\}} \, dx \, dt = \frac{1}{2} \int_{-1}^1 \mathcal{F}(\chi_{\{v > t\}}) \, dt,
$$

where $\mathcal{F}(t) = \mathcal{F}(\chi_{\{t > 1\}})$.
that is
\[\int_{-1}^{1} (\mathcal{F}(\chi_{\{u > 1\}}) - \mathcal{F}(v)) \, dt = 0 \quad \forall v \in K. \]

The minimality of \(u \) on \(K \) entails \(\mathcal{F}(\chi_{\{u > 1\}}) - \mathcal{F}(u) \geq 0 \); therefore \(\mathcal{F}(u) = \mathcal{F}(\chi_{\{u > 1\}}) \) for almost every \(t \in [-1, 1] \). \(\square \)

Remark 1.1. In view of Theorem 1.2, we have that \(\min \mathcal{F}(v) = \min \mathcal{F}(v) \); moreover \(\mathcal{F} \) has a unique minimum point on \(\tilde{K} \) if and only if \(\mathcal{F} \) has a unique minimum point on \(K \), and they coincide. Note that \(\mathcal{F} \) may exhibit relative minima on \(\tilde{K} \); in view of the convexity of \(K \), they are no longer relative minima of \(\mathcal{F} \) on \(K \).

1.2. The regularized functionals

Given \(\epsilon \geq 0 \), in analogy with [2], we define a regularization of \(\phi \) as follows

\[
\phi_\epsilon(x, \xi) = \sqrt{\epsilon^2 + (\phi(x, \xi))^2},
\]

for all \((x, \xi) \in \bar{\Omega} \times \mathbb{R}^n\). Let us consider the map \(G_\epsilon : BV(\Omega) \rightarrow [0, +\infty) \) defined by

\[
G_\epsilon(u) = \left\{ \begin{array}{ll}
\int_{\Omega} \phi_\epsilon(x, \nabla u) \, dx & \text{if } u \in W^{1,1}(\Omega), \\
+\infty & \text{elsewhere}.
\end{array} \right.
\]

Observe that, by the continuity assumption on \(\phi \) and by (1.1), there exists a continuous function \(\omega : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \), with \(\omega(0) = 0 \), such that

\[
|\phi_\epsilon(x, \xi) - \phi_\epsilon(y, \xi)| \leq |\phi(x, \xi) - \phi(y, \xi)| \leq \omega(|x - y|)(1 + |\xi|)
\]

for any \(x, y \in \Omega \) and any \(\xi \in \mathbb{R}^n \). Then, applying [7, Theorem 3.2] and observing that \(\lim_{t \to 0^+} t\phi_\epsilon(x, \xi/t) = \phi(x, \xi) \), we find that

\[
\overline{G}_\epsilon(u) = \int_{\bar{\Omega}} \phi_\epsilon(x, \nabla u) \, dx + \int_{\Omega} \phi(x, \frac{D'u}{|D'u|}) \, |D'u| \quad \forall u \in BV(\Omega).
\]

We are now ready to define the regularized functionals \(\mathcal{F}_\epsilon : BV(\Omega) \rightarrow [\inf \mathcal{F}_\epsilon, +\infty] \). For any \(\epsilon > 0 \) and for any \(u \in K \), we set

\[
\mathcal{F}_\epsilon(u) = \int_{\Omega} \phi_\epsilon(x, \nabla u) \, dx + \int_{\Omega} \phi(x, \frac{D'u}{|D'u|}) \, |D'u| + \int_{\partial\Omega} \mu u \, \nu d\mathcal{H}^{n-1} - \int_{\Omega} \kappa u \, dx,
\]

and we set \(\mathcal{F}_\epsilon = +\infty \) on \(BV(\Omega) \setminus K \).

Theorem 1.3. For any \(\epsilon > 0 \) the functional \(\mathcal{F}_\epsilon \) is lower semicontinuous on \(K \) with respect to the topology of \(L^1(\Omega) \).

Proof. Reasoning as in the proof of Theorem 1.1, and using the same notation, we have

\[
\mathcal{F}_\epsilon(u) + \int_{\Omega} \kappa u \, dx = \int_{\Omega} \sqrt{\epsilon^2 + (\Phi(x, \nabla U))^2} \, dx + \int_{\Omega} \Phi(x, \frac{D'u}{|D'u|}) \, |D'u| - (c_2 + c_3)
\]
where
\[c_3 = \int_{B \setminus \bar{O}} \sqrt{\epsilon^2 + \Lambda^2 |\nabla w|^2} \, dx. \]

As the functional at the right-hand side is \(L^1 \)-lower semicontinuous (it is a lower semicontinuous envelope by [7]), the theorem follows. \(\Box \)

It is not difficult to show that, if condition (1.4) is not fulfilled, then the functional \(\mathcal{F}_\epsilon \) is not lower semicontinuous.

Observe that the restriction of \(\mathcal{F}_\epsilon \) to \(K (\bar{K}, \text{respectively}) \) admits at least a minimum point \(u \in K (u \in \bar{K}, \text{respectively}) \), because of condition (1.2) and since \(\mathcal{F}_\epsilon \) is lower semicontinuous on \(K \) (on \(\bar{K} \), respectively). Observe also that, if \(\mathcal{F}_\epsilon \) has a minimum point \(u \in K \cap W_{loc}^{1,1} (\Omega) \) then, since \(\mathcal{F}_\epsilon \) is strictly convex in \((BV(\Omega) \cap W_{loc}^{1,1} (\Omega)) / \mathbb{R} \), the minimum is unique up to a possible additive constant.

Remark 1.2. We have \(\mathcal{F}_\epsilon \to \mathcal{F} \) uniformly in \(K \) as \(\epsilon \to 0 \).

Proof. For any \(u \in K \), using (1.1), we have
\[|\mathcal{F}_\epsilon (u) - \mathcal{F}(u)| = \epsilon \left| \int_{\Omega} \sqrt{1 + \left(\phi (x, \nabla \left(\frac{u}{\epsilon} \right)) \right)^2} \, dx - \int_{\Omega} \phi (x, \nabla \left(\frac{u}{\epsilon} \right)) \, dx \right| \leq \epsilon |\Omega|. \]

1.3. The discrete functionals
Let \(\{ S_h \}_{h > 0} \) denote a regular family of partitions of \(\Omega \) into simplices [6]. Let \(h_b \leq h \) denote the diameter of any \(S \in S_h \). For any \(h > 0 \), let \(V_h \subset H^1 (\Omega; [-1, 1]) \subset K \) be the piecewise linear finite element space over \(S_h \) with values in \([-1, 1]\) and \(\Pi_h \) be the usual Lagrange interpolation operator over the continuous piecewise linear functions. By \(C \) we shall mean an absolute positive constant whose value may vary at each occurrence. For the sake of simplicity, we shall assume that the discrete domain \(\Omega_h = \bigcup S \) coincides with \(\bar{O} \). In order to introduce the discrete functionals \(\mathcal{F}_h \) and \(\mathcal{F}_{\epsilon, b} \), we approximate \(\mu \) and \(\kappa \) as in [2] by a sequence of continuous piecewise linear functions \(\mu_h \to \mu \) and \(\kappa_h \to \kappa \) in \(L^1 \) as \(h \to 0 \) such that [6]
\begin{align}
&\|\mu_h\|_{L^\infty (\partial \Omega)} \leq \|\mu\|_{L^\infty (\partial \Omega)}, \quad \|\nabla \mu_h\|_{L^1 (\partial \Omega)} = o(h^{-1}), \\
&\|\kappa_h\|_{L^\infty (\Omega)} \leq \|\kappa\|_{L^\infty (\Omega)}, \quad \|\nabla \kappa_h\|_{L^1 (\Omega)} = o(h^{-1}).
\end{align}

We define the discrete functionals as follows: for any \(u \in V_h \) we set
\[\mathcal{F}_{\epsilon, b} (u) = \sum_{S \in S_h} \int_S \Pi_b (\phi (x, \nabla u)) \, dx + \int_{\partial \Omega} \Pi_b (\mu_h u) \, d\sigma \|a^{-1} - \int_{\partial \Omega} \Pi_b (\kappa_h u) \, dx, \]
\[\mathcal{F}_{\epsilon, b} = + \infty \text{ on } BV(\Omega) \setminus V_h. \]
Finally we define \(\mathcal{F}_b = \mathcal{F}_{0, b} \). The piecewise constant interpolation \(\int_{\partial \Omega} \Pi_b (\phi (x, \nabla u)) \, dx \) can also be used in the first term without affecting the convergence result and allowing a simpler implementation of the numerical algorithms.
To prove the main theorem (2.1) we need the assumptions
(1.9) \(\phi(\cdot, \xi) \in W^{1, \infty}(\Omega), \quad |\nabla \phi(x, \xi)| \leq C|\xi|, \quad \forall (x, \xi) \in \Omega \times \mathbb{R}^n \),
and that \(\phi(x, \cdot) \) is Lipschitz continuous uniformly with respect to \(x \).

If \(u \in V_b \), by the properties of the Lagrange interpolation operator, noting that
(1.6) gives \(|\nabla_x \phi(x, \nabla u)| \leq |\nabla_x \phi(x, \nabla u)| \) and using (1.9) we have

\[
(1.10) \quad \left| \sum_{S \in \mathcal{S}_h} \left(\int_S (I_\beta(\phi(x, \nabla u)) - \phi(x, \nabla u)) \, dx \right) \right| \leq \sum_{S \in \mathcal{S}_h} \|I_\beta(\phi(x, \nabla u)) - \phi(x, \nabla u)\|_{L^\infty} \leq C \int_\Omega |\nabla u| \, dx.
\]

2. Convergence of the discretized functionals

Remark 2.1. We have \(\lim_{\beta \to 0} \mathcal{F}_{\varepsilon, b} = \mathcal{F}_b \) uniformly in \(V_b \) and with respect to \(b \).

Proof. See Remark 1.2. \(\Box \)

The next main theorem generalizes [2, Theorem 3.1].

Theorem 2.1. For any \(\varepsilon > 0 \) we have,

\[
\Gamma^* \lim_{b \to 0} \mathcal{F}_b = \mathcal{F} \quad \text{and} \quad \Gamma^* \lim_{b \to 0} \mathcal{F}_{\varepsilon, b} = \mathcal{F}_\varepsilon \quad \text{in} \quad L^1(\Omega).
\]

Proof. We give a unified proof for both cases \(\varepsilon > 0 \) and \(\varepsilon = 0 \), considering \(\mathcal{F}_b = \mathcal{F}_{\varepsilon, b} \) and \(\mathcal{F} = \mathcal{F}_\varepsilon \) if \(\varepsilon = 0 \). Hence, let \(\varepsilon \geq 0 \) be fixed. We split the proof into two steps, namely, we prove that the two following properties hold [9]:

(i) for any \(u \in BV(\Omega) \) and any sequence \(\{u_b\}_b \) in \(BV(\Omega) \) converging to \(u \) in \(L^1(\Omega) \) we have \(\mathcal{F}_\varepsilon(u) \leq \liminf_{b \to 0} \mathcal{F}_{\varepsilon, b}(u_b) \);

(ii) for any \(u \in BV(\Omega) \) there exists a sequence \(\{u_b\}_b \) in \(BV(\Omega) \) converging to \(u \) in \(L^1(\Omega) \) such that \(\mathcal{F}_\varepsilon(u) = \lim_{b \to 0} \mathcal{F}_{\varepsilon, b}(u_b) \).

Preliminarily we decompose \(\mathcal{F}_{\varepsilon, b}(u_b) \), for all \(u_b \in V_b \), as follows:

\[
(2.1) \quad \mathcal{F}_{\varepsilon, b}(u_b) = \mathcal{F}_\varepsilon(u_b) + \int_\Omega [I_\beta(\mu u_b) - \mu u_b] \, d\mathcal{H}^{n-1} - \int_\Omega [I_\beta(\kappa u_b) - \kappa u_b] \, dx + \sum_{S \in \mathcal{S}_h} \int_S (I_\beta(\phi(x, \nabla u_b)) - \phi(x, \nabla u_b)) \, dx =: \mathcal{F}_\varepsilon(u_b) + I_b + II_b + III_{\varepsilon, b}.
\]

Recalling (1.8) and reasoning as in [2], one gets \(\lim_{b \to 0} \|I_b\| + \|II_b\| = 0 \).

Proof of Step (i). Let \(u \in BV(\Omega) \) and \(\{u_b\}_b \) in \(BV(\Omega) \) be any sequence so that \(u_b \to u \) in \(L^1(\Omega) \) as \(b \to 0 \). We can assume that \(u_b \in V_b \) for any \(b \) and that \(\sup_b \mathcal{F}_{\varepsilon, b}(u_b) < +\infty \). From (1.2) we get \(\sup_b \int_\Omega |\nabla u_b| \, dx < +\infty \), so that, in view of (1.10) we have \(\lim_{b \to 0} \|III_{\varepsilon, b}\| = 0 \). Then, using (2.1) and the lower semicontinuity of \(\mathcal{F}_\varepsilon \)
(Theorems 1.1 and 1.3), we conclude that
\[\mathcal{F}_\varepsilon(u) \leq \liminf_{b \to 0} \mathcal{F}_b(u_b) = \liminf_{b \to 0} \mathcal{F}_{\varepsilon, b}(u_b) , \]
and (i) is proved.

Proof of Step (ii). We can assume that \(u \in K\). Given a ball \(B\) containing \(\overline{\Omega}\), let \(\tilde{u} \in W^{1,1}(B \setminus \overline{\Omega}; [-1, 1])\) be a function with trace \(u\) on \(\partial \Omega\) [11] and denote again by \(u \in BV(B; [-1, 1])\) the function \(u(x) = u(x)\) if \(x \in \Omega\), \(u(x) = \tilde{u}(x)\) if \(x \in B \setminus \Omega\). Observe that
\[(2.2) \quad \int_{\partial \Omega} |D\tilde{u}| = 0 . \]

Let \(\eta_b = o(b^{-1/2})\) and \(\{\delta_b\}_b\) be a family of mollifiers defined by \(\delta_b(x) = \eta_b \delta(\eta_b x)\). Set \(\tilde{u}_b(x) = (u \ast \delta_b)(x)\) for all \(x \in B\), where \(u\) is extended to 0 outside \(B\). It is well known [12, Proposition 1.15] that, recalling (2.2),
\[(2.3) \quad \lim_{b \to 0} \|\tilde{u}_b - u\|_{L^1(\Omega)} = 0 , \quad \text{and} \quad \lim_{b \to 0} \int_{\Omega} |\nabla \tilde{u}_b| \, dx = \int_{\Omega} |D\tilde{u}| . \]

Set \(u_b = \Pi B \tilde{u}_b \in V_b\); then [2]
\[(2.4) \quad \lim_{b \to 0} \|u_b - u\|_{L^1(\Omega)} = 0 , \quad \lim_{b \to 0} \int_{\Omega} |\nabla u_b| \, dx = \int_{\Omega} |D\tilde{u}| , \]
and
\[(2.5) \quad \lim_{b \to 0} \int_{\partial \Omega} |u_b - u| \, d\mathcal{H}^{n-1} = 0 . \]

Hence, using Reshetnyak's Theorem [15] (see also [13]), we get
\[(2.6) \quad \lim_{b \to 0} \int_{\Omega} \phi(x, \nabla u_b) \, dx = \int_{\Omega} \phi(x, \nabla u) \, |Du| . \]

Using (2.1), (2.4), (2.5), and (2.6), we get (ii) when \(\varepsilon = 0\).

Let \(\varepsilon > 0\). One can prove (see [14, Theorems 1.8 and 1.10]) that the sequence \(\{D_{1(S B)}\}_b\) converges weakly on \(\Omega \times R\) to \(D_{1(S u)}\) and, using (2.2), that
\[(2.7) \quad \lim_{b \to 0} \int_{\Omega} |D_{1(S B)}| (\Omega \times R) = |D_{1(S u)}| (\Omega \times R) . \]

Let \(\tilde{\phi}_\varepsilon : \Omega \times R \times R^n \times R^+ \to [0, + \infty] \) be defined by
\[\tilde{\phi}_\varepsilon(x, s, \xi, t) = \begin{cases} t \phi_\varepsilon(x, \frac{s}{t}, \frac{\xi}{t}) & \text{if } t > 0 , \\ \phi(x, \xi) & \text{if } t = 0 . \end{cases} \]

Then \(\tilde{\phi}_\varepsilon\) is continuous, and the function \((\xi, t) \to \tilde{\phi}_\varepsilon(x, s, \xi, t)\) is convex and positively homogeneous of degree one on \(R^n \times R^+\). By [7, Lemma 2.2], for any \(u \in K\) we have
\[\int_{\Omega \times R} \tilde{\phi}_\varepsilon(x, s, \frac{D_{1(S u)}}{|D_{1(S u)}|}) |D_{1(S u)}| = \int_{\Omega} \phi_\varepsilon(x, \nabla u) \, dx + \int_{\Omega} \phi(x, \frac{D'u}{|D'u|}) \, |D'u| . \]
Using again Reshetnyak’s Theorem (recall (2.7)) we have

\[
\lim_{b \to 0} \int_{\Omega} \phi_\varepsilon(x, \nabla u_b) \, dx = \lim_{b \to 0} \int_{\Omega \times \mathbb{R}} \tilde{\phi}_\varepsilon \left(x, s, \frac{D\mathcal{S}(u_b)}{|D\mathcal{S}(u_b)|} \right) |D\mathcal{S}(u_b)| =
\]

\[
= \int_{\Omega \times \mathbb{R}} \tilde{\phi}_\varepsilon \left(x, s, \frac{D\mathcal{S}(u)}{|D\mathcal{S}(u)|} \right) |D\mathcal{S}(u)| = \int_{\Omega} \phi_\varepsilon(x, \nabla u) \, dx + \int_{\Omega} \phi \left(x, \frac{D^i u}{|D^i u|} \right) |D^i u|.
\]

Observe that for any \(b \) we have

\[
\left| \int_{\Omega} \phi_\varepsilon(x, \nabla u_b) \, dx - \int_{\Omega} \phi_\varepsilon(x, \nabla u_b) \, dx \right| \leq \int_{\Omega} |\phi(x, \nabla u_b) \, dx - \phi(x, \nabla u_b) | \, dx \to 0
\]
as \(b \to 0 \), in view of the Lipschitz assumption on \(\phi(x, \cdot) \) and the fact that \[2\]

\[
\lim_{b \to 0} \| \tilde{u}_b - u_b \|_{W^{1,1}(\Omega)} = 0.
\]

Using (2.8) we then find

\[
\lim_{b \to 0} \int_{\Omega} \phi_\varepsilon(x, \nabla u_b) \, dx = \lim_{b \to 0} \int_{\Omega} \phi_\varepsilon(x, \nabla u_b) \, dx = \int_{\Omega} \phi_\varepsilon(x, \nabla u) \, dx + \int_{\Omega} \phi \left(x, \frac{D^i u}{|D^i u|} \right) |D^i u|.
\]

This, together with (2.5) and (2.4), concludes the proof of (\(ii \)) when \(\varepsilon > 0 \).

A straightforward consequence is the following \(I \)-convergence result for \(\mathcal{F}_{\varepsilon, h} \), as \(\varepsilon \) and \(h \) go to 0 independently.

Corollary 2.1. We have \(I \)-\(\lim_{(\varepsilon, h) \to (0, 0)} \mathcal{F}_{\varepsilon, h} = \mathcal{F} \) in \(L^1(\Omega) \).

Finally, we prove the compactness of any sequence of approximated minima which, in view of basic properties of \(I \)-convergence gives, up to a subsequence, the convergence to a minimum of the original functional \(\mathcal{F} \).

Theorem 2.2. Any family of absolute minima of the functionals \(\mathcal{F}_\varepsilon, \mathcal{F}_h, \) or \(\mathcal{F}_{\varepsilon, h} \), is relatively compact in \(L^1(\Omega) \).

Proof. Let \(u_{\varepsilon, h} \) be a minimum point of \(\mathcal{F}_{\varepsilon, h} \). Given any \(v \in K \), from Corollary 2.1 there exists a sequence \(\{v_{\varepsilon, h}\}_{\varepsilon, h} \) converging to \(v \) in \(L^1(\Omega) \) as \((\varepsilon, h) \to (0, 0) \), so that

\[
\lim_{(\varepsilon, h) \to (0, 0)} \mathcal{F}_{\varepsilon, h}(v_{\varepsilon, h}) = \mathcal{F}(v) \in \mathbb{R}.
\]

Hence \(\sup_{\varepsilon, h} \mathcal{F}_{\varepsilon, h}(u_{\varepsilon, h}) \leq \sup_{\varepsilon, h} \mathcal{F}_{\varepsilon, h}(v_{\varepsilon, h}) < +\infty \). Then we get

\[
\sup_{\varepsilon, h} \int_{\Omega} |D u_{\varepsilon, h}| < +\infty,
\]

and the assertion for \(\mathcal{F}_{\varepsilon, h} \) follows from the compactness theorem in \(BV(\Omega) \). The assertion for \(\mathcal{F}_\varepsilon \) and \(\mathcal{F}_h \) is similar.

Work partially supported by NSF Grant DMS-9008999, by MURST (Progetto Nazionale «Equazioni di Evoluzione e Applicazioni Fisico-Matematiche» and «Analisi Numerica e Matematica Computazionale») and CNR (IAN Contracts 92.00833.01, 93.00564.01), Italy.
REFERENCES

G. Bellettini: Dipartimento di Matematica
Università degli Studi di Bologna
Piazza di Porta S. Donato, 5 - 40127 BOLOGNA

M. Paolini: Dipartimento di Matematica
Università degli Studi di Milano
Via C. Saldini, 50 - 20133 MILANO