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Anal i s i numer ica . — Convex approximation of an inhomogeneous anisotropic func­

tional N o t a di G I O V A N N I B E L L E T T I N I e M A U R I Z I O P A O L I N I , p re sen ta t a (*) da l Socio 

E . M a g e n e s . 

ABSTRACT. — The numerical minimization of the functional &(u) = <£>(x, vu) \Du\ + [xudXn~1 — 
Q 30 

— I Kudx, u e BV(Q; { — 1, l} ) , is addressed. The function <p is continuous, has linear growth, and is con­
fi 

vex and positively homogeneous of degree one in the second variable. We prove that & can be equivalently 
minimized on the convex set BV(Q; [ - 1 , 1]) and then regularized with a sequence { ^ (# )} , of stricdy con­
vex functionals defined on BV(Q; [ - 1 , 1]). Then both & and &, can be discretized by continuous linear fi­
nite elements. The convexity property of the functionals on BV(Q; [ — 1, 1]) is useful in the numerical mini­
mization of &. The r — L 1 (D)-convergence of the discrete functionals {&h}h and {&t,b}*,b t o &> a s w e ^ a s 

the compactness of any sequence of discrete absolute minimizers, are proven. 

KEY WORDS: Calculus of variations; Anisotropic surface energy; Finite elements; Convergence of dis­
crete approximations. 

RIASSUNTO. — Approssimazione convessa di un funzionale non omogeneo ed anisotropo. Si studia la mini­

mizzazione numerica del funzionale &(u) = $(x, vu)\Du\ + (xudX"'1— Kudx. La funzione <p è con­

fi dû o 

tinua, ha crescita lineare ed è convessa e positivamente omogenea di grado uno nella seconda variabile. Si 
dimostra che <^può essere equivalentemente minimizzato sull'insieme convesso BV{U; [ — 1, 1]) e successi­
vamente regolarizzato con una successione { ^ ( « ) } £ di funzionali strettamente convessi definiti su 
BV{Q; [ - 1, 1]). ^ e &t sono poi discretizzati con elementi finiti lineari continui. La convessità dei funziona­
li su BV{Q; [ — 1, 1]) è utile nella niinimizzazione numerica di &. Si dimostra infine la T — L 1 ({^-conver­
genza dei funzionali {3^h}h e {^,h}s,h

 a ^ e la compattezza di successioni di punti di minimo discreti 
assoluti. 

0. INTRODUCTION 

Several problems in the Calculus of Variations that fall in the general framework 
proposed by De Giorgi [8], arising in phase transitions [4] and crystal growth [5] in­
volve functionals depending in an inhomogeneous and anisotropic way on an interfacial 
energy. For instance, let Û be a bounded smooth domain of Rn, and let $: Q X Rn —» 
-» [0, +oo[bea continuous function with linear growth, convex and positively homoge­
neous of degree one in the second variable. Given a smooth set E c Rn, the typical in­
terfacial term is of the form 

J* <f>k,vE(x))dW-l(x), 
QndE 

where vE (x) denotes the outward unit normal vector of 3E at the point x, and Xn ~1 de­
notes the (n — 1)-dimensional Hausdorff measure in Rn. 

The study of minimum problems involving such functionals is also related to the ap-

(*) Nella seduta del 13 novembre 1993. 
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proximation of the motion of an interface, which propagates with a velocity depending 
on the position, the normal vector, and the mean curvature [1]. 

In this paper we generalize the numerical minimization via convex approximation 
presented in [2] to a model functional with an anisotropic and inhomogeneous surface 
term. This can be viewed as a preliminary step for the study of the geometric motion of 
fronts by anisotropic curvature. 

More precisely, given two functions K e L °° (Û) and [x e L °° (313), and assuming that 
$(•, f) can be extended in a continuous way up to 30, we consider the minimum 
problem: 

min &(u), where &(u) = \ <p(x, v j \Du\ + uud3C~l- Kudx. 
ueBV(Q;{-l, 1}) J T U ' ' J ^ J 

Q dû Q 

If the solution to this problem is the characteristic function of a set A ÇÛ (with values 1 
in A and — 1 in Q\A) with smooth boundary, one can prove that Q D dA has mean cur­
vature related to K and $, and that the contact angle at the intersection of dA with dû is 
suitably related to p and <£. 

Following the ideas in [2], we shall equivalently minimize <^on the larger convex set 
BV(Q; [ —1, 1]). The (nonstrict) convexity of • & can be exploited for the numerical 
minimization of <^via linear finite elements discretizations. Since the numerical algo­
rithms perform better for strictly convex functionals, ^ i s preliminary regularized by a 
sequence {&£}£ of convex functionals. 

The main result of this paper is the JT-convergence of the discrete functionals 
{&e,h}s,h t o <^when e and h go to zero independently. Since the compactness of each 
family {u£j,}£>h of discrete absolute minima is also proved, in view of basic properties 
of T-convergence [9], the family {uS}h}s,t> admits a subsequence converging to a mini­
mum point u of t^and &£)b(u£ih) converges to &(u). 

1. THE SETTING 

Let Q c Rn {n ^ 2) be a bounded open set with Lipschitz continuous boundary and 
denote by | • | the «-dimensional Lebesgue measure and by DC ~ * the [n — ^-dimen­
sional Hausdorff measure in Rn[10]. If / : Q-^R is a function and teR, we set 
{/ > t) = {̂  e Q: fix) > / } , { / = / } = {xe Q: f(x) = / } . 

If À is a (possibly vector-valued) Radon measure, its total variation will be denoted 
by | À | . If A o is a scalar Radon measure on Q such that A is absolutely continuous with 
respect to A0, the symbol A/A0 stands for the Radon-Nikodym derivative of A with re­
spect to Ao-

The space BV(Q) is defined as the space of the functions u eLx(Q) whose distribu­
tional gradient Du is an Rn -valued Radon measure with bounded total variation in Q. 
Since no confusion is possible, we denote by u G L1 (dû) the trace of u e BV(Q) on dû 
and set vu{x) = (Du/ \Du\)(x) for \Du\-almost every xeQ. We also set 

Du = Vudx + D5uy 

where Vu denotes the density of the absolutely continuous part of Du with respect to 
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the Lebesgue measure and Dsu stands for the singular part. One can prove that Vu co­
incides almost everywhere with the approximate differential of u. 

Let E ç R" be a measurable set; we denote by %E the characteristic function of E, 
i.e., xE (*) = 1 if * e E, XE (*) ~ - 1 # * * Ey and we set 1E (x) = 1 if x e E, 1E (x) = 0 if 

x $ E. We say that E has finite perimeter in Û if | | D 1 E | < + °°, and we denote by 
û 

P(E, Û) its perimeter. We indicate by d* E the reduced boundary of E. We introduce 
the two closed subsets of BV(Q) as K = BV(Q; { - 1 , 1 } ) and K = BV(Q; [ - 1 , 1]). 
Given u e BV(Q) we set 5U) = {(*, J ) e û X R: s < u + (x)}; it turns out that S(u) is a 
set of finite perimeter in û X JR. 

For the definitions and the main properties of the functions of bounded variation 
and of sets of finite perimeter we refer to [10,12,14,16]. 

For any £: BV{Q) -> [inf £, + oo ] with - oo < mf £y w e denote by £: BV(Q) -> 
—» [inf «£, + oo ] the lower semicontinuous envelope (or relaxed functional) of £ with re­
spect to the L1 (û)-topology. The functional £ is defined as the greatest L 1 (û)-lower 
semicontinuous functional less than or equal to £ and can be characterized as 

£{u) = infjlim inf «£(«*): {ub}bçBV(û), uh —» u 
\h~* + 00 

For the main properties of the relaxed functionals we refer to [3]. 
From now on $: f3 X jRw —» [0, +oo[ will be a continuous function satisfying the 

properties 

(1.1) # * , tf) = M #*> *) V * e Ô , VÇeJP, V / e R , 

(1.2) A|£| ^ ( x , f ) ^ A | £ | V X G G , V Ç G K * , 

for two suitable positive constants 0<À ^ A < + oo, and such that $(x, •) is convex on 
2?" for any x G Q. Further regularity assumptions on <p will be required afterwards (see 
(1.9)). 

Let us recall the following coarea-type formula 

(1.3) J $ ( * , v J | D « | = [ f $>{xyvt)dKn-\x)dt VueBViQ), 
Q RQnd*{u>t} 

where vt stands for the outer unit normal vector to the set Û fi 3* {u > t}. 

1.1 The continuous functional. Let peL™ (dû) be such that 

(1.4) \[x{x)\ ^<f>(x,vQM) for DC'1 - a.e. x e 3D , 

where vQ (x) denotes a unit normal vector to dû at the point x. Let K G L °° (Û). We de­
fine the functional &\ BV(Q) —> [inf &9 + oo ], for any « e K , as 

&(u)= \<p(x,vu) \Du\ 4- Ï [xudXn~l- \KUÌX, 

Q dû Q 

and set <^= + °°on B y ( û ) \ K . As a consequence of the following semicontinuity re­
sult and the boundedness from below, & admits at least one minimum point. 
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THEOREM 1.1. The functional $i$ lower semicontinuous on K with respect to the topol­

ogy of LHQ). 

PROOF. First we note that any /* e L °° (dû) verifying (1.4) can be approximated in 
Ll(dQ) by a sequence of functions {(**}§>o of the form 

N* 

[A*W = $(X, VQ(X)) S [A* lpfW, 
/ = 0 

where - 1 = [x*Q < ... < (i*N = 1, and {FQ, . . . , F$} is a measurable partition of dû. 
Here FQ and F$ might be empty. Denoting by ^ the functional «^with (x replaced by 
[Xs, we have, for any u e X , 

|3"(«)-^(«)| ^ J |«| IpL-^l^-^H/i-^lltnaoj-^O, 
dû 

as £—»0. Namely, &* —> «̂  uniformly on K as £—>0. Since the uniform limit of 
semicontinuous functions is semicontinuous, the assertion of the theorem is thus re­
duced to prove that any &* is Ll (O)-lower semicontinuous on K. Since no confusion is 
possible, we omit the superscript S. 

Set a, = ([Ai - (JLj-i)/2 > 0 and G, = {(JL ^ p j . ç SO, for all 1 ^ / ^ N. Note that 
neither [x0= —1 nor [xN = 1 are necessarily assumed, namely, that Gx = 3.0 and G^ = 
= 0 are allowed. Since 

E a/ = 1 and [x(x) = $(x, v^) 2 a* %G (*) ^or ^ * ~ * ~ a-e- * G ^ ? 

the functional & can be represented as a convex combination of functionals &l as 
follows: 

N 

&(u) = E af- <p(x,vu) \Du\ + j>{xivo)xG.udXn 1 — Kudx 
Q dû Q 

=: 2 « / ( « ) . 
*'= 1 

To prove the lower semicontinuity of < ît will be enough to show that each &* is lower 
semicontinuous. For simplicity we omit the index /', thus denoting Gt• = G a measurable 
subset of dû, and assume 

(1.5) fx(x) = <f>(x, VQ)%G(X). 

Let B be a ball containing 0 and define 

#(* ,« if ( x , { ) e S x l P , 
#(*, f ) = 

A|fI if (x, Ç) e ( B \ Û ) X R" 

Then $ is lower semicontinuous on B X Rn (recall (1.2)). We can extend ~XGE 

eLx(dQ) to a function w e W1' 1(B\Q; [ - 1 , 1]) with trace ~ x G on 30, so that 
there exists C > 0 such that |J^||^i,i(B\S) ^ ^II%GIL1(ao) [11,Theorem l.H; 12, 
Theorem 2.16]. 



CONVEX APPROXIMATION OF AN INHOMOGENEOUS ANISOTROPIC FUNCTIONAL 1 8 1 

For any ueKwe define U eBV(B;[-l, 1]) as follows: 

\ u on Q , 
U = 

[ w on B\Q . 

Obviously B and w do not depend on u, hence A | VUJ | dx is a constant, and we shall 

B\Q 

denote it by cx; set also c2 = I <p(x,vQ)dXn~l(x). Recalling that \u\ ^ 1, we 
find [7] ao 

J $ ( x , v u ) | D U | = J # x , v J | D * | + f * ( X , V û ) | « + X G I ^ ^ , " 1 + ^I = . 

B û au 

= J # x , v J | D « | + J $ ( x , v û ) ^ G ^ X ^ 1 + c1 + c 2 . 

Hence, recalling (1.5) we have 

^(x,vu)\Du\ + ^[xudXn-l= ^(x,vv)\DU\ -(Cl + c2). 
Q 3Û B 

Recalling the definition and the convexity of $, the functional $(x, vv) \DU\ is L1-

lower semicontinuous. Since the map u-^> \ Kudx is continuous with respect to the 

topology of Ll{Q), the assertion follows. • 

If $ is not convex in Ç then 3ns not, in general, lower semicontinuous, and the lower 

semicontinuous envelope of the functional u —> $(x, Vu)dx on W1'l (Q) can be writ-
r a 

ten onBV(Q) f) L °° (Û) as <£** (x, v j |.D« | , where <f>** denotes the greatest function 
Q 

that is convex in Ç and less than or equal to <£(x, Ç) for all (x, Ç) e Û X R*. In addition, 
as in [2], if condition (1.4) is not fulfilled, # l s not lower semicontinuous. Observe that 
^admits at least a minimum point u eK (u eK, respectively), because of condition 
(1.2) and since <^is lower semicontinuous on K (on K, respectively). 

The following theorem shows that to minimize ^ o n K is equivalent to minimize & 
on the convex set K, and this reads as a (nonstrictly) convex problem. 

THEOREM 1.2. Suppose that u eK is a minimum point of $ on K. Then 

&(u) = &(X{u>t}) for a.e. * e [ - l , 1] , 

namely, % < >t, e K is a minimum point of $ on K for almost every t e [ — 1, 1]. 

PROOF. For all v eK, from (1.3) and the Cavalieri formula we have 
l l 

W = | J $(x,vt)dXn-ldt+ | | \w{v>t)dWn-ldt-
- 1 QC\d*{u>t) - 1 dû 

1 

2 l \KZ{v>t}dxdt=\\$^{v>t})dt> 
- l a 
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that is 
1 

- 1 

The minimality of u on K entails &(X{U >/}) ~ &W ^ ®> therefore &{u) = &(X{u>t}) 
for almost every t e [ — 1, 1], • 

REMARK 1.1. In view of Theorem 1.2, we have that min^(^) = min^(^); moreover 
veK V*K 

$ has a unique minimum point on K if and only if $ has a unique minimum point 
on K, and they coincide. Note that 3r may exhibit relative minima on K; in view of the 
convexity of X, they are no longer relative minima of & on K. 

1.2. TOe regularized junctionals. Given z ^ 0, in analogy with [2], we define a reg-
ularization of $ as follows 

(1.6) M*,ç) = V e 2 + (#*>*))2> 

for all (#, ? ) e û x R \ Let us consider the map G£: BV(Q) -» [0, + a>] defined by 

f U,(x,V«)<k if « e TIT1'1 (Û), 

+ oo elsewhere. 

Observe that, by the continuity assumption on $ and by (1.1), there exists a continuous 
function co: R+ -»R + , with w(0) = 0, such that 

|#«(*,*)-# c(y,f) | ^ | # ( x , « - # ( y , « | ^ a > ( | x - y | ) ( l + : | f | ) 
for any x j e f l and any £el?*. Then, applying [7, Theorem 3.2] and observing that 
lim t<f>e(x, %/t) = <f>(x, £), we find that 

t-+o+ 

G.(«)= f$,(x,V«)<k + f$[x, i S r r l l D ' « l V « E B V ( û ) . 

We are now ready to define the regularized functionals ^ : BV(Q) —> [inf < ,̂ + oo ]. 
For any e > 0 and for any u eK, we set 

(1.7) 9^(u) = j<l>Ax9Vu)ibc + j<f>lx> 1 § T T ) | D ' * I + \^udKn~l- j xudx, 
û û > ' ' i dû Q 

and we set &t = + oo on £V(£)\K. 

THEOREM 1.3. For any s > 0 the functional &z is lower semicontinuous on K with re­
spect to the topology of Ll{Q). 

PROOF. Reasoning as in the proof of Theorem 1.1, and using the same notation, we 
have 

5-(«) + jmdx = jì/e2 + ($(x,VU))2dx + jvlx, 757777) lDSUl -(c2 + c}) 
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where 

c3= f ^e2 + A2\Vw\2dx. 

B\Q 

As the functional at the right-hand side is L Mower semicontinuous (it is a lower semi-
continuous envelope by [7]), the theorem follows. • 

It is not difficult to show that, if condition (1.4) is not fulfilled, then the functional 
^ is not lower semicontinuous. 

Observe that the restriction of ^ to K (K, respectively) admits at least a minimum 
point u eK(u £ K, respectively), because of condition (1.2) and since ^ is lower semi-
continuous on K (on K, respectively). Observe also that, if &s has a minimum point u£ e 
e K H W&} (Q) then, since ̂ £is strictly convex in (BV(Q) fi Wfcc

l (Q))/R, the minimum 
is unique up to a possible additive constant. 

REMARK 1.2. We have 3^—* $ uniformly in K as e—»0. 

PROOF. For any u eK, using (1.1), we have 

|5v(«) - ${u)\ = e | J J l + Ux, V ( f fXdx - J $(*, V ( f fjdx :\Q\. 

1.3. The discrete junctionals. Let \Sh\h > 0 denote a regular family of partitions of 
0 into simplices [6]. Let hs^ h denote the diameter of any S e S&. For any £ > 0, let 
^ c H ^ û j t - l , l ] ) c K be the piecewise linear finite element space over Su, with 
values in [ — 1, 1] and II\ be the usual Lagrange interpolation operator over the contin­
uous piecewise linear functions. By C we shall mean an absolute positive constant 
whose value may vary at each occurrence. For the sake of simplicity, we shall assume 
that the discrete domain Qu = U S coincides with Q. In order to introduce the dis-
crete functional ^ and ^ ^, we approximate (JL and K as in [2] by a sequence of contin­
uous piecewise linear functions |^—>//. a n d K^-^K in L1 as h —»0 such that [6] 

, x lk&III«><ao)^ IMIL-Où) y I|V^A||LIOO) = O ( ^ " 1 ) , 
(1.8) 

II** III,"(Û)^ IMIL"(Û) > l|VKi&||Li(û)=0(A M . 

We define the discrete functional as follows: for any u e Vh we set 

>.,*(«)= 2 f/7A(#,(x,v«))^+ \nh{ixhu)dxn~l- \nh(Khu)dx, 
SeSh J J J 

S dû û 

&e,h~ + °° o n
 B V ( U ) \ V A • Finally we define &h — 5 ^ . The piecewise constant inter­

polation 77° ($£ (x, V&)) ix can also be used in the first term without affecting the con-
û 

vergence result and allowing a simpler implementation of the numerical algo­
rithms. 



184 G. BELLETT1NI - M. PAOLINI 

To prove the main theorem (2.1) we need the assumptions 

(1.9) ^ f l e r ' f û ) , |V«#*,a|̂ C[É| V(*,«eûxjr, 
and that <p(x, •) is Lipschitz continuous uniformly with respect to x. 

If u e FA , by the properties of the Lagrange interpolation operator, noting that 
(1.6) gives |Vx$,(x, V«)| =S \Vx<p(x, V«)| and using (1.9) we have 

(1.10) =£ E ||/74(0,(*,V«)) E f( /74 (M*,V«))-$ f (* ,V«))<k 

-<M*,V«)||L~(S)|5| <£G& 2 ||Vx#x,V«)||L.(5)|S| <G&f |V»|*&. 
b Q 

2. CONVERGENCE OF THE DISCRETIZED FUNOTONALS 

REMARK 2.1. We have lim &ej, = ^ uniformly in Vh and with respect to h. 

PROOF. See Remark 1.2. • 

The next main theorem generalizes [2, Theorem 3.1]. 

THEOREM 2.1. For any e > 0 we have, 

r- lim &b = & and T- lim &t h = &£ in L1 (Û). 

PROOF. We give a unified proof for both cases s > 0 and £ = 0, considering 
&h= &e,h a n d ^ = ^ if £ = 0. Hence, let £ ^ 0 be fixed. We split the proof into two 
steps, namely, we prove that the two following properties hold [9]: 

(/') for any u eBV(Q) and any sequence {ut,}t, in BV(Q) converging to u in 
Ll{Q) we have &e(u) ^ liminf^ t,(ufo); 

(ii) for any u EBV(Q) there exists a sequence {u^}n, in BV{Q) converging to u in 
L1^}) such that ^ ( « ) = lim &e h(uh). 

Preliminary we decompose tf^hiu},), for all Uj, e F^,, as follows: 

(2.1) &£>h(uh) = &s(uh) + \[nh((j.huh) - (xuhidx*'1- \[nh(Khuh) -Kuh]dx + 
dû a 

+ 2 fto(^(x,V^))-^U,V^))^=:^(^)+4 + I4 + /J/£̂  

Recalling (1.8) and reasoning as in [2], one gets lim[|7^| + |i"4|] = 0. 
h—>0 

PROOF OF STEP (/). Let u eBV(Q) and {u^}/, in BV(Q) be any sequence so that 

Ujj-^u in Ll(Q) as £—»0. We can assume that u/jsV/y for any h and that 

sup<^ h (ujj) < + oo. From (1.2) we get sup |Vu/, \dx < +00, so that, in view of 
h ' hi 

(1.10) we have {im \III£ ^ | = 0. Then, using (2.1) and the lower semicontinuity of &t 
h-+0 ' 
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(Theorems 1.1 and 1.3), we conclude that 

xft{u) ^ l iminf^ (^ ) = liminf^ h(uh)i 

and (/) is proved. 

PROOF OF STEP (/'/). We can assume that u eK . Given a ball JB containing O, let 
u e W1,1 (B\Q; [ — 1, 1]) be a function with trace u on dQ [11] and denote again by 
u eBV(B;[ — l, 1]) the function u(x) = u(x) if x e Qy u(x) — u(x) if xeB\Q. 
Observe that 

(2.2) J \Du\ = 0. 

Let 7^ = o(h ~1/2) and {^}^ be a family of mollifiers defined by Sh{x) = rjld{rjkx). Set 
z^(x) = (#*£# )(x) for all xeB, where & is extended to 0 outside JB. It is well 
known [12, Proposition 1.15] that, recalling (2.2), 

(2.3) lim \\uh~ u\\Li(Q) = 0 , and lim \Vuh\dx = \Du\ . 
h —» 0 h —» 0 J J 

Set #A = nhuheVh; then[2] 

(2.4) lim ||»* - ^HL1^) = 0 , lim | Vuh \ dx = \ \Du | , 

D Q 

and 

(2.5) lim f \uh-u\dXn-l=0. 
dû 

Hence, using Reshetnyak's Theorem [15] (see also [13]), we get 

(2.6) lim .<f>(x, Vuh)dx = <£(x, vu) \Du\ . 
Q Q 

Using (2.1), (2.4), (2.5), and (2.6), we get («) when s = 0. 
Let £ > 0. One can prove (see [14,Theorems 1.8 and 1.10]) that the sequence 

{DlS(ûh)}h converges weakly on Q X R to D1S(U) and, using (2.2), that 

(2.7) lim \D1SW\(QXR)= \DlS{u)\(Q X R). 
h —> 0 

Let $£:QxRxRn X R+ -* [0, + » ] be defined by 

$ e ( x , j , f , f ) = -
'*.(*> 7 ) if * > 0 , 

#x, ?) if / = 0 . 

Then $£ is continuous, and the function (£, /) —» $£ (x, s, f, t) is convex and positively 
homogeneous of degree one on Rn X R+ . By [7,Lemma 2.2], for any ue.K we 
have 

1 *•(*•'• wù) |D1MI=l*-"-v» )&+!*(-• # ï r ) iD'"i • 
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Using again Reshetnyak's Theorem (recall (2.7)) we have 

(2.8) lim f $s(x, Vuh)dx = lim f $£[x, s, * W I \D1W | = 

12 X / c * ' »« LJ 

Observe that for any h we have 

$£(x, Vûh)dx- $£(x, Vuh)dx\ ^ f \<f>(x,Viïh)dx — <p(x,Vuh)\dx—>0 

as h—»0, in view of the Lipschitz assumption on $(x, •) and the fact that [2] 

Using (2.8) we then find 

lim \\iïh-uh\\wi,iiQ) = 0. 

ton J#,(x,V«A)<k=ton J#>,V»4)i« = |#t(x,V«)^+J#k-jg^|-)|DI«|. 
n n n n \ ' I / 

m i O M # , \uuiax = um i ©„ix, \Uk)ax= \ o.\x* \uiaxir i ©ix, -
h-

Q Q Q Q 

This, together with (2.5) and (2.4), concludes the proof of {it) when £ > 0. • 

A straightforward consequence is the following T-convergence result for &£^, as e 
and h go to 0 independently. 

COROLLARY 2.1. W<? £#t>£ T-lim &£ h = $ in Ll{Q). 
(« ,A) -> (0 ,0 ) ' 

Finally, we prove the compactness of any sequence of approximated minima which, 
in view of basic properties of ^-convergence gives, up to a subsequence, the conver­
gence to a minimum of the original functional &. 

THEOREM 2.2. Any family of absolute minima of the functional &£, #*&, or $£^, is 
relatively compact in L1{Q). 

PROOF. Let ut>h be a minimum point of «^>h. Given any # e K, from Corollary 2.1 
there exists a sequence {v£yz,}£>h converging to v in Ll{Q) as (s, £) —> (0, 0), so 
that 

,lim &£>h{v£>h) = tf{v)eR. 

Hence s u p ^ ^ (#£ ^) ^ s u p ^ ^ {v£ j,).< + oo. Then we get 
e,b ' ' e,h 

sup f \Du£>h\ < +00 , 

and the assertion for Sf^ follows from the compactness theorem in BV{Q). The asser­
tion for 3r£ and 5£ is similar. • 
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