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Analisi numerica. — Convex approximation of an inbomogencous anisotropic func-
tional, Nota di Giovannt BELLETTINI e Maurizio PaoriNi, presentata (*) dal Socio
E. Magenes.

Asstract. — The numerical minimization of the functional &F(#) = f¢(x, v,) |Du| + Ip.ud%""—
g a0

- I kudx, w € BV(£2;{ =1, 1}), is addressed. The function ¢ is continuous, has linear growth, and is con-
g

vex and positively homogeneous of degree one in the second variable. We prove that F can be equivalently
minimized on the convex set BV(Q2;[—1, 1]) and then regularized with a sequence {F, (»)}, of strictly con-
vex functionals defined on BV(Q;[—1, 1]). Then both & and & can be discretized by continuous linear fi-
nite elements. The convexity property of the functionals on BV(Q;[ —1, 1]) is useful in the numerical mini-
mization of & The I' — L* (Q)-convergence of the discrete functionals {F,}, and {&, ,}. , to & as well as
the compactness of any sequence of discrete absolute minimizers, are proven.

Key worps: Calculus of variations; Anisotropic sutface energy; Finite elements; Convergence of dis-
crete approximations,

RiassunTo. — Approssimazione convessa di un funzionale non omogeneo ed anisotropo. Si studia la mini-
mizzazione numerica del funzionale F(x) = J¢(x, v,) |Dul| + I‘u.ud.%"' - Jkudx‘ La funzione ¢ & con-
g a2 g

tinua, ha crescita lineare ed & convessa e positivamente omogenea di grado uno nella seconda variabile. Si
dimostra che & pud essere equivalentemente minimizzato sull’insieme convesso BV(£2;[—1, 1) e successi-
vamente regolatizzato con una successione {F (#)}, di funzionali strettamente convessi definiti su
BV(Q;[—1, 1]). Fe F. sono poi discretizzati con elementi finiti lineari continui. La convessita dei funziona-
li su BV(Q;[—1, 11) & utile nella minimizzazione numerica di & Si dimostra infine la I — L (Q)-conver-
genza dei funzionali {F}, e {& ,}., 2 F e la compattezza di successioni di punti di minimo discreti
assoluti.

0. InTrODUCTION

Several problems in the Calculus of Variations that fall in the general framework
proposed by De Giorgi[8], arising in phase transitions [4] and crystal growth [5] in-
volve functionals depending in an inhomogeneous and anisotropic way on an interfacial
energy. For instance, let 2 be a bounded smooth domain of R”, and let ¢: 2 X R” —
— [0, + o[ be a continuous function with linear growth, convex and positively homoge-
neous of degree one in the second variable. Given a smooth set E ¢ R”, the typical in-
terfacial term is of the form

$lx, vg (x))doc” ~ x),
QneE
where v (x) denotes the outward unit normal vector of E at the point x, and 3¢” ~ ' de-
notes the (# — 1)-dimensional Hausdorff measure in R”.
The study of minimum problems involving such functionals is also related to the ap-

(*) Nella seduta del 13 novembre 1993.
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proximation of the motion of an interface, which propagates with a velocity depending
on the position, the normal vector, and the mean curvature [1].

In this paper we generalize the numerical minimization via convex approximation
presented in [2] to a model functional with an anisotropic and inhomogeneous surface
term. This can be viewed as a preliminary step for the study of the geometric motion of
fronts by anisotropic curvature.

More precisely, given two functions k € L * () and u € L * (30), and assuming that
#(+, £) can be extended in a continuous way up to 92, we consider the minimum
problem:

Lesviin 1})é?*’(zt), where  F(u) = Iqb(x, v,) |Du| + Jyudf}c” 1- undx.
g a0 g
If the solution to this problem is the characteristic function of a set A ¢ Q (with values 1
inA and —1in Q\ A) with smooth boundary, one can prove that 2 N A has mean cur-
vature related to x and ¢, and that the contact angle at the intersection of 34 with 3Q is
suitably related to w and ¢.

Following the ideas in [2], we shall equivalently minimize & on the larger convex set
BV(Q;[—1, 1]). The (nonstrict) convexity of F can be exploited for the numerical
minimization of & via linear finite elements discretizations. Since the numerical algo-
rithms perform better for strictly convex functionals, F is preliminarly regularized by a
sequence {J,}. of convex functionals.

The main result of this paper is the I-convergence of the discrete functionals
{F. 1} » to Fwhen ¢ and b go to zero independently. Since the compactness of each
family {u, j}. , of discrete absolute minima is also proved, in view of basic properties
of I'-convergence [9], the family {#, ;}. , admits a subsequence converging to a mini-
mum point # of F and &, ,(u, ;) converges to F(u).

1. THE SETTING

Let Q cR”(n = 2) be a bounded open set with Lipschitz continuous boundary and
denote by |+ | the #-dimensional Lebesgue measure and by 9¢” ! the (# — 1)-dimen-
sional Hausdorff measure in R*[10]. If /: 2 >R is a function and € R, we set
{f>t}={xeQ: fx)>¢t}, {f =t} ={xeQ: f(x) =t}

If X is a (possibly vector-valued) Radon measure, its total variation will be denoted
by |A|. If X, is a scalar Radon measure on Q such that A is absolutely continuous with
respect to A, the symbol A/, stands for the Radon-Nikodym derivative of A with re-
spect to Ag.

The space BV(Q) is defined as the space of the functions » € L () whose distribu-
tional gradient D is an R"-valued Radon measure with bounded total variation in Q.
Since no confusion is possible, we denote by # € L' (802) the trace of # € BV(Q) on 3Q
and set v, (x) = (Du/ |Du|)(x) for |Du|-almost every x € Q. We also set

Dy =Vudx + D’u,
where Vu denotes the density of the absolutely continuous part of Du with respect to
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the Lebesgue measure and D*# stands for the singular part. One can prove that V« co-
incides almost everywhere with the approximate differential of .

Let E ¢ R” be a measurable set; we denote by yj the characteristic function of E,
ie,xp(x) =1lifxeE, yp(x) = —1lifx ¢E, andweset 1z(x) = lifx € E, 15 (x) = 0if

x ¢ E. We say that E has finite perimeter in Q if J |D1g| < + , and we denote by

P(E, Q) its perimeter. We indicate by 9* E the ré)duced boundary of E. We introduce
the two closed subsets of BV(Q) as K = BV(Q;{—1, 1}) and K = BV(Q2;[ -1, 1]).
Given u € BV(Q) we set S(u) = {(x,5) € @ X R: s <u™ (x)}; it turns out that S(«) is a
set of finite perimeter in Q X R.
For the definitions and the main properties of the functions of bounded variation
and of sets of finite perimeter we refer to[10, 12,14, 16].
For any £: BV(Q) — [inf £, + ®] with — © < inf £, we denote by £: BV(Q) —
— [inf £, + ] the lower semicontinuous envelope (or relaxed functional) of £ with re-
spect to the L!(Q)-topology. The functional € is defined as the greatest L' (Q)-lower
semicontinuous functional less than or equal to £ and can be characterized as
= . .. LY@
Lu) = mf[}l)n_r)linwfﬁ(u;,): {up }, cBV(Q), up — uj.
For the main properties of the relaxed functionals we refer to[3].
From now on ¢: 2 X R” — [0, + [ will be a continuous function satisfying the
properties '

(1.1) ¢lx, t8) = |t| p(x,8) VxeQ, VeeR", V:ieR,
(1.2) AE] < plx,5) <AlE|] VxeQ, VEeR?,

for two suitable positive constants 0 <A< A < + », and such that ¢(x, *) is convex on
R” for any x € . Further regularity assumptions on ¢ will be required afterwards (see
(1.9)).

Let us recall the following coarea-type formula

(13) I¢(x,vu)|Du|=j J 8(x,v,)doC" " (x)dr  VueBV(Q),
Q

R QN {u>s)

where v, stands for the outer unit normal vector to the set Q N 9% {u > ¢}.

1.1 The continuous functional. Let u e L™ (3Q) be such that
(1.4) |e(x)]| < ¢lx, vo(x)) for "' — ae. xedQ,

where v (x) denotes a unit normal vector to 3Q at the point x. Let k € L ® (Q). We de-
fine the functional &: BV(Q) — [inf &, + 1, for any # e K, as

= n-1_
F(u) d[ ¢(x, v,) | Du| +BJ pat d9C J Kudx

and set F= + on BV(Q)\K. As a consequence of the following semicontinuity re-
sult and the boundedness from below, & admits at least one minimum point.
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TureoreM 1.1. The functional Fis lower semicontinuous on K with respect to the topol-
ogy of L1(Q).

Proor. First we note that any u € L ® (3Q) verifying (1.4) can be approximated in
L'(3Q) by a sequence of functions {¢°},5 ¢ of the form

N@
@l (x) = ¢lx, vo (x)) 20#? 1ps (%),

where —1=pd <...<ud =1, and {F,..., F§} is a measurable partition of 3Q.
Here F¢ and F§; might be empty. Denoting by & the functional & with u replaced by
©?, we have, for any # e K,

|3ﬁW)“3ﬁ0|<J|M|N—#ﬂd%fﬂ$”#—MWwa*0,
a0

as ¢— 0. Namely, F°— & uniformly on K as ¢ — 0. Since the uniform limit of
semicontinuous functions is semicontinuous, the assertion of the theorem is thus re-
duced to prove that any &°is L' (Q)-lower semicontinuous on K. Since no confusion is
possible, we omit the superscript §.

Seta; = (u; —p;-1)/2>0and G; = {u = p,;} c9Q, for all 1 <7< N. Note that
neither uy = —1 nor uy = 1 are necessarily assumed, namely, that G; = 8Q and Gy =
= are allowed. Since

N N
Z a; = 1 and #(x) = ¢(x, VQ) E a; XG (x) for :}C”—l — a.€. X € aQ N
i=1 i=1 i

the functional F can be represented as a convex combination of functionals F* as
follows:

N
Fu) = _Elai

i=

. N
jgb(x, v,) |Du| + jgs(x, va)xciudﬂf”’l—jxudx = a,F ().
aQ Q

i=1
Q

To prove the lower semicontinuity of & it will be enough to show that each & is lower
semicontinuous. For simplicity we omit the index 7, thus denoting G; = G a measurable
subset of 32, and assume

(1.5) px) = ¢lx, vo) ¢ (x).

Let B be a ball containing Q and define

$lx, &) if (x,&)eQ XR”,

O(x, &) = . _
Algl  if (x,8) e (B\GQ) X R".

Then @ is lower semicontinuous on B X R” (recall (1.2)). We can extend —y €
e L'(8Q2) to a function w e W (B\&;[—1, 1]) with trace —y on 82, so that
there exists C >0 such that |lw|y.ig) < Cllxclii@eo [11, Theorem LI 12,
Theorem 2.16].
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For any # € K we define U e BV(B;[—1, 1]) as follows:

{ u on Q,

U=

w on B\ Q.

Obviously B and w do not depend on #, hence A j |V | dx is a constant, and we shall
B\Q

denote it by c¢;; set also 62=J¢(x, vg)dX" " 1x). Recalling that |«| <1, we
find [7] a0

IQ(x, vy) |DU| = Jqﬁ(x, v,) |Du| + J' ¢lx, vo) lu + x| dIC" 1+ ¢y =
B g o0

= qu(x, v,) |Du| + I¢(x, vo)uxg dd" '+t
Q o

Hence, recalling (1.5) we have

Iqb(x v,) |Du| + I(J.udDC”"l—Jd)(x vy) |DU| = (¢; + c3).
a0

Recalling the definition and the convexity of @, the functional J O(x,vy) |DU| is L*-

B

lower semicontinuous. Since the map # — J kudx is continuous with respect to the
. g

topology of L!(Q), the assertion follows. = O

If ¢ is not convex in £ then Fis not, in general, lower semicontinuous, and the lower
semicontinuous envelope of the functional # — J ¢(x, V) dx on W 1(Q) can be writ-

g
tenon BV(Q) N L~ (Q) as J ¢** (x,v,) |Du|, where ¢ ** denotes the greatest function

that is convex in & and lessgthan or equal to ¢(x, &) for all (x, &) € Q@ X R”. In addition,
as in [2], if condition (1.4) is not fulfilled, & is not lower semicontinuous. Observe that
F admits at least a minimum point # € K (# € K, respectively), because of condition
(1.2) and since & is lower semicontinuous on K (on K, respectively).

The following theorem shows that to minimize & on K is equivalent to minimize &
on the convex set K, and this reads as a (nonstrictly) convex problem.

Tureorem 1.2. Suppose that u € K is a minimum point of F on K. Then
F@)=F(y,5y) forae tel—-1,1]1,
namely, ¥, € K is a minimum point of F on K for almost every te[—1, 1],

Proor. For all v e K, from (1.3) and the Cavalieri formula we have
1

Foy=[ [ elevadaelde —f [ 45y o071t =
-1 Qn&*{u>s} -1 80

1
1 _ 1
- ?Z—_J; QI KXiv>n dxdt = E j (X{v>t}

-1
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that is
1
[ Fgsy) —F@Nd=0 Woek.
-1
The minimality of # on K entails F(x(, . ) — F(#) = 0; therefore F(u) = F(x(, 5 )
for almost every te[—1,1]. O

Remarxk 1.1. In view of Theorem 1.2, we have that mm&’ (v) = ml.}<1:7 (v); moreover

F has a unique minimum point on K if and only if F has a unique minimum point
on K, and they coincide. Note that & may exhibit relative minima on K; in view of the
convexity of K, they are no longer relative minima of & on K

1.2. The regularized functionals. Given ¢ = 0, in analogy with [2], we define a reg-
ularization of ¢ as follows

(1.6) be(x, ) = Ve + (8(x, )2,
for all (x,£) € Q X R”. Let us consider the map G,: BV(Q) — [0, + « ] defined by
J¢€(x, Va)de if ue Wh(Q),
G(u)=4g4
+ elsewhere .
Observe that, by the continuity assumption on ¢ and by (1.1), there exists a continuous
function w: R - R™*, with »(0) =0, such that
|$:(x,8) = ¢ (3, 0)] < [9(x,8) — 8y, O] Swl|x—y[)(1+ |¢])

for any x,y € Q and any 5 € R”. Then, applying[7, Theorem 3.2] and observing that
lnn td.(x, £/t) = ¢(x, &), we find that

Ge(u)=fq5 (x, V) dx+j (x, _I—DT_I) ID*u| VueBV(Q).
Q

We are now ready to define the regularized functionals & : BV(Q) — [inf &, + ©].
For any ¢ > 0 and for any # € K, we set

(1.7)  F.(u) = j¢5(x, Vu)ds + jgﬁ(x, lgzzl )|D’u| + jpud%”'l— jkudx,
g g a g

and we set & = + © on BV(Q)\K.

TuEOREM 1.3. For any € > 0 the functional F. is lower semicontinuous on K with re-
spect to the topology of L' (Q)

Proor. Reasoning as in the proof of Theorem 1.1, and using the same notation, we
have

I O sy DU\ e
() +J Ku dx —Bj Ve + (0(x, VU))2dx +J 45( DUl ) [D*U| = (e;+¢5)
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where

o= j 2+ A2 |Vw|2dx .
BNG
As the functional at the right-hand side is L'-lower semicontinuous (it is a lower semi-
continuous envelope by[71), the theotem follows. O

It is not difficult to show that, if condition (1.4) is not fulfilled, then the functional
. is not lower semicontinuous.

Observe that the restriction of & to K (K, respectively) admits at least a minimum
point # € K (u e K, respectively), because of condition (1.2) and since &, is lower semi-
continuous on K (on K, respectively). Observe also that, if F has a minimum point %, €
e K N WL (Q) then, since & is strictly convexin (BV(Q) N W' (2))/ R, the minimum
is unique up to a possible additive constant.

Remark 1.2. We bhave F.— F uniformly in K as ¢ — 0.

Proor. For any « € K, using (1.1), we have

[ el - otz <o

1.3. The discrete functionals. Let {S;}; > o denote a regular family of partitions of
Q into simplices [6]. Let hg < b denote the diameter of any S € 8,. For any b > 0, let
V,cH'(2;[—1, 1]) cK be the piecewise linear finite element space over S, with
values in [ — 1, 1] and 17, be the usual Lagrange interpolation operator over the contin-
uous piecewise linear functions. By C we shall mean an absolute positive constant
whose value may vary at each occurrence. For the sake of simplicity, we shall assume

that the discrete domain Q, = SU S coincides with Q. In order to introduce the dis-
€8

crete functionals F, and &, ,, we approximate u and x as in [2] by a sequence of contin-
uous piecewise linear functions u, —u and x, —x in L' as h — 0 such that [6]

|Fe(u) = F(u)| = ¢

Nes = oo < Nl ooy s Vs lloiagy = o671,

(1.8)
sl < xli=w@,  Vrsli@ =o(h1).

We define the discrete functionals as follows: for any # € V), we set
Foplw)= 3 jn,, (8. (x, Vu)) dx + j 1, () doC" ~ 1 — jn,,(x,,u)dx,
R a0 Q
., = + © on BV(Q)\V,. Finally we define &, = &, ;. The piecewise constant inter-
polation I II9 (¢ . (x, Va)) dx can also be used in the first term without affecting the con-

0 .
vergence result and allowing a simpler implementation of the numerical algo-
rithms.
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To_prove the main theorem (2.1) we need the assumptions
(1.9) ¢, eWh=(Q), |V.glx, &) <Cle] Vix,£)eQXR",

and that ¢(x, +) is Lipschitz continuous uniformly with respect to x.
If ueV,, by the properties of the Lagrange interpolation operator, noting that
(1.6) gives |V, ¢.(x, Vu)| < |V,¢(x, Vu)| and using (1.9) we have

(1.10)

> j(ﬂb (8e, V) = e, Vo)) die | < 3 (105 (8. (x, V)

SeS;,S

—¢.(x, Va)|lL=5) IS < Cbszs V. ¢Cx, Va)ll= 5 |S] < be | Vo | .
€S,
a

2. CONVERGENCE OF THE DISCRETIZED FUNCTIONALS
Remark 2.1. We have sh_x)r})&; » = Ty uniformly in V), and with respect to b.
Proor. See Remark 1.2. O
The next main theorem generalizes[2, Theorem 3.1].
Tueorem 2.1. For any ¢ > 0 we have,

Mlim 5= ad Il 7, =7 in L1(Q).

Proor. We give a unified proof for both cases ¢ >0 and ¢ =0, considering
Fy= T, and F= &, if ¢ = 0. Hence, let ¢ = 0 be fixed. We split the proof into two
steps, namely, we prove that the two following properties hold [9]:

(?) for any » € BV(Q) and any sequence {#,}, in BV(Q) converging to # in
L'(Q) we have & (u) < liini.tgf&;;,(ub);

(i) for any u € BV(Q) there exists a sequence {#,}, in BV(Q) converging to # in
LY(Q) such that & () = blimo‘i,;,(u;,).

Preliminarly we decompose &, ,(#,), for all u, € V), as follows:

@1 Ty ) = Fowy) + [ [ (wy) — g1 doC" " = [T, Gy = sy ) +
a0 Q

+ szs J(Hb(¢s(x> Vuy)) — ¢, (x, Vo)) dx =2 Fo(uy) + I, + I, + 111, 5 .
bs

Recalling (1.8) and reasoning as in[2], one gets bh'mo[|1;,| + |II,|1=0.

Proor oF Step (7). Let # € BV(Q) and {#,}, in BV(Q) be any sequence so that
upy—u in L1(Q) as h—0. We can assume that #,€ V), for any » and that

supF, 5 () < + ®. From (1.2) we get supj |Vu,| dx < 4+, so that, in view of
b b

g
(1.10) we have inmO |III, | = 0. Then, using (2.1) and the lower semicontinuity of &.



CONVEX APPROXIMATION OF AN INHOMOGENEOUS ANISOTROPIC FUNCTIONAL 185

(Theorems 1.1 and 1.3), we conclude that
F.(u) < li}ljni{)lf%(u;,) = ]jinh(}fg;,b(”b)a

and (7) is proved.

Proor oF SteP (7). We can assume that # € K. Given a ball B containing 3, let
#e Wh1(B\Q;[—1, 1]) be a function with trace # on 82 [11] and denote again by
ueBV(B;[—1, 1]) the function #(x)=u(x) if xeQ, u(x) =4(x) if x e B\Q.
Observe that

(22) j |Du| =0.

a0
Let n; = o(h ") and {4, }, be a family of mollifiers defined by &, (x) = 57 &(n;x). Set
dy(x) = (ux3, )(x) for all x e B, where # is extended to 0 outside B. It is well
known [12, Proposition 1.15] that, recalling (2.2),

(23) bli—I—PO ”ﬁb— u”Ll(g) =0 ’ and bli—lzlo I |VZ7;,I dx =QI IDﬂl .
9
Set u, = Iyaye V),; then[2]
(2.4) bll_lf})“”b ~ i@ =0, Jlim J |Vay | dx = J |Dul,
) 9
and
: —_ n—1_
(2.5) bhinoai luy — u| doc"~1=0.

Hence, using Reshetnyak’s Theorem [15] (see also[13]), we get
(2.6) lim, Qj $(x, V) dx =J (x, v,) | D] .

Using (2.1), (2.4), (2.5), and (2.6), we get (i) when ¢ = 0.
Let ¢ > 0. One can prove (see[14, Theorems 1.8 and 1.10]) that the sequence
{D1g@,)}» converges weakly on Q X R to D1y, and, using (2.2), that

(2.7) bliino | D1, | (2 X R) = | D1y, |(2 X R).
Let ¢.: QX RXR*XR* —[0, + ©] be defined by

& .
5. (x5, £, 0) = t¢s(x, t) if >0,
¢(x, &) if t=0.

Then ¢, is continuous, and the function (£, ) — &, (x, s, £, #) is convex and positively
homogeneous of degree one on R* X R*. By[7,Lemma 2.2], for any # € K we
have

Ls)

g D D’u
3 39 T ~ae 1 Dl u = 5( ;V )dx-l' X, S Dsu .
J ¢ (x * TDigy] )| st | QJ?S x, Vu Js’b( D] )| |

QxR
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Using again Reshetnyak’s Theorem (recall (2.7)) we have

. ~ . DlS(u)
(2.8) bll_rpogf $.(x, V) dv = lim que( —b—)lDlsm)l:

X, S,
oir |Diga, |
~ DlS(u)
= ¢ x, j’ _— D]. (P - x Vu)dx + DJ .
QXJR ¢ ( IDl_S‘(u)l )I S( )I Dj J¢( ID: )I |

Observe that for any 5 we have

[ $x, V) de — [ ¢.(x, V) d ‘ < [ 14(x, Vi) dx = ¢(x, Vuy)| dx = 0
g g g
as h — 0, in view of the Lipschitz assumption on ¢(x, *) and the fact that[2]

Jlim 17, = w3 llwr. 1) = 0.
Using (2.8) we then find

blgnogque(x,Vub)¢x=b@nogj¢s(x,Va,,)dx=g[¢s(x,vu)4x+gj¢( P l)IDJ J.

This, together with (2.5) and (2.4), concludes the proof of (iZ) when ¢ >0. O

A straightforward consequence is the following I-convergence result for & ;, as ¢
and b go to 0 independently.

CoroLLARY 2.1. We have TI'lim & ,=& in L'(Q).

(6,5)—>(0,00
Finally, we prove the compactness of any sequence of approximated minima which,
in view of basic properties of I'-convergence gives, up to a subsequence, the conver-
gence to a minimum of the original functional .

THEOREM 2.2. Any family of absolute minima of the functionals F,, &F,, or F, , is
relatively compact in L'(Q).

Proor. Let #, , be a minimum point of &, ,. Given any v € K, from Corollary 2.1
there exists a sequence {v, ,}., converging to » in L'(Q) as (¢,5) — (0, 0), so

that

(E,b)ll_f)n(o) O)ri,b(vs,b) =F(@v)eR.

Hence sup &, 5 (#. ;) SsupF, (v, ) < + . Then we get
e h N
sup J lDue,bI < +® ’
&b g
and the assertion for &, ; follows from the compactness theorem in BV(Q). The asser-

tion for & and &, is similar. O
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