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Calcolo delle variazioni. — The Curvature of a Set with Finite Area. Nota di Evrisa-
BETTA Barozz1, presentata (*) dal Corrisp. M. Miranda.

AsstracT. — In a paper, by myself, E. Gonzalez and I. Tamanini (see [2]), it was proven that all sets
of finite perimeter do have a non trivial variational property, connected with the mean curvature of their
boundaries. In the present article, that variational property is made more precise.

Key worbs: Calculus of variations; Geometric measure theory; Mean curvature; Boundaries of finite
measure.

Ruassunto. — Curvatura delle frontiere degli insiemi di perimetro finito. In un lavoro di E. Gonzalez,
1. Tamanini e me stessa (v. [2]), fu provato che tutti gli insiemi di perimetro finito hanno una notevole pro-
prieta variazionale connessa con la curvatura media delle loro frontiere. Nel presente articolo si fanno due
osservazioni su tale proprieta variazionale degli insiemi di perimetro finito.

1. INTRODUCTION

For He L'(R") define

(1.1) Fy(X) = P(X) + jH(x)dx,
X

where X is a (Lebesgue) measurable subset of R” and P(X) is the perimeter of X. Here
and in the sequel we use the basic properties of sets of finite perimeter, for which we
refer to [3, 8]. The functional (1.1) was introduced by U. Massari in[6, 7] (see also the
survey paper [4]).

Let E be a minimizer of Fy, suppose H is continuous at x € IE and JE is smooth
near x. Then is easy to see that the mean curvature of JE at x is given by —H(x)/
/(n — 1). This fact suggests the following

DerinrTioN 1.1. A set E is said to have (variational) mean curvature H € L' (R") if
E is a minimizer of Fy, ze.
(1.2) Fy(E) < Fy(X)

for every measurable set X cR”.
If E is a set with finite perimeter, we introduce the space

(1.3) 9! (E) = {He L'(R"):(1.2) holds}.

In a previous work (see [2]) it was proved that 9C' (E) # @, ie. every set E ¢ R” with
finite perimeter has a variational curvature H € L!(R"). Actually, there exist infinity
many variational curvatures associated with the set E. In fact, if H belongs to ' (E)
and ¢ € L' (R"), ¢(x) < Oae.xeE, ¢(x) = 0a.e.x € R" — E, then H + ¢ still belongs
to 91 (E). The paper is organized as follows.

(*) Nella seduta del 12 febbraio 1994.



150 E. BAROZZI
In section 2 we shall prove the existence of a function Hg € 9¢' (E) minimizing the
L'norm in 3C' (E); precisely we have
IH o1& = inf {[|H]|.: &) : H € ¢ (E)},
{ IHE 1 7 - 5y = inf {|Hl|L1 7 - £): H e 3 (E)}.
In otder to obtain this result it is helpful to note first that
) { inf {|H||.1 z): H € 3" (E)} = P(E),

(1.4)

inf {||H||.1z+ - r): H e 5" (E)} = P(E).

The function Hf, is defined in a very natural way, since its level sets are the minima E, of
certain variational functionals B, .
In section 3 we define, for p > 1,

(1.6) I (E)={He " (E): He L?(E)}.

If 3¢ (E) # ¢ and the #-dimensional measure of E is finite, it is easy to show the exis-
tence of a (unique) element of (? (E) minimizing the L? (E)-norm (this fails if the mea-
sure of E is not finite). We shall prove that such a minimizing curvature is the function
Hg previously introduced.

2. Tue runcTiON Hp

Let EcR” be a set with finite perimeter. From the isoperimetric inequality we
find that min { |E|, |R” — E|} < 4 ®, where |X| denotes the Lebesgue measure of
the set XcR”. Let h e L'(R”) be a function such that A(x) > 0 a.e. x € R” and let
da = bh+dx be the measure with density 5, ie.

a(X) = Jb(x)dx, XcR”.
X

If |E| <+, we can take h(x) =1 VxeE.
For A > 0 consider the functional

(2.1) B, (X) =P(X) + 2a(E — X)
and let E, be a solution of the problem
B, (X) —= mi
22) { 5 (X) min
For A <y we have E, CE,. On the other hand, from the inequality
B, (Ey) < B, (E)

with the constraint X cE .

we derive
(2.3) P(E,) + »a(E — E,) < P(E).
Inequality (2.3) implies that the sets E, converge to E in the L. (R”)-sense as A goes to
+ o, Therefore
|[E—- U{E,: 2>0}| =0
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and we can define, for x € E
(2.4) Hp(x) = —inf{M(x):x e E;,, A e Q}.

It is clear that Hg(x) <0 ae. xeE.
For brevity put F¢ = Fy,; it will be proved that

(2.5) Fe(E) < F5(X) VXcCE.

Now, we define Hg outside E by putting

(2.6) Hg(x) = —Hg»_g(x), xeR"—E.
We have Hp(x) = 0 a.e. x € R” — E. Since

(2.7) Frr_g(R* —E) < Fgn_g(Y) VYCR"-E,
we infer, for X = R” — Y, that

(2.8) Fe(E) S Fg(X) VXDOE.

From (2.5), (2.8) and the well known inequality

(2.9) P(AUB)+P(ANB)<P(A) +P(B),
we conclude that

(2.10) Fp(E) < Fg(X) VXcR”,

ie. He o€ (E).

So, we must prove inequality (2.5) (inequality (2.7) follows from (2.5), with E
replaced by R” — E). This will be done in the second part of the proof of The-

orem 2.1.
Remark 2.1. Let H € 31 (E); from Fy(E) < Fy(0) we get

(2.11) P(E) < — jH(x)dx < Hl ) -
E
From (2.11) we derive that, if

(2.12) IHl|l.: & = P(E),
then H(x) < 0 a.e. x € E and 4 (E) = Fy(8) = 0. So, if (2.12) holds, the functional

Fy has also the empty set as a minimizer.
In the same way, from Fy(E) < Fy(R”), we get

(2.13) |Hl.: " - ) = P(E).

Turorem 2.1. For every set EcR” with P(E) < + © we have Hge 3C!(E)
and

Proor. We begin by proving equality (2.14). Obsetve that (2.14) together with Re-
mark 2.1 implies that

(2.15) I l.: ze) = inf {{{H]: &) : H € 3¢ (E)}.
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The computation of ||Hgl| :z») proceeds as follows. For £e N define

(2.16) 6:(j)=j/2*, jeN

and let E; be a minimizer of (2.1) with A = 0,(). Let E; =@ and define
(2.17) S;=E,—E_,, jeN.

From the very definition of Hp it is clear that

(2.18) —(7/2%)b(x) S Hg(x) s —[(j — 1)/2*1h(x) VxeS;

and therefore

(2.19) ,-21 [(j = 1)/2¥1a(S;) < [[Hgll g < 2 (7/28) a(S;)

For 0 <A <p we have 8,(E,) < 8,(E,) < S_%#(E#) < B,(E;), so that
(2.20) M(E, — E;) < P(E,) — P(E,) < ua(E, — E,).

In particular, if A= (7 —1)/2%, u=7/2%, we get

(2.21) [(j = 1)/2*1a(S;) S P(E;) — P(E;_) < (j/2%) a(S;) .
From (2.3), recalling the lower semicontinuity of the perimeter, we obtain
(2.22) ,\EIEW P(E;) = P(E).

Now, from the first inequality in (2.21) and (2.22) we find

@) 3 G/2uS)= 5 (/2= G- 1)) als) +

+ 2 ((F—1)/2*) a(5)<z~’ea(E)+ Jlim P(Ey) =27*«(E) + P(E).

REMARK <. .LCLilcuv\ 7>
2.11) P(E) < - [Hx)dx < [Hlre)
E
From (2.11) we derive that, if
(2.12) IHl.: & = P(E),
then H(x) < 0 a.e. x € E and Fy(E) = Fy(0) = 0. So, if (2.12) holds, the functional

Fy has also the empty set as a minimizer.
In the same way, from Fy(E) < Fy(R"), we get

(2.13) uH"L‘(R” —E) 2 P(E) .

Turorem 2.1. For every set EcR” with P(E) < + o we have Hg e 3C'(E)
and
(214) "HE"Ll(R”) = 2P(E) .

Proor. We begin by proving equality (2.14). Observe that (2.14) together with Re-
mark 2.1 implies that

(2.15) |Hg |2z = inf {|H|lL: &= : H € 3 (E)} .
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Since |[E— U{§;: 1S/ < +@}| =0, for almost every x € E there exists j € N such
that x e §, and therefore H, (x) = —( //Zé )A(x). So, we have

Hg(x) = —inf {M(x):x e E, } = —(7/2%)b(x) = Hy(x),
that is
(2.29) Hp(x) 2 H,(x) ae xeE.
Ifxe S, =E,, then H,(x) = —27%h(x); since Hg(x) < 0 a.e. x € E, from (2.29) we
obtain
(2.30) —27*ph(x) = Hy(x) S Hg(x) 0.
If xeS$;, ;= 2, then x¢ E;_, and one has thus

—((7 = 1)/2*)b(x) < inf {M(x):x € E; } = —Hg (x),

ie.

(2.31) Hp(x) < —((;—2)/2*)b(x) = Hy(x) + h(x)/2F 1.
From (2.31) and (2.29) we get

(2.32) H,(x) < Hg(x) < Hy(x) + h(x)/2% 1.
From inequalities (2.30), (2.32) we conclude that

(2.33) Hgp(x) = k_ljrixm H,(x) ae xeE.

In a similar way it can be proved that (2.33) holds a.e. xe R” — E.
From the Lebesgue Theorem we conclude now that H; —_] Hgin L'(R”) as k

goes to + ® . Since ' (E) is a closed subset of L' (R”), it only remains to prove that
H, € 3" (E) Vk € N. To this aim, recalling (2.21), it can be easily proved by induction
that

(2.34) P(E,)+IH,e(x)alst(X)+ [ Hy(x)dx VjeN, VXcR".
E}.

XAE

Letting 7 — + %, one finds that E is a minimizer of Fy,, so that H; € 3C' (E). This con-
cludes the proof of Theorem 2.1.

Remark 2.2. Let ¢, > 0 be a sequence of positive number converging to 0 and, for
each £e N, let 6,(/) be an increasing sequence such that

7) llff 0.(j) =+ VkeN,
J=t®
i) 0,(7+1)—=0,(7j)<e, YieN, VEeN.

Defining H, as in the proof of Theorem 2.1, one can prove that
Hg(x) = . 111’};1 Hp(x) ae.xeR”.

If in addition, for any £ € N the sequence 6, , ; is a refinement of 6, , the H, —> Hg
in L(R") as k£ goes to + .
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Remark 2.3. It is evident that, if A > 0, then Hg, (x) = Hg(x) a.e. x € E;. Then,
from Theorem 2.1, we have =

j |Hj, (x)| dx = P(E,) VA>0.
E,
We conclude that Fz (E, ) = Fg, (E;) = 0 VA > 0, so that for each 2 > 0 the set E; is a

minimizer for Fg.

Remark 2.4. Define
E; =MDA E,, E = nlsz E,, S,=E}-E.

It is easy to show that E," |, E,” are minimizers (the maximal and minimal ones) for B,
and that Hg(x) = —M(x) =x e S,.

Remark 2.5. There may be many functions in 9! (E) minimizing the L*-norm; note
the following examples.

Exampie 2.1. Let E = {(x,y) e R*: x2 + y? < 2}, 0> 0. Then Hg (x,y) = — 2/¢
V(x,y) € E, x> + 92> 0. Define
—(x2+92)"Y% for (x,y)eE, x>+9%2>0,
H(x,y) =
Hg(x,y) for (x,y) ¢ E.

Then H e dC'(E) and ||H||.1) = P(E). Note that Hze L (E) while H ¢ L?(E)
Vp = 2.

Exampie 2.2. Let E = {(x,y) e R?: |x| <L, |[y| SL}, L>0, let h(x,y) =1
V(x,y) e E.
For 0 <7 <L define Q, as the union of the open balls of radius r inside E.

Let 1o = (1 +V/x/2)+(1/L). With elementary computations one finds that
E+ = 0 it A<,
* 7 lclosure of Qi if A= 2,
_ { 0 if A<2,,
Ey = .
Ql/)\ lf A > }\0 .
We have E = E;} U U 0E, U {P,, P,, P;,P,}, where P/s are the vertices of the
square E, and 1>
—2xo if (x,9) €E},

HE(X,)’)={ —2 if (x,y)EaEA> )\>)\0.

It is clear that ||Hg || .2y = + o in fact, this is a consequence of the following theorem
in [5]: «If E is a subset of R? and Hg € L?(R?), then the density of E at the boundary
points is 1/2». By a direct computation one can easily find that H; € L? (E) Vp < 2 but
Hy ¢ L2(E).
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Let Q= E;! and, for 0 <o < Xy, define
Ao ta if (x,9)€Qp,
Hg(x,9) = o|Qo|/|E—Qo| if (x,y)€E—Qy.

Cleatly H,e9C'(E) and [H,lie = Helir@), while [H. | @ > [Hel e
Vp:1<p<2.

H,(x,) ={

3. Tue L?.Norm oF Hg

Suppose I(? (E) # @ for some p, 1 <p < + ®; it is easy to see that H? (E) is a con-
vex subset of L? (E). If, in addition, |E| < + «, then the Holdet’s inequality implies
that 3¢? (E) is also closed in L? (E). From these remarks and the Clarkson’s inequalities
(see [1]) we immediately get the following

Tueorem 3.1. Suppose
(3.1) |E| < +
and suppose I’ (E) # @ for somep, 1 <p < + . Then 3’ (E) contains a unique func-

tion that minimizes the L? (E)-norm.

Remark 3.1. The condition (3.1) can’t be avoided. To see this, consider the set
E={(x,y) eR?*:x*+9?> 1} and let ¢;=2/(i*— 1), ie N, 7 > 1. The function

—¢; if 1<x?+92<i?,
H;(x,y) =10 if x2+9224?,
2 if x?+y%<1
belongs to 3?(E) for each e N, i > 1 and ||H||;2¢z— 0 as 7 goes to + .
The following theorem shows that the curvature with minimal L? (E)-norm, whose

existence was asserted in Theorem 1, is exactly the function Hg; precisely, we
have

Tueorem 3.2. Same hypothesis as in Theorem 3.1. We have

(3.2) IHe llee ) < |Hlle ey VH € 9¢ (E)
and equality in (3.2) implies
(3.3) H(x) =Hg(x) ae. xeE.

Proor. The uniqueness result was proved in Theorem 3.1. So it remains only to
prove the minimum property (3.2). As |E| < + «, we can choose b = 1 (i.e. da = dx)
in the construction of Hg inside E. If H € 3? (E), so it is the function

H(x) for xe R” — E,

H ) = { min {H(x), 0} for xe E
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and clearly |[H* ||.»z) < |H|l 2z, equality holding if and only if H(x) < 0 a.e. x € E.
So, we can suppose H(x) < 0 inside E. From Fy4(E) < Fy(E,) and the Holder’s in-
equality we get

(3.4) P(E) — P(E,) s[ I lHlpdx]l/p E—E, |-V
Then, from E-B
3.5 AME—E,| <P(E)—P(E,) (see (2.3)),
we obtain
1
(3.6) [E-Ei| <o | |HPd.
E-E,

For 1 < g4 <p we have

j|HE|ux= j |{x € E: |Hp(x)|? >t} ds <
E

0
+ +o
<|E|+ [ HreE: [Hp)|?>¢}|de = |E| +q [ |E~E,|n"'dr.
! 1

From this inequality and (3.6) we find the estimate
(3.7) j|HE [de < |E| + 52 |H|de
E

In particular Hg € LY (E) for ¢ <p.
Now let 6,(/), E;, S; be as in (2.16), (2.17) and define

=1 .
%, (k) = |Sj|S;[IHE|dx, 8,k) = |SleHldx

For brevity in the sequel we shall write «;, 3, instead a; (&), 8,(k). We have
s 151 < [|Hgl7dx, g71S| < [|H|*ds
S j
so that
Y

S alls)] < J|HE|qu

(3.8)
3 a1l < [ 1H|7ds.
i=1 E/

On the other hand it is not difficult to show that

(3.9) lm 3 q|s,.|=[|HE|qu.

kot j=1
E
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In fact, from (j —1)/28 < |Hg| <j/2* Vx€S;, (j — 1)/2* S a; <j/2* we get

~ 3 s < L A S - (i—1y1ls,
osEj|HE|qu 2l sl oy 3= G-I S

q 1 —_— f — q-1 =
S 2/eq | ll qu 12 lS | = qu |S1| qu jgl(] 1) lS]l

1 2070 S lj-1 ! 1 2071 -1
- Lisge 22 S st e A+ 22 [ imieta
2% 2 j=2| 2 2k 2*

and (3.9) follows. The next step is to prove

(3.10) 2 BIIS | = 2 ol 5]
Let
(3.11) I=J|H|dx—j|HE|dx>0
E E
and y;=8; — a;, € N. We have
(3.12) -21 vl =1
=
(3.13) 2 vl 1<I VmeN,
=1
(3.14) DA B ANEL DI S AR
i= i= i=

Equality (3.12) follows from the very definition of «;, 8;,. Now, note that

3 181 = [ |Hlde ~ [ |Hg|de= = 5y(E,) + 55 (E,) =
/= E, E,

= ~ Fu(B,) < ~Fy(E) = ~Fx(E) ~ [(H~Hp)de = [ (|H| ~ |Hg|)de =1,
E E
which proves (3.13).
(3.14) follows from the elementary inequality (1 +x)? =1+ gx for x = —1 ap-
plied with x = y; /a;. From (3.12), (3.13) and the monotonicity of the sequence «;, one
easily infers (by induction on 7z) that

619 3 ISz a5 plsle S a7y ls
Jj=1 j=m+1 j=m+1
and therefore

6.16) Sa TSz -2 3 & s,

J= j=m+1
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because «; = «,, for j = m. Hélder’s inequality gives

0

kel _ (g-D/q] & 1/q
S st Eais] S i) <

and then, letting » — + o in (3.16), we obtain

(3.17) 2 &l Ty 1S =l .
=1

j=

Combining (3.14) and (3.17) we get the invoked inequality (3.10). Finally, from (3.8),
(3.9) and (3.10) we get

[ 1Hel7ds < [ |H|7dx Vg <p
E B
and therefore (3.2).

Remark 3.2. Let E;, §; as in (2.17). Recalling Remark 2.3 we have
P(E;) - P(E,_,) = — jHde.
5

Therefore, if Hg e L? (E), we get

P(E) - P(E,_,) < [j |H, |Pdac]‘/P|%II“’P
S
from which

- P(E) - P(E,_,)

3.18
( ) =1 |5}l1-1/p

<c¢ VkeN,

where ¢ = |Hg |7z . Note that the reciprocal is also true, ze. (3.18) implies that Hy €
e L?(E). In fact, from the minimum property of E; _;, E, we obtain (see (2.20)) the
estimates

A-1151 S P(E;) = P(E; 1) < 415

7
so that
(3.19) N=2_1+1/28< (P(E;) — P(E;,_ )/ |S;| +1/2*%.
Define H; as in (2.28): from (3.19) we derive

o « [P(E)-PE_,) 1]
H, eV HMIES L U + =1 18] <
” k”liP(E) j;l 7 l JI /§1|: |S/| 2k ] f]

<o §[HELPE T 2
S s

and therefore Hg e L? (E).
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