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Teoria dei gruppi. — Finite groups with eight non-linear irreducible characters. Nota
di Yakov Berkovich, presentata(*) dal Socio G. Zappa.

AsstracT. — This Note contains the complete list of finite groups, having exactly eight non-linear irre-
ducible characters. In section 4 we consider in full details some typical cases.

Key worps: Finite groups; Representation of groups; Characters.

RiassunTo. — Gruppi finiti con esattamente otto caratteri irriducibili non lineari. La Nota contiene la lista
completa dei gruppi finiti con esattamente otto caratteri itriducibili non lineari. Sono riportate le di-
mostrazioni di alcuni casi tipici.

1. INTRODUCTION

G. Seitz [8] classified all finite groups G with #(G) = 1, where #(G) is the number
of all non-linear irreducible complex characters of G. In[5] C. Hangen and J. M.
Nielsen classified all finite groups G with #(G) = 2. Ya. G. Berkovich [1] classified all
finite groups G with 3 < #(G) < 7. In this Note we give the list of all G with #(G) = 8.
The proof of our main theorem is very long and complicated. Some comments to the
proof of the main theorem one can find in section 4.

2. Notation

Let G be a finite group of order g, let G’ be its commutator subgroup of order g’
and let £(G) be the class number of G. Then #(G) = £(G) —g/g’. If G is a p-group (p
is a prime) then z; = |{x € G| |G: C¢(x)| =p’}, where C¢ (x) is the centralizer of an
element x in G. Let:

p: prime number;

C(m): cyclic group of order z;

E(p™): elementary abelian group of order p™;

ES(m,p):  extra-special group of order p!*%”;

D(2m): dihedral group of order 2sz;

Q(2™): generalized quaternion group of order 2”;

SD(27): semi-dihedral group of order 27;

A,: alternating group of degree z;

Sy symmetric group of degree z;

S(64): group of order 64 with Z(G) = G’ = (G) = E(4), where &(G) is the

Frattini subgroup of G and Z(G) is the centre of G;

(*) Nella seduta del 13 novembre 1993.
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AlB:

(A, B):

A X B:

H™” .
GL(#n,p”):
AGL(n, p™):

Irr (G):

Y. BERKOVICH

splittable extension of B by A;

Frobenius group with the Frobenius kernel B and a complement A4;
direct product of A and B;

direct product of 7z copies of a group H;

n-dimensional general linear group over GF(p™);

GL(n, p”)IE(p™) where the left factor acts irreducibly on the right
one;

set of all ordinary irreducible characters of G.

We write A(G) = (h%V), ..., hf®) if G has exactly a(7) classes of length 4;,
i=1,2,...,khy=1and a(1) +a(2) + ... +a(k) =k(G). Obviously a(1) = |Z(G)]|.
We write d(G) = (d?V, ..., d*")) if Irr (G) contains exactly 4(7) characters of degree

d,i=1,2,.

cy8, B(1) + ..+ b(s) = |Irr (G)| = &(G). If dy = 1 then b(1) = g/g’ .

Obviously cd G = {x(1)|xelr(G)} ={d;,...,d,}. We have a(1)h; + ...+
+alk)h,=g=>b(1)d} + ... + b(s)d?, b; and d, divide g.

3, THE MAIN THEOREM

In this section we formulate our main theorem:

MaiN THEOREM. If #(G) = 8 then G is one of the following groups:

A. G is a non-trivial direct product.

T X C(2), »n(T) = 4.
T X C(4), n(T) = 2.

A, X B, Be {Q(8),D(8), AGL(1, 5)}.

Al
A2,
A3, TxC(8), n(T) =1.
A4
A5

D(6) x D(10).

B. G is a p-group.

Bl. g=2" g'=2, z,=16.

B2. g=27,g'=8, Tzp+ 3z +2,=64.

B3. g=2% g'=32, 31z, + 15z, + Tz, + 325 + 2, = 256.
B4. g=3*,g'=9, {20, 2.} = {9, 0} or {3, 24}.

C. Infinite series.

CL. (Cl(p*
C2. Z(G)=

—-1)/8),E(p%).
C(2), g/g' = (p*—1)/2, G/ Z(G) = (C((p* — 1)/4), E(p*)).
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C3. |Z(G)| =4, g/g' =2(p*— 1), G/Z(G) = (C((p* = 1)/2), E(p*)).

C4. |Z2(G)| =8, g/g' =8(p*— 1), G/Z(G) = (C(p*— 1), E(p%)).

C5. (C((3*—1/2),G")), G'is a special group of order 3**, |Z(G')| = 3*,a = 3 is
odd.

Cé. C(3*-1)IG', ¢’ =3, |G"| =3, Z(G") = E(3"), n(G/Z(G")) =T.

C7. (C(6(g —1))[C(q), E(p*), g=1+2"3" is a prime, p* =1+ 12(g — 1)g,
a>1.

D. g/g'=1.

D1. SL(2,5).

D2. PSL(2, 8).

D3. PSL(2, 13).

D4. A;.

D5. G/E(16) = As, Z(G) = 1.

E. g/g' =2.

E1l. C(2)[ES(1, 3) is of exponent 6, h(G) = (17, 6*, 9°).

E2. D(6)[A, Ae{E(16),C(4)*}, h(G) = (1, 3, 6, 12, 32).

E3. D(10)[E(16), h(G) = (1, 5, 20, 32).

F. g/g' =3.

F1. C(3)[ES(2, 2).

F2. AutPSL(2, 8).

G. g/g' =4.

Gl. C(4)[G', G'e{C(9),E(9)}, Z(G) = C(2).

G2. A[C(3), Ae{D(16),Q(16),5D(16)}, C5(C(3)) is not abelian.

G3. Q(8)[E(27), Z(G) =1.

G4. (Q(16), E(81)).

G5. (C(4)[C(5), E(81)).

G6. C(4)[E(27), h(G) = (1, 2, 4%, 9, 18, 27%).

G7. ALG', G'=(C(3),85(64)), Ae{C(4),E(4)}, h(G)=(1,3, 12, 16, 487,
964, 1282).

H. g/g'=5.

H1. C(5)[ES(2, 2).
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L g/g'=6.
I1. (C(6), E(49)).

2. C(6)[G',g'=256,h(G) = (1,3, 6%, 48, 64, 96*, 256*). If R is a normal four-
subgroup of G then R < G’, G'/R = 5(64), C(3)G'=(C(3),G").

I3.  C(6)[E(8), h(G) = (1%, 22, 3%, 4% &7).
I4.  SL(2, 3) * C(4), the central product of order 48.
I5. C(6)[E(9)[E(64), h(G)=(1, 9, 54, 96, 128, 144, 1922, 288, 3842, 432, 576°).

J. g/g'=8.

J1.  C(8)[ES(1, 3) is of exponent 24, h(G) = (12, 22, 9%, 124, 182, 274).

J2. (C(4) X D(6))[E(25), h(G) = (1, 122, 15%, 25%, 50%, 602, 75%).

J3. C(8)[(C(3),E(25)), h(G) = (12, 124 25%, 50, 754).

J4. C(8)[G', g' =243, h(G) = (1, 8, 18, 72°, 81%, 162%, 243%).

J5. PLC(5), |P| =32, n(P) =3, h(G) = (13,2, 4, &, 10°, 20°).

K g/g'=10.

Ki. AGL(1, 11)[C(3), h(G) = (1, 2, 10°, 114, 22¢, 33°),

L. g/g' = 12.

L1. C(12)[(E(4) x C(5)), b(G) = (1, 3, 4, 5°, 12, 15°, 16, 20°).

L2. AGL(1, 13)[E(4), h(G) = (1, 3, 124, 13%, 39°, 52%).

L3. AGL(1, 13)[C(5), h(G) = (1, 4, 12°, 132, 522, 65°).

L4. A[G',Ae{C(12),E(4) x C(3)},g’ = 1024,h(G) = (1, 3, 12, 48, 192, 256°,
7684, 1024%).

M. g/g' = 14.

M1. C(14)[G', g'=512, G'/Z(G') e {E(64), C(4)’}, h(G) = (1,7, 28, 64,
1124, 448, 512%2).

N. g/g' = 16.

N1. (C(2) x AGL(1,9))[C(5), b(G) = (1, 4, 5, 8, 9, 16, 36, 40, 45™).

N2. (C(2) x C(8))[E(81), h(G) = (1, 8, 9%, 16*, 722, 81").

N3. C(16)[C(5)[E(81), h(G) = (12, 40", 812, 324*, 405").

N4. P[E(9), |P| =32, G/Cp(E(9)) =(Q(8),E(9)), #n(P) =4, h(G) = (1%, &,
94 18%2),

N5. (C(4) x AGL(1, 5))[E(81), h(G) = (1, 40%, 452, 81%, 324%, 360°, 405').
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N6. ES(2,2)[E(81), h(G) = (1, 16°, 18, 32, 81, 144°, 162%2).
N7. P[E(81), h(G) = (1, 16, 18, 322, 817, 144, 162"), |P| = 32.

0. g/g'=18.
O1. (C(2) X E(9))[E(49), h(G) = (1, 6%, 7%, 182, 424, 49%).
P. g/g’ = 20.

P1. (Q(8) X C(5), E(121)).

P2. C(20)[G', G'=ES(1, 11) is of exponent 11, G/Z(G') = (C(20), E(121)),
|G: Cs(Z2(G"))| = 10.

Q. g/g' = 60.
Q1. A[G’', Ae{C(60),E(4) x C(15)}, G'e {E(256), C(4)*}.

Q2. C(60)[G', G'=ES(1,11) is of exponent 11, G/Z(G") = (C(60), E(121)),
|G: Cc(Z(G"))| = 10.

For classification of all groups G with #(G) < 3 see Chapter 19 of book [4]. All
groups G with #(G) = 4 were classified in [5] (for classification of all G with #(G) = 5
see the following issue of the same collection).

Let A(G) be the number of prime factors of |G|. I, and independently, E. Bertram
conjectured that for all finite groups G the following inequality holds: A(G) < &(G). I
know only two groups G for which A(G) = £(G): G = M, and PSL(3, 4). May be for
G solvable one has A(G) < £(G). '

4. COMMENTS TO THE PROOF OF THE MAIN THEOREM

In this section I would like to give some comments to the proof of the main
theorem.

We suppose that the complete classifications of finite groups G satisfying to #(G) <
< 7 or k(G) < 12 are known (see [1,2]). So in the sequel we assume that #(G) = 8 and
k(G) > 12. Then g/g’' > 4.

(1) Assume that G' is not semi-simple. Then there exists in G’ an abelian mini-
mal normal subgroup R of G. Set |R| = p” where p is a prime, #» > 0. Choose R so that
p” is as minimal as possible. Since the intersection of kernels of all non-linear irre-
ducible characters of any non-abelian group is trivial one has #(G/R) < 7. Hence the
structure of G/R is known [2]. By the assumption one has |G/R: G'/R| =5 and
G/R is solvable by[2]. Therefore G is solvable in this case.

Now I consider some possibilities supposing that G is solvable.

(2) Assume that G = A X B where A and B are non-identity subgroups of G. Set
|A| =a, |A"| =a', |B| =5, |B'| =b'. Then 8 = n(G) = n(A)n(B) + an(B)/a’ +
+ bn(A)/b'. Suppose that A and B are not abelian, z.e.,#(4) = 1,#(B) = 1. Thenn(A4) <2,
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n(B)<2. If n(A)=2then#n(B)=1,b/b"'=2,a/a’' =2. So B=S5, by[8] and A=D(10)
by [5] (see also Ch. 19 in[4]). Now let #(A) = n(B) = 1. Then a/a’' + b/b’' =7 (let
afa'zb/b’). It follows from[8] that a/a’'#5. Then afa’'=4, b/b'=3, Ae
e {Q(8), D(8), AGL(1, 5)} and B = A,. Now suppose that A is not abelian and B is
abelian. Then bn(A) = 8 and {#(A), b} = {1, 8}, {2, 4}, {4, 2}, so that [2] yields the
structure of A.

It is easy to show that G = A5 X C(2) is the only non-solvable group with #(G) = 8
which is a non-trivial direct product.

(3) Assume that #(G/R) = 0 e, G/R is abelian. Then R = G’. Let G be nilpo-
tent. Then# = 1 and G = P X A where P is a Sylow p-subgroup of G and A is abelian.
By (14) we may assume that A = 1. Set |G| =p”. Suppose that |Z(G)| =z, =p.
Then £(G) = |G: G'| +n(G) =p” '+ 8=z +z/p=p+ (p"—p)/p=p" '+
+p—1,andp — 1 = 8 - a contradiction. Hence z, = p* > p. Obviously cd G = {1, p*}
where 2k =m —s. Then, as easy to see, #(G)=p° (p—1)=8 and p =2,
s=4.

Suppose that G is not nilpotent. Then R is not contained in #(G) (Wielandt) hence
there exists a maximal subgroup A of G such that G = A[R. Then C4(R) = Z(G) and
G/Z(G) is a Frobenius group with the kernel RZ(G)/Z(G) and a cyclic complement
A/Z(G). It is easy to see that 8 = #(G) = |Z(G)| n(G/Z(G)). In this case we obtain
groups C1-C4.

(4) Let n(G/R) = 1. By Seitz’s result[8] G/R is an extraspecial 2-group or
G = (C(p* — 1), E(p“)). We consider only the first case since the second too difficult
to expose in this short Noze.

Thus let G/R = ES(m, 2).

Suppose that p = 2. Then# =1 and |G'| = 2?. Let d,, ..., dg be the degrees of
characters from Irr (G) — It (G/R). Then |g| — |G/R| =2"*'=d+ ... +d§=1
(mod 3) — a contradiction (note that d; is a power of 2 by the Ito theorem on degrees of
irreducible characters; see Theorem 6.15 in[7]).

Let now p > 2. In view of the minimal choice of |R| one has C;(R) =R.If Qe
€ Syl,(G') then C;(Q) = P € Syl,(G). Therefore G' = (Q, R) is a Frobenius group.
Denote by &g (M) the number of G-classes containing elements from M. If G is a
Frobenius group then P = Q(8), kg(R) =7 so |[R| —1=p"—1=7|P| =56 — a
contradiction. Thus G is not a Frobenius group. In this case £ (R) < 6. Ifxe R — {1}
then |G: Cg(x)| <2”*! (since G’ is a Frobenius group). Now we can step by step
consider all six possibilities for £;(R).

Let £;(R) = 1. Then p” — 1 = 2”*¢ where ¢ > 0. Since G' is a Frobenius group
then Sylow 2-subgroup P, of C¢ (x) is elementary abelian and C;(R) = R. If y, ..., ,
are pairwise distinct elements of P§ then y,x, ..., y,x are pairwise non-conjugate ele-
ments of G. So ¢ < 6 and |P,| < 4. Now Cg(R) = R implies » > 1. Hence p" = 3*,
27+¢ =23 Since Sylow 2-subgroup of Aut(R) is isomorphic to SD(16), one obtains
m=1.Then2*(32— 1) =d? + ... + d? where d; = 2° | 5(i) < 3, which is impossible.



FINITE GROUPS WITH EIGHT NON-LINEAR IRREDUCIBLE CHARACTERS 147

Similarly we can consider the remaining possibilities £ (R) = 2, ..., 6. We only show
thatp = 3. Setd; =20, i=2,...,8. Then 27" ! (p" — 1) = 2@ + ... + 22® =1
(mod 3). This congruence implies p = 3.

(5) In the sequel we assume that G' is semisimple. We know that in this case
|G: G'| =2 5. Let R < G' be a minimal normal subgroup of G. Since £ (R) < 8 then
R is simple. Now k¢ (R) = 3 so #(G/R) < 5. Then G/R is solvable by [2]. Denote by
Y(G) the number of cosets xG'# G' such that £¢(xG') > 1. In our case Y(G) +
+ kc(G') < 8. We use constantly in our reasoning the equality |Irr (G)| = £(G).

Suppose that G has a normal p-complement H for a prime divisor p of |G|. Take
P e Sylp (G) and x, an element of order p in Z(P). Since (x, H) is not a Frobenius group
(Thompson) then there is in H — {1} an element y, which commute with x. Obviously
kc((xy)) =p — 1. Since kg(R) +kc({xy)) <8 then p<5. Now kg(R)=3. If
kg (R) = 3 then R = Asand RP = R X P forp > 2, a contradiction, since R < H. Thus
kc(R) = 4. In any case p > 2 by Odd Order Theorem. Suppose that p = 5. Then
kc(R) = 4 and R is isomorphic to PSL(2, 7) or PSL(2, 8) by known classification theo-
rems. Then x centralizes R, and it is easy to see that #(G) > 8 — a contradiction. Thus
p = 3.Since 3 + |R| thenR = Sz(g) where g is a power of 2 (Thompson, Glauberman). It
is easy to see that #(G) > 8 in this case. Thus G has no a normal p-complement for any
rl 1G],

Now if p¢ |g/g’ and p® > #(G) — 2 then G is solvable or p-nilpotent (Isaacs-Pass-
man [6]). So by the above, if p*|g/g’ then p* <5. Thus g/g’'|4-3-5 = 60.

If 5|g/g' then (G) = 4 (Sylow or Thompson). Since k£ (G') = 3 then 4 ¥g/g’,
34g/g'. Thus kc(G') < 4,G'e {As, PSL(2, 7), PSL(2, 8)}. In view of the structure
of Aut(G') one obtains a contradiction. Thus g/g’|12.

Suppose that g/g’ = 12. We note that a Sylow 2-subgroup P of G is not of maximal
class since P N G’ is not cyclic. So if x is a 2-element from G — G' then |Cp(x)| = 8
(Suzuki). If y is an 3-element from G — G’ then |Cg (y)| > 1. Thus ¢(G) =5 so
kc(G') < 3. Hence G' = As. It is easy to see that in this case #»(G) > 8.

Since g/g' > 4 theng/g' = 6. As above we may assume that ¢(G) < 5. If x is an el-
ement from G — G’ such that (x, G') = G then C¢ (x) = (x) hence G = {(x) [ G’ and x
induces via conjugation a fixed point free automorphism of G'. By well known result
G' is solvable — a contradiction.

These are simplest but in the some sense typical cases.
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