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Teoria de i numeri . — An annihilator for the p-Selmer group by means of Heegner 

points. N o t a ( * ) di M A S S I M O B E R T O L I N I , p resen ta ta dal Corr i sp . C. Proces i . 

ABSTRACT. — Let E/ Q be a modular elliptic curve, and let K be an imaginary quadratic field. We show 
that the p-Selmer group of E over certain finite anticyclotomic extensions of K, modulo the universal 
norms, is annihilated by the «characteristic ideal» of the universal norms modulo the Heegner points. We 
also extend this result to the anticyclotomic Zp-extension of K. This refines in the current contest a result 
of[l] . 

KEY WORDS: Elliptic; Curve; Annihilator; Heegner; Selmer. 

RIASSUNTO. — Un annullatore per il p-gruppo di Selmer per mezzo dei punti di Heegner. Sia E/ Q una cur­
va ellittica e K un campo quadratico immaginario. Si dimostra che il p-gruppo di Selmer di E sopra certe 
estensioni anticiclotomiche finite di K, modulo il gruppo delle norme universali, è annullato dall'«ideale 
caratteristico» delle norme universali modulo i punti di Heegner. Inoltre, questo risultato viene esteso al caso 
della Zp-estensione anticiclotomica di K. Esso costituisce, nella situazione considerata, un raffinamento di 
un risultato di[l] . 

1. CONVENTIONS AND ASSUMPTIONS 

References: [1-3]. 
We assume that the reader is familiar with Kolyvagin's theory for elliptic curves. 

Here we content ourselves with recalling a few facts, and fixing notations. 

ASSUMPTIONS. 

1) E/Q is a modular elliptic curve of conductor N. 

2) K is an imaginary quadratic field such that all primes dividing N split in K and 

©£={±1}. 
3) p * 6Ndisc (K) # Pic (0K) # (E/E°), where E/E° denotes the group of con­

nected components of the Néron model of E. 

4) The Galois representation pp: Gal(Q/Q) —> Aut(Ep») is surjective. 

5) p is ordinary for E, i.e. tfp#0(modp). 

6) p t #E(Fg>) for all primes & of K above p. 

7) ap&2(modp) if p splits in K; ap& —l(modp) if p is inert in K. 

Let Ko, /K be the anticyclotomic Zp-extension of K, and let Kn be the subextension 
of degree p". Write Gn := Gal(X„/X), Dn := Gal(KjQ), Rn := Z/pZ[Gnl, Rn '= 
:= Z/pZ[Dn]. Under our assumptions there is a family of Heegner points defined over 
Ko,. Write <xn for the standard Heegner point over Kn and 8n = Rn an for the sub-mod­
ule of E(K„)/pE(Kn) generated by a„. Zn is an R„-module, as the p-Selmer group 

(*) Pervenuta all'Accademia il 25 ottobre 1993. 
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Selp(E/Kn). Given a rational prime / we let 

E{{Kn),)/p := ®MlE((K„W/pE((K„W, 

H 1 ( ( ^ ) / , ^ ) : = © A K H 1 ( ( K J , ) ^ ) , 

wheje the sum is taken over the primes of Kn dividing / and A denotes either E or Ep. 
We also write res/ := ©A|/resA : H1 (Kn, A) —>H1 ((Kn)hA) for the natural restriction 
map. We call Kolyvaginprimes all rational primes / X 6pN such that Frob/ (K(Ep)/Q) = 
= [T] , where T is a fixed complex conjugation. Let r = lx ... 4 be a square-free product of 
Kolyvagin primes. We denote by c(r, Kn) eH1 (Kn, Ep) and d(r, Kn) e H1 (Kn, E)p the 
Kolyvagin cohomology classes. Thus c{ry Kn) corresponds to the point —Drocn (r), where 
Dr is the Kolyvagin derivative and an (r) is the Heegner point for K„ of level r. d(r, Kn) is 
the image of c(r, Kn) under the natural map. Under the above assumptions the follow­
ing holds. 

FACTS. 

1) The norm mappings NKfi + l/Kn: Sn + 1—> 8n are surjective. 

2) (/) For any rational prime / not dividing r res/J(r, Kn) = 0. 

(//) For l\r, there is a G^-equivariant and r-antiequivariant isomorphism 
#/: Hl{(XJhE)p-*E{(Kn)l)lp such that ^ ( r e s ^ r , Kn)) = T^(Dr/loc(r/l)). 

3) Let S be a finite set (possibly empty) of primes of Kn and let Sel̂  (E, Kn) be 
the set of classes of H1 (K„, Ep) satisfying the local conditions outside S. Let S' be the 
extension of S to Kn + 1. Then Se l^E/XJ = Se£' (E/Kn + J G - K ^ ^ / K . ) v i a t h e r e s t r i c . 
tion map. 

4) (Local Tate duality). For any /, the cup product induces a Galois-equivariant 
duality ( , ) , : E((KJ/)//> X H 1 ((Kn)h E)p ^Z/pZ. 

5) {Global duality). Let 8: ©/H1 ((KJ,, E)p -> Selp (E/Kn)
dual be the map in­

duced by the local Tate pairing and let res = ©/res/ : H 1 (K„, E)p —» ©/H 1 ((KJ/, £)p 

be the restriction map. Then for all CGH1(KH,E)P we have £res(c) = 0. 

2. ALGEBRAIC PRELIMINARIES 

In this section, let D denote a dihedral group of order 2pn where/? ^ 3 is a rational 
prime. (For instance, the Galois group Gal (Kn/Q) introduced in the previous section). 
D is the semidirect product of its cyclic subgroup G of order pn and of any subgroup of 
order 2. Fix an involution r of D and a generator y for G. Then, for all g E G we have 
gr=g~1. We write R, resp. R for the group ring ZjpZ\G\ resp. Z/pZ[D], 

PROPOSITION 1. L# M be a finitely generated R-module. Then M = Vx © ... © Vr, 
where the Vt- are R-modules which are cyclic R-modules. Moreover, the decomposition is 
unique up to isomorphisms. 

Proposition 1 is a consequence of the following Lemmas. 



AN ANNIHILATOR FOR THE p-SELMER GROUP BY MEANS OF HEEGNER POINTS 131 

LEMMA 2. Let M be a fg. R-module. Then M = Vx © ... © Vr, where the Vt 

are cyclic R-modules. Moreover, the decomposition is unique up to isomorphisms. 

PROOF. We can identify (non-canonically) R with the quotient of the polynomial 

ring Fp [X] Fp [X]/(XP" - 1), by means of the assignement y«-»X. The thesis follows 

from the structure theorem for a PID. 

LEMMA 3. If V is a cyclic R-module such that dimF (V) = t, then V — R/ (y — If — 

PROOF. It follows easily from the fact that the ideals of R are the powers of 7 - 1 

LEMMA 4. Let V be a cyclic R-submodule of a fg. R-module M. Then there exists an 

R-submodule V of M such that V is isomorphic to V as an R-module. 

PROOF. Let v be a generator of V. Define the R-modules V{±) := Rv ± , where v ± := 

= (v ±w)/2. Since Vc V{ + ) + V{~), either V{ + ) or V{~] must have the same dimen­

sion as V. 

LEMMA 5. Let M be af.g. R-module, and Mx an R-submodule. Assume there exists an R-

decomposition M = MX®M2. Then there is an R-decomposition M = M1QM2. 

PROOF. Write n\ M^>Ml for the projection associated with the given decomposi­

tion. Define n: M—>Mi,m^-> {n{m) + T7T(TW)) /2 . One checks easily that n is a mor-

phism of R-modules, and that n{mi) = mx Vm1 e M j . Hence we have the R-decomposi­

tion M = Mx@ ker jr. 

P R O O F OF PROP. 1. By Lemma 2 we may write M = Vi © ... © Vr, where the V{ are 

cyclic R-modules. We perform an induction on the number r = dimF (M G ) of the 

cyclic summands of M, the case r = 1 being trivial. Assume that dimF Vx is maximal. By 

Lemma 4 combined with the theory of elementary divisors, we may assume in addition 

that V1 is an R-module. The thesis follows from Lemma 5 and the inductive 

hypothesis. 

Given a non-zero cyclic R-module V, we have VG — Z/pZ. If, in addition, V is an 

R-module, T acts on VG via £ = ± . Note that e does not depend on the choice of the 

involution T. For, if T ' is another involution, we have r = zg for some g e G. 

DEFINITION 6. The sign of V sign ( V) is the sign e = ± defined above. 

LEMMA 7. Let V be a non-zero R-cyclic R-module, having dimension over Fp equal to 

t ^ 1. Then, the sign of V is equal to e if and only if we may find an R-module generator v of 

V such that w = ( - 1 / " l sv. 

PROOF. Given an R-module generator v of V, write as before v± = (v ±rv)/2. 

Then vâ, S = + or — is also a generator. Let w : = (7— 1) — (7— 1)T. Then co is a gen­

erator for the augmentation ideal (7 — 1 )R and TCO = —cor. Thus ojt~1vsisa generator 

for VG and r(cof " V ) = ( - 1 ) ' " x £ ( * / " V ) . Hence e = ( - 1 ) ' " ^ . 
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Later we shall need the following technical result. 

PROPOSITION 8. Let V\ and V2 he R-cyclic R-suhmodules of an R-module M, neither of 
which contained in the other. Assume that d '= dìmF (V1 fi V2) ^ 1. Then we may write 
Vi + y2 = Vi © W, where W is a non-zero R-cyclic R-suhmodule of M such that 
sim{W) = {-l)d signC^). 

PROOF. By the theory of elementary divisors, we may write Vx + V2 = Vi © W, 
where Wis a non-zero R-module. By Lemma 5, we may assume that Wis an R-module. 
Notice that W is R-cyclic, since V2 projects onto (Vi + V2)/V1 — W. Thus, we are 
reduced to prove that the sign of W is equal to ( - 1 )d sign ( Vx ). Write s for the sign of 
Vi and â for the sign of W. Let w denote a generator for WG. Then w =vx + v2, with 
Vi G Vi — (Vi fi V2) and (7 — 1)^ e \^ H V2, / = 1> 2. By Lemma 7, we may assume 
that wx = { — l)devi. We deduce rw = Svx + &>2 = ( - l)^£^i + T^2- This is possible 
only if 8= (~l)d£. 

3. THE MAIN THEOREM 

We work with a fixed layer H'=Kn. To ease notations we let G := Gal(H/K), 
D := Gal (H/g) , R := Z/pZ\G\ R.:= Z/pZWl oc := a„ and 8 := 8,. We may apply 
to R-modules the results of the previous section. 

LEMMA 9. Assume that 8 *y non-zero. Then there exists an R-suhmodule U o/Selp (E/H) 
containing 8 .yz/c/? / t o U is a free R-module of rank 1. 

PROOF. Let H' be the sub-extension of K^ /K having degree p over H. Let 8' de­
note the module of Heegner points defined over H'. Let 7, resp. 7' be a generator for 
G,resp.G':=Gal(H7X).Letû>:= ( 7 - 1) and <«>':= (7' - 1). By facts land 3, §1 and 
Lemma 3 we have 8 c 8' and 8 « (w)'0, 8' « (<o' )'°, where dimFp 8 = p* - t0 ^ 1. It fol­
lows that U:= (a)')pn + 1~p"~to8' - (w')p* + 1~p* - R satisfies our requirements. 

Note that the module U is a kind of mod p universal norm sub-module of 
Sdp(E/H). Clearly we have o/°U = 8. 

. LEMMA 10. Assume that 8 ^ 0 . Then there exists an R-decomposition Selp(£/H) = 
= U © Vx © ... © V, where the V{ are R-cyclic. 

PROOF. By the theory of elementary divisors, we may find an R-module decomposi­
tion Selp(E/H) = U © V. We conclude by applying Lemma 5 and Prop. 1. 

Let £ = o/°, with t0 as above. By analogy with the terminology of Iwasawa theory 
we give 

DEFINITION 11. We call £R the characteristic ideal of 17/8. 

THEOREM 12 (MAIN RESULT). Assume 8 ^ 0 . Then £R annihilates Sdp (E/H)/ U. 
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REMARKS. 1) The ideal £R depends only on Selp(E/H). 

2) £2 is related, in view of a theorem of (Sross-Zagier, to the Galois L-function 
interpolating special values of the first derivatives of the complex L-functions corre­
sponding to the characters of the extension H/K. 

3) The analogue of Th. 12 when 8 = 0 is trivial. 

PROOF. Let sign (8) := e. Reorder, if necessary, the V; in the decomposition of Lem­
ma 10 in order to have 

signCV,) = - e , 1 ̂ / ^ * ! , 

sign (V,) = e , *! + 1 ̂  *' ^ * , 

where we do not exclude Si = 0 or ^ = s. 

LEMMA 13. There exist infinitely many Kolyvagin primes lx satisfying the simultaneous 
conditions 

res/^uev^uev;., 1 ^ / ^ , 
res^V^O, Sl + l ^ i ^ s , 

where res^: Sel̂  (E/H) -^EiH^/p is the restriction map. 

PROOF. 

Step 1. We may identify the elements of the Selmer group with homomorphisms in 
Homg(Gal(K/H(£p)), Ep),withg := Gal (H(Ep)/H). For, under our assumptions g « 
~GL2(FP). Then, the kernel H^(g,Ep) of the restriction map Hx{HyEp)^> 
—» Hl (H{Ep), Ep) is zero. Given an R-submodule T of Selp (E/H), let MT denote the ex­
tension of H{Ep) cut out by T. In our setting, Kummer theory gives Gal (MT/H(Ep)) = 
= Hom(T, Ep) as R-modules (see [1, §1.3] for more details). Let 

T:= uG e vf e... e vG e vsi+1 e... e vs. 
Then 

Gal(MT/H(Ep))=Hom(UG,Ep)e(e^1Hom(V,G,Ep))e(0j = ,1 + iHom(yy,Ep)). 

Note that UG — Vf ~ Z/pZ, and that the complex conjugation T acts via s, resp. 
- e on U G , resp. VG, 1 ̂  i ^ Si. Choose generators #, t^ , . . . , vSl. Write Ep

± for the 
± -part of Ep under the action of T. Let e sEp

£ - {0}, e^sEf* - {0} for 1 ̂  / ^ $x. 
Define the homomorphisms 

$: UG -^Ep , u^>e , 

$r.V
G->Ep, Vi^e^ l**i^sl9 

h: Vj->Ep, ^ = 0 , *,+ i ^ y ^ . 

Identify ($, ^1? . . .$ 5 l , &1 + i, • ••> &) with an element g of Gal(MT /H(Ep)). 
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Step 2. By the Chebotarev density theorem there exist infinitely many Kolyvagin 
primes lx such that 

Frob / l(M r /Q) = [Tg]. 

Then 

Frobll(MT/K) = [(Tg)2i = [g*g] = 

= [(er4> + t, - e ^ ï + ^ j , . . . , - « & , + & , , < ) , . . . , ( » ] . 

It follows 

r e S / l ( U G © V , G ) - U G © V ; G , l*si**sly 

res/jV^o > sx + l ^ i ^ s . 

Step 3. We claim that with the above choice of lx we have in fact 

rescue V,.)«U©V/, 1 ^ / ̂  Sl . 
For, if for some i there is a non-zero v e U © Vj such that res/^ = 0, then the mod­

ule {Rv)G is mapped to 0 by res/1. But (Rv)G is non-zero, in contradiction with step 2. 
This concludes the proof of the Lemma. 

PROPOSITION 14. For 1 ^ / ^ sit we have £Vj = 0. 

PROOF. With the above choice of lx we have, by fact 2, § 1, 

res/j (RddJ) « res/j 8 « Ro/°, with sign (res/lRtì?(/1)) = - £ . 

Let XcH1(Hi1,E)p be an R-module free of rank 1 over R and containing 
res/^Rd?(//)). The existence of X follows from the results of §2. More precisely, note 
that H1 (H/j, .E)p is isomorphic to EiH^/p by local Tate duality (fact 4, § 1); moreover, 
E(Hh)/p ^R®R since, by definition of Kolyvagin prime, E(HXl)/p « Z//>Z © Z/pZ 
for all primes A x dividing lx. Then the theory of elementary divisors guarantees the exis­
tence of a free rank 1 R-module X containing res/x (Rd(li)). Since res^ (RdilJ) is r-in-
variant, by Lemma 4 we may assume that X is an R-module. Clearly, sign(X) = — e. 
Let Y be any R-submodule of EiH^/p free of rank 1 over R and such that 
sign(Y) = —s. Y exist because, if ^ denotes the unique prime of K above l1} 

we have Frobfl (K/Q) = T, and (E(Rfl)//?)± — Z/pZ; then we may let, for instance, 
Y := R (£(Kfl )/p) ~£. We claim that X and y as above are dual of each other with respect 
to the local Tate duality 

(,)r. EiHA/p x HHHhE)p^>Z/pZ, 

i.e. X maps onto the dual of Y, which is a rank 1 quotient o£E(Hi1)/p. This follows from 
the Galois-equivariance of the local Tate pairing. More precisely, the T-equivariance 
implies that (E(Kh)/p)± is dual of (H1(Kh,E)p)

± . The thesis follows from the G-
equivariance. Recall the map 

âr.HH^E^SdpiE/L)0»1 
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induced by the local Tate duality. Since for 1 ̂  / ^ ^ sign(V/) = sign(X) = — s, the 
above considerations imply that 8^ (X) projects onto Vfua{. By the global duality theo­
rem (fact 5, § 1) combined with the local behaviour of the Kolyvagin cohomology class­
es (fact 2, §1) we find fy (res^RddJ) = 0. Hence ^ ( V ^ = 0 and <»'°V;. = 0, 
1 ^ / ^ J! . 

Choose a Kolyvagin prime ^ as in Lemma 13. Let 

Sx :=&;(/!) « ( to )* . 
Note that t1^t0, since the natural map H1 {H, Ep) ^H1 (Hi1}E)p induces a 

projection 

8 1 ^ r e s / l ( R J ( / 1 ) ) - ( ^ ) ^ . 

Case 1: sign (82) = — £. 

Note that in this case 

8in(v;1 + 1 e . . . ev ; ) = o. 
Otherwise, there would be a non-zero element in gf Pi ( V^ + 1 © ... © V$.)

G. This is im­
possible, since sign. (Vf) = e (or Si + 1 ̂  i ^ s. 

PROPOSITION 15. I# the «case 1», we have a>h V, = 0 for s1 + 1 ^ /' ^ s. 

PROOF. Choose a Kolyvagin prime l2 satisfying the conditions 

res/2 (8i © V;-) « 8x © ^ - , *i + 1 ̂  / ^ s . 

The existence of l2 follows from an argument similar to the proof of Lemma 13. By 
fact 2, §1 we have 

res/2(RJ(/1/2)) — res^Si — {oj)h , with sign (res/lRJ(/1)) = £. 

Since res/1 V/ = 0, an argument similar to the proof of Prop. 14 shows 

COh Vi = 0 , *x + 1 ^ / ^ S . 

This concludes the proof of Th. 12 if there exists a Kolyvagin prime lx satisfying the 
conditions of Lemma 13 and such that sign(8i) = — s. 

Case 2: s i g n ^ ) = s. 

Recall that 8X — (co)'1, with t ^ t0. 

LEMMA 16. In the «case 2», we have t1^t0 (mod 2). In particular, tx < t0. 

PROOF. Recall that the class c{lx) is the image of the point —D^oci^ ) (§1). We may 
choose the Heegner points a and D/]La(/j) so that r acts on a, resp. c(li) via o-, resp. — a, 
where a- denotes the negative of the sign of the functional equation for L(E/Q,s). Since 
sign (8) = sign (Si), Lemma 7 implies that dimF (8)^dim F (8j) (mod 2). Hence by 
Lemma 3 t^tx (mod2). 

The next Lemma adapts an idea of H. Darmon to our situation. 
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LEMMA 17. Let c e Sj fi Selp(E/H) he given. Then the image of c under the 
restriction map res^ : Selp (E/H) —>E(H/1)//? is 0. 

PROOF. Let H[ / J denote the maximal p-extension of H contained in the composi-
tum of H and the ring class field of conductor lx. Let X1 be a prime of HU\\ above / j , 
and let À x be the prime of H below A !. The image of c in H 1 ( H t / J ^ , Ep) is zero, be­
cause D/1 a(/j) is locally divisible at À i by p, as it follows from the congruence axiom for 
the Euler system of Heegner points [2]. Moreover, c maps to an unramifled cocycle in 
H1(HXl,Ep), since it belongs to Sdp(E/H). Finally, the map H„nr(HXl, Ep) —> 
—> H1 (H [lx \ l , Ep ) is injective, since H\l\ ]/H has trivial residue field extension at À x. We 
deduce that c maps to zero in H1 (HXl,Ep), and this concludes the proof. 

Let e denote the module 8X fi (VSl + i © ... © Vs). 

PROPOSITION 18. In the «case 2», the dimension of <3 is odd. 

PROOF. Let ë := g^'fl Selp (E/H). Clearly C D C . S is the kernel of the surjection 

81^>resll(Rd(l1))y 

induced by the natural map H1 (H, Ep)-+H1 (H^, E)p. Hence Lemma 3 gives 

and dimF (C) = t0 - t1. By Lemma 16 t0 - ^ is odd. Since 6 is cyclic, we have C = 
= wp C. In view of Lemma 3, we are reduced to show that p is even. Let Q := R?, where T 
acts on H by + or —. Given our fixed decomposition of Selp (E/H), write 

c = (u, vu . . . , vs), 

with u eUyVjsVj. Since res^? = 0 by Lemma 17 and res/1 U — U by our choice of ^ , 
we get u — 0. Consider the projection 

C^>RV; , ?•-»#/ . 

We claim that for 1 ^ / ^ sx we have dimF (Rv^) = 2[Ai9 [xt ^ 0. Equivalently, 

AnnR(R^) = (<w)2/x< . 

This follows from Lemma 7, since either Rvï = 0 or sign(Rz^) = — sign(C) and T 
acts on ? and Vj in the same way. If we let [x '•= max {///}, we find p = 2(j.. This con­
cludes the proof of Prop. 18. 

It is possible to assume that the R-decomposition of the module VSl + x © ... © Vs is 
such that 

e cV J l + i and éâm(VSl + 1)^pn- h . 

For, it is possible to treat the other cases with similar techniques, this being 
the most difficult. Let VSl + iD C be an R-module. By Lemma 4 and the r-in-
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variance of 6, we may assume that VSl + i is an R-module. In view of the theory of ele­
mentary divisors, we conclude by applying Lemma 5 and Prop. 1. 

Case 2.1 : Assume that VSl + i <t 8>i. 

I.e., e*VSl + l . Clearly 8l € VSl + i, because res^ (RddJ) « {co)to * 0, hence 8X can­
not be contained in the Selmer group. Then, by Prop. 8 and Prop. 18, we may 
write 

£1 + ^ + 1 = ^ 6 ^ , 

with sign (TP) = ( - D ^ V ^ s i g n l S i ) = - e . " 

LEMMA 19. In the «case 2.1», there exist infinitely many Kolyvagin primes l2 satisfying 
the simultaneous conditions 

r e s / ^ g ^ VJ1 + ! ) « ( « ! + 7 ^ + 1 ) , 

r e s / ^ V ^ V , - , ^ + 2 ^ / ^ , 

res/2(8!) H res/2(V,-) = ( r e s / ^ ) 6 , ^ + 2 ^ / ^ s. 

PROOF. Since sign ( 8X ) = — sign ( TT), the argument in the proof of Lemma 13 shows 
that the first condition is equivalent to 

r e s / 2 S ? - S ? , r e s / 2 W G - ^ G , 

and it is satisfied by infinitely many Kolyvagin primes. At any rate, consider the 
module 

T : = s 1 e w r e v J 1 + 2 e . . . e v , . 
If Mr denotes the extension of H{Ep) cut out by T, we have 

Gal (MT/H(Ep)) = HomlSi, Ep) 0 Hom(W, Ep) 0 

©Hom(V,1 + 2 , E p ) 0 . . . © H o m ( V , , E p ) . 

Choose embeddings of R-modules 

8 1 ->R ( 1 ) , 

W^R{2) , 

where the R ^ are free of rank one over R. This is possible by Lemmas 3 and 7. Note 
that sign(R(2)) = — z, and sign(R(^) = e for j ^ 2. We get an embedding 

T ^ ©jl i 1 + 1R ( y ) . 

By applying Hom(,Ep) we obtain a projection of R-modules 

TT: ©;i i1 + 1 Hom(R ( y ) ,E p ) -»Gal(M T /H(E p ) ) . 

By Lemma 7, we may choose R-module generators fy for Rij) such that £2 = ~~ £?2 > 
?/ = £?y,/ ^ 2. Fix e E E/ - {0}, <?' G Ep~

£ - {0}. Write 7 for a fixed generator of G. 
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We define homomorphisms 4>j'- Hom(R ( j , ) ,E p ) by letting 

# ! ( * ! ) : = * , $1(yi;1):=e', . # i ( « 1 ) : = 0 , geG, g*\G,r; 

h(h)-=e', <p2(^):=0, geG, g*lG; 

httj):=e, & ( # ) = 0 , geG, g*lG, 3 * 5 / ^ - ^ + 1 . 

By the Chebotarev density theorem there exist infinitely many primes l2 such 

that 

F r o b , 2 ( M r / e ) = [ T O ( # 1 , # 2 , . . . , ^ _ J l + 2 ) ] . 

We leave to the reader the task of checking, also keeping in mind the proof of Lem­

ma 13, that these primes satisfy the above conditions. 

PROPOSITION 20. In the «case 2.1», we have coh VSî + i = 0. 

PROOF. We have res/2 {Rd{lxl2)) — res/2 8l — (co)h, with sign (res/2 (Rddi l2))) = ~ e. 

Note that VSl + 1/6= 81 + VSl + i/81 = W. Since res / l VSl + 1 = 0, global duality and the 

Galois-equivariance of the local Tate pairing give coh (VSl + \/C) = 0 (cf. the proof of 

Prop. 14). Moreover, cot°~ilG = 0, since this holds for 6. The thesis follows. 

PROPOSITION 21. In the «case 2.1», coh Vj• = 0 for Si + 2 ^j ^ s. 

PROOF. Our choice of l2 and the fact that res^ Vj• = 0, combined with a global duali­

ty argument similar to the one above, gives coh + l V;• = 0. Since t1 < t0 by Lemma 16, 

we obtain cotoVj = 0. 

Case 2.2: Assume that G= VSl + 1. 

We already observed that o)t°~tlG = 0. Thus the following concludes the Proof of 

Th. 12. 

PROPOSITION 22. In the «case 2.2», coio Vj = 0 for si + 2 ^ / ^ s. 

PROOF. Choose a Kolyvagin prime l2 such that 

r e s / 2 ( 8 1 ) - ( 8 1 ) , 

res / 2(V;-)«V;-, s1 + 2 ^ i ^ s , 

r e s / 2 ( 8 1 ) n r e s / 2 ( y / ) = (res / 28 1 )G . 

It is clear that the choice we made in the proof of Lemma 19 will work, since these 

conditions are weaker than those of Lemma 19. As in the proof of Prop. 21 , we deduce 

coh + 1 Vj• = 0, hence the thesis. 

3 . IWASAWA THEORY 

Let 7 be a topological generator of Gal (Kœ /K), and let co := 7 — 1. The mod/? Iwa-

sawa algebra A := Z/pZ [Gal (Koo / X ) ] is a DVR. Under our assumptions, 8n embeds in 

8n + 1 under the restriction map. Let 8œ := lim S„, where the limit is taken with respect 

to the norm mappings. Write %& for the Pontryagin dual of Selp (E/Kœ ). 
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LEMMA 23. Assume that Z^ *• 0. Then there is an isomorphism of A-modules 

x c o - A e A / ( o ) ) a i e . . . e A / ( w ) a s 

where the a, ^ 1. I# particular, the A-rank of #<» » 1. 

PROOF. By assumption, there exists « such that 8„ ^ 0. Let £„ — Rn ce/°. By fact 1, § 1 
we get 8m — Rm(oio & 0 for all w ^ «. Then, for all #z ^ « Th. 12 gives 

Sdp(E/Km)~Rm®Rm/(a>r®...®Rm/(a>r>, 

with the a/ ^ 1. Lemma 3 implies that Selp(E/Kw)dual is isomorphic to Selp(E/Xw) as 
an Rw-module. The thesis follows from the isomorphism 

z./(rp"-i)x.«(sdp(E/Odu ,1> 
consequence of fact 3, §1. 

Given a decomposition as in Lemma 22 we let 

(X- ) to» :=A/ (û>)^e . . . eA/ (a>) a ' . 

(%oo)tors is well defined up to isomorphisms. It is the analogue of the torsion over the 
Iwasawa algebra of the dual of Selp«= (E/Kœ), which one considers in characteristic 
zero. Moreover, if U„ denotes the sub-module of Selp (E/K„) defined in Lemma 9, let 
Uà» '.= lim U„, where the limit is with respect to the norm mappings. Then U«, — A. 

We call " 

char(Uoo/8co):=AnnA(Uoo/8.) 

the characteristic ideal of Uœ /£«,. Thus char (U«, /&«>) = Ao/° if &„ — Rnojio * 0 for 
some n. 

We reformulate in the present situation Th. 12. 

THEOREM 24. char ( Uœ / £«, ) annihilates {% «> )tors. 

REMARKS. 

1) Th. 24 provides evidence (mod p) for a conjecture of B. Perrin-Riou [4], 
which is the analogue in the current setting of the Main Conjecture of Iwasawa theory 
for cyclotomic fields. 

2) Th. 24 can be viewed as a refinement in the mod p case of the main result 
of [1], relative to the characteristic zero situation, where a similar statement is proved 
with an extra-factor appearing in the annihilator. Can the methods of this paper be ex­
tended to the characteristic zero case in order to improve the result of [1]? 

3) The same techniques of this paper can be used inductively to show that the 

characteristic ideal of (%oo)t0rs char((xa,) t0rs) := I I I wa/ A divides a certain power of 
charlUoo/Sj. V = = 1 ' 
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