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Matematica. — On iterations of Green type integrals for matrix factorizations of 
the Laplace operator. Nota di ALEXANDRE A. SHLAPUNOV, presentata (*) dal Socio 
E. Vesentini. 

ABSTRACT. — Convergence of special Green integrals for matrix factorization of the Laplace operator 
in Rn is proved. Explicit formulae for solutions of 3-equation in strictly pseudo-convex domains in Cn are 
obtained. 

KEY WORDS: Green integral; Differential operator with injective symbol; Dolbeault complex. 

RIASSUNTO. — Iterazioni ài integrali di Green per fattorizzazioni matriciali dell'operatore di Laplace. Si di­
mostra la convergenza di integrali di Green per fattorizzazione dell'operatore di Laplace. Si stabiliscono 
formule esplicite per soluzioni di equazioni di Cauchy-Riemann in domini strettamente pseudoconvessi 
di Cn. 

In 1978 two papers of A.V. Romanov devoted to the iterations of the Martinelli-
Bochner integral were published (see [14,15]). In particular, in [15] the following re­
sult was obtained. 

THEOREM 0.1 (A.V. Romanov [15]). Let D be a bounded domain in Cn with a con­
nected boundary 3D of class C1 , and let M be the Martinelli-Bochner integral {on 3D) de­
fined on the Sobolev space Wl,2(D). Then, in the strong operator topology in W1,2{D), 
lim Mv = II where II is a projection from W1,2(D) onto the closed subspace of holomor-

phic W1'2 (D)-functions. 

Using this theorem Romanov (see [15]) obtained a multi-dimensional analogue of 
the Cauchy-Green formula in the plane (see, for example [8,9]), and, as consequence, 
an explicit formula for a solution/e W1,2 (D) of the equation 3f — u where D is a pseu­
do-convex domain with a smooth (infinitely differentiable) boundary, and u is a 
3-closed (0, l)-form with coefficients in W1,2(D). 

A. M. Kytmanov [11] used Theorem 0.1 to study the 3-Neumann problem for func­
tions, and to prove a criterion for the holomorphic extension from 3D to the domain D. 

The Green integrals (see, for example, [18]) associated to systems of linear differ­
ential equations with injective symbols are natural analogues of the Martinelli-Bochner 
integral. 

Within this more general context in the present paper the possibilities to 
prove a similar result to the theorem of Romanov is discussed. In particular, 
an answer to this question is provided for matrix factorizations of the Laplace 
operator in Rn and the Green integrals (associated to these systems), which are 

(*) Nella seduta dell'11 dicembre 1993. 
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constructed (like the Martinelli-Bochner integral) by means of the standard fun­
damental solution of the Laplace operator. 

1. Let X c Rn be an open set, F = X X Ck and F = X x C / b e (trivial) vector bun­
dles over X, and dop (E —> F) be the vector space of all differential operators of type 
(E —» F) and order p ^ 1. Sections of E and F of a class (£ on an open set a c X can be 
interpreted as columns of functions from (S(o-), that is, © ( F ^ ) = [(£(<J)]*, and similarly 
for F. Then for P G <fop (F -» F): P(x, D) = 2 PJx)D« where Pa (x) are (/ X £) ma­
trices of smooth functions on X | a | ^p 

Let E * be the conjugate bundle of F, and let (•, •)* be a hermitian metric on E. 
Then *E:E—>E* is defined by {*Eg>f)x = (/>&)* (where/ g are sections of £ and 
(•, ')x is the natural pairing of F and F * ). Let Aq be the bundle of all complex valued ex­
terior forms of degree q (q = 1, 2, ...) over X, and let dk be the volume form on X. 

As usual, P ' e dop (F* —>F* ) is the transposed operator, and P* = (*ë1P' *F) e 
e.dop(F-*E) is the (formal) adjoint operator for P edop(E-^F). 

DEFINITION 1.1. A bidifferential operator GP(% •) edo p - x ((F*, E) -^>An~l) is 
said to be a Green operator for P e /̂op (F —» F) if for any open subset UcX, and any 
ge£(F* \v), fe£(E\u) the Mowing formula holds: dGP(g,f) = (g,Pf\dx-
— {P'g,f)xdx (xeU) where £ stands for the vector space of smooth sections. 

A Green operator GP can be written in the form (see [18, p. 82]): 

GP(g,f)= 2 ' (-l)*D'(gP, + r + v)D'/*<&y. 

For purposes of this paper it is convenient to write Green operators in another 
form. 

Let D be a bounded domain in X with a boundary of class Cp " 1 of p > 1 (if p = 1, 
3D G C1 ), and let U be a neighbourhood of 3D in X, and Fy = U x C * ( 0 ^ ^ r < oo ) 
be (trivial) vector bundles over U. Fix a Dirichlet system {-By }f Jo °f order (p — 1) on 
3D such that £y = / (for example, the system of the normal derivatives {dJ/dnJ}pj ZQ 
with respect to 3D). The following lemma was established in [19, p. 280, Lemma 
28.3]. 

LEMMA 1.2. Let the hypersurface 3D be non characteristic for P e dop (F —> F). Then, if 
the neighbourhood U of 3D, is sufficiently small, there exists a Green operator GP such 
that 

GP{gJ)=P^{CjgyBjf)xds+ JS-AGMJ) 
y = o \ap\ 

where {Cj }* r j is a Dirichlet system of order (p — 1 ) on 3D, Cj e dop _y _ x (F* | v —> F* ) 
(O^J^p-1), Gvedop-1((F*,E)\u->A»~2), g E £(F* \ V ) , fe £(E\V). 

If Wm'2 (E\D ) stands for the Sobolev space, denote by Sp'2 (D) the Hilbert space 
of all ir*'2(F|D)-functions satisfying P / = 0 in D. 



(1.1) 

ON ITERATIONS OF GREEN TYPE INTEGRALS FOR MATRIX FACTORIZATIONS ... 105 

Denote by A the differential operator P*P e do2p (E —» E), and assume that A is an 
elliptic operator which has a bilateral fundamental solution $ on X. Then the symbol 
a(P) is necessarily injective, and P has the (left) fundamental solution 3(x,y) = 
= P*'(y,D)$(x,y) onX. Set for / e Wm>2(E\D)(m &p\ g G WT>2(FìD)(T > 0) 

(M/)(x) = - j G p ( P * ' ( y , D ) ^ , . y ) , / ( y ) ) , 

3D 

D 

THEOREM 13. If m ^p, for any fe Wm'2 (E \D ) the following formula holds: 
[fix) x e D 

(1.2) (M/)(x) + (TP/)(x) = f 
[0 xeX\D. 

PROOF. I f /G CP(E\^) (that is, f isp times continuously differentiate in a neigh­
bourhood of D) then (1.2) follows from the Stokes' formula and the definition of 
Green operators. Since the boundary of D is sufficiently smooth, there exists a se­
quence of functions {/N}N = I c C p ( E | p ) approximating/in Wm'2(E\D). Then for any 
number N G N 

(1.3) l(3(x,y),PfN(y))ydy- \GA3(x,y)>fN(y)) = \fNÌX) x e D ' _ 

On the other hand, since the derivatives Daf( | a | ^p — l) have natural boundary 
values D a / | dD eWm~ | a | " 1 / 2 ' 2 (E)aD ) (see [4, p.120]), it is easy to see 
from [18, Proposition 9.4] that the boundary integral in (1.2) does not depend on the 
choice of the Green operator GP. Therefore choosing as Gp the Green operator pro­
vided by Lemma 1.2, and using the boundedness theorem for potential (co-boundary) 
operators on a manifold with boundary [13, pp. 161-165] one can conclude that the 
boundary integral in (1.2) defines a bounded linear operator from Wm,2(E\D) to 
Wm'2(E\D). Thus, to obtain (1.2) it suffices to make the limit passage for N - > <» in 
(1.3). • 

REMARK 1.4. The boundary integral in the left hand side of (1.2) does not depend 
on the choice of the Green operator Gp. 

PROPOSITION 1.5. The integrals M and TP define linear bounded operators from 
Wm-2{E\D)to Wm'2(E\D) (m&p). 

PROOF. Since M: Wm-2(E\D) -> Wm-2(E\D) is bounded (this was shown while 

proving Theorem 1.3) then (1.2) implies that TP: Wm-2(E\D) -* Wm-2(E\D) is 
bounded. • 

This proposition implies that it is possible to consider iterations of the integrals M 
and TP in the Sobolev spaces Wm-2(E\D) (m&p). 
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2. Let M and TP be the restrictions to the Hilbert space S™'2(D) of the operators 
M and TP. Formula (1.2) and Proposition 1.5 imply that M: S%>2 (D) -> Sf'2 (D), and 
TP: 5 / ' 2 (D) —» £J ' 2 (D), are linear bounded operators. Therefore the iterations of M 
and I P in S f ' ^ D ) are well defined. 

To prove theorem on iterations it is sufficient to construct in the Hilbert space 

S™,2(D) a scalar product H%(u ,•) with the following properties: 

(I) For any fe ST' 2(D):H? (MfJ) Z 0, Hp
m (TPf,f) Ì? 0. 

(II) The topologies induced in S™,2(D) by H%(- ,•) and by the standard scalar prod­
uct of Wm'2(E\D) are equivalent. 

In section 3 we shall construct a scalar product, for which (I), (II) hold, for matrix 
factorizations of the Laplace operator. 

Since the kernels ker M and ker TP of the operators M and TP are closed sub-
spaces of Wm'2(E\D), they are Hilbert spaces (with the hermitian structure induced 
from Wm'2(E\D)). Let II(S) be the orthogonal (with respect to H%(•,•)) projection 
from S™,2(D) to S, where S is a closed subspace of S™'2(D). 

THEOREM 2.1. If in the space S™'2 (D) there exists a scalar product H^(' ,•) for which 
(I) and (II) hold then 

lim Mv = i7(ker TP), lim (TPY = i7(kerM) 
v —> oo v —> oo 

Tor ^ .tf/wzg operator topology in Wm,2(E\D). 

PROOF. Since S™,2(D) is a complex (!) Hilbert space, (I) and (1.2) imply that the 
operators M and TP are self-adjoint in S™,2(D) with respect to the scalar product 
Hi (• ,•), and that 0 ^ M ^ Id, 0 ^ TP ^ Id (where W stands for the identity operator 
on W>2(E\D). 

On the other hand, (II) garantees that the space S™,2(D) with the scalar product 
H%(' ,•) is a Hilbert space too. At this point the spectral theorem for bounded self-
adjoint operators yields 

l l 

(2.1) Mv = JKdEx, (TPY = J( 1 - AN£A 

o o 

where {Ex }o *= A ^ I is a resolution of the identity in the Hilbert space S™'2 (D) corre­
sponding to the operator M and the scalar product H^(•,•)• 

Passing to the limit in (2.1) one obtains 

lim Mv = Ely lim (TPY = E0 
v —» oo v —» oo 

where E0, E1 are the orthogonal projections from S™,2(D) onto the subspaces V(0), 
V(l) corresponding to the eigenvalues 0 and 1 for the operator M. Finally, (1.2) implies 
that V(0) = kerM, V(l) = ker TP, which was to be proved. • 
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LEMMA 2.2. For any fé Wm'2 (E \D ) there exists a (unique) function <p(f) E S™'2 (D) 
such that dJ'<p(f)/dnJ = djf/dnjon 3D (0 ^j^p - l)where {dJ /dnJ}pj ~ <} is the system 
of the normal derivatives with respect to 3D. 

PROOF. In fact we need to prove that the Dirichlet problem for the operator A, the 
domain D, and the Dirichlet data {djf/dnj U}?=o is solvable in Wm>2(E\D). 

Let <PGS%>2(D) be such that dJ'<p/dnJ' = 0 on 3D {O^j^p- 1). Then using 
Stokes' formula and Definition 1.1 one can see that 

0 = Jty, Ap)x dx = J(P^, Ptfx dx - j GP(*FP1, <p) = 
3D 

= J(P^, Ptfx dx - J E \Cj*FP<p, -j )ds = J(P0, P^)x dx . 
D 3D J °\ I D 

Hence <p(f)eSp'2(D). Since the operator M does not depend on the choice of the 
Green operator GP, without loss of generality we can set B; = dJ / dnj. Then Theorem 
1.3 implies that <//(/) = M<p(f) = 0 in the domain D. That is, if there exists a solution of 
the above Dirichlet problem, the solution is unique. 

On the other hand, since A* = (P*P)* = A, and f o r / e Wm>2(E\D) (m & p) the 
restrictions to 3D of the derivatives dJf/ dnJ ( 0 ^ j ^ p — 1 ) belong the spaces 
Wm~J~1/2'2{E\dD) respectively (see [4, p. 120]), the results of Lions and Magenes [12] 
(see also [16, pp. 136-137]) imply that the Dirichlet problem is solvable. • 

Let Nm,2(D) be the closed subspace of Wm,2(E\D) consisting of functions/E 
E Wm>2 (E |D ) such that Daf\ dD = 0 for all | a | ^ p - 1. It is clear that the difference 
(/— </>(/)) belongs to Nm,2(D). Then Lemma 2.2 implies the direct sum decomposi­
tion W>2 (E \D ) = SZ>2 (D) 0 Nm>2 (D). Denote by B(S?'2 (D)) andB(N™*2 (D)) the 
(bounded) projectors corresponding to this decomposition (i.e. <p(f) = Il(S^'2(D))f 
and (f-<p(f))=n(Nm-2(D))f). 

COROLLARY 2.3. Under the hypotheses of Theorem 2.1, 

lim Mv = 77(ker TP)n{Sf-2 (D)), 

lim (TPY = n(kerM)n(ST-2(D)) + îî(Nm'2(D)) 
v —» oo 

ybr $e .tfro/zg operator topology in Wm,2{E\D). 

(2.2) 

PROOF. By Lemma 2.2, for any feWm'2(E\D) there exists a function </;(/) E 

E SI*'2 (D) such that Mf=Mjj{f). It is clear that, if 0 E Sf ' 2 (D) such that Mf= M^then 
MMf) = Mo, and lim Mvò = lim M v ^( / ) . Therefore there exists the limit of the it-

v—» oo v —» oo 

erations (lim Mvf), and in the Wm'2(E\D)-norm lim M v / = lim Mv</-(/) = 
V—»00 ./ ' I -•-' v _̂  00 ^ v —» oo 

= /7(kerfP) </<(/) for any/. 
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It is clear that Nm-2 (D) c kerM, therefore, for any fe Wm-2 (E \D ) 

(2.3) (T?r/= (]?)»(/- #/)) + (7P)W) = 

= (j - M)"(/- #/)) + (f?)W) = ( / - af)) + (îPyt(f). 
Passing to the limit in (2.3) we conclude that (2.2) holds. • 

COROLLARY 2.4. Under the hypotheses of Theorem 2.1, for any f e Wm'2 (E \ D ) (m ^ 

> /?) the following formula holds: 

(2.4) / = lim M v / + E M*(7730 

z ^ r e //?e 5 M converges in the Wm,2(E\D)-norm. 

PROOF. Formula (1.2) implies that for any v e N 

(2.5) /=MV /+E M^(TPf). 

Passing to the limit in (2.5), and using Corollary 2.3 one sees that (2.4) 
holds. • 

Let the set A consist of all distributions ueDf (F\D) such that (Tu) e Wm> 2 (E \ D ) 
00 

and the series 2 M** Tu converges in Wm'2 (E \D )-norm. In the following proposition 
/x = 0 / oo \ 

R stands for the operator I 2 M!XT\:A^>Wm>2(E\D), and R(A) indicates the range 

of A by the mapping R. 

PROPOSITION 25. Under hypotheses of Theorem 2.1, R(A) = Nm>2 (D) © (ker TP)1 

where (ker TP)1 is the orthogonal (with respect to H^(* ,•)!) complement o/ker TP /« 
ST>2(D). 

PROOF. J£UEA then Rz/ e 1FW '
 2 (E |D ), and, since M is continuous (see Proposition 

1.5), MRu = M Urn Ì M ^ « = f o - k Therefore MvRz/ = I& - 2 M T « . 
v -»°° ^ = 0 t̂ = 0 

Passing to the limit in the last equality and using Corollary 2.3 one sees that 
n(kerTP)n(S%>2(D))Ru= lim MvRu = Ru - Ru = 0. Hence R(A) cNm>2(D) © 
©(ker TP)1 . V"°° _ 

Conversely, if /E Nw>2(JO) © (ker TP)1 then (2.4) implies t h a t / = RPf However, 
by Proposition 1.5, P / e A. Therefore Nm>2(D) © (ker TP)1 cR(A). D 

PROPOSITION 2.6. Under the hypotheses of Theorem 2.1, kerR = 0 if and only if PR = 
= Id, if and only if ker T\A = 0. 

3. Let X = Rn (n ^ 3), E = Rn X C, F = R"xCl(li* i) and (• ,-)* is the usual 
hermitian metric on E. 

DEFINITION 3.1. A differential operator P edo1(E-^F) is said to be a matrix 
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factorization of the Laplace operator in Rn if A = P*P = ~AnIi where I, is the 
identity (/ X /)-matrix, and An stands for the Laplace operator in Rn. 

Let P be a matrix factorization of the Laplace operator in Rn, cpn{x — y) be the 
standard fundamental solution of the Laplace operator in Rn, D<&Rn

y and 3D s C00. 
Denote by S%>2(R"\D) the closed subspace ofWm>2(E\R*y>) consisting of all 

(vector-valued) functions/which are harmonic in Rn \D and for which lim f(x) = 0. 

Then the restriction operators from S?-2(D) and Sf>2(Rn\D) onto Wm~ l/2> 2(E\dD) 
[m ^ 1) are linear topological isomorphisms (see [4, p. 126]). In particular, since the 
Dirichlet problem (see proof of Lemma 2.2) is solvable, for any /e Wm''2 (E\D) there 
exists a (unique) function S(f) e S™'2 {Rn \D) such that S{f) | dD = / | dD. Consider now, 
for/, geWm>2(E\D) (m ^ 1), the hermitian form 

(3.1) Hf (/,*) = J(iy, Pg)x dx + J (P5(/), PS(g))x dx . 
D R»\D 

PROPOSITION 3.2. The hermitian form (3.1) defines a scalar product in 
Wm>2(E\D). 

PROOF. Since P*P = — AnIiy the coefficients of P are bounded, and, therefore, 
PS(f) e Wm~1,2{E\Rn\D). Then, since (• ,-)* is a hermitian metric, to prove the state­
ment it is sufficient to prove that Hf ( / , / ) = 0 implies / = 0 in D. 

If HP(fj) = 0 t h e n / e ^ ' 2 ( D ) and S(f) e S?'2(Rn\D)y and, by definition 
f\dD= S(f) I dD • Then Theorem 3.2 of [19] implies that there exists a section &e SP (Rn ) 
such that &\D = / , &\R»\P = S(f). It is clear that < îs a harmonic in Rn (vector-valued) 
function for which lim &(x) = 0. Therefore ^ = 0 in Rn

y and / = 0 in D. • 
| x | - * o o 

In the following two lemmata the operator P e dop (E-+F) satisfies the assumption 
of the first section (see (1.2)) 

LEMMA 3.3. For any feS™'2(D) (m ^p), 

(TPf)(x) = 2 \ ((^Bj^ì^x.yìA^/Cj^Pfl ds(x eX\3D). 
J 3D 

PROOF. Since the symbol a(P) is injective and CJedop_l-j(F* |U—>F/) (0 ^ 
^ 7 ^P ~ 1), the boundary system {BJ,{*F1CJ*F)P}11=Q is a Dirichlet system of order 
(2p - 1). Then Theorem 4.4 of [17] garanties that for a n y / e 5X'2(D) there exist 
(weak) boundary values ( ( * F 7 Q * F ) ^ / ) U D e wm+J-2p + l/2'2(FJ \dD). 

On the other hand, Lemma 1.2 implies that 

(3.2) S \{{*FjBj*ïl)$(xyy\(*ïj
lCj*FPf))yds = 

J = 0SD 

: S f((Cy*F iy) ,By*£1*(x,y)>,A= f Gp(*FP/,*E-i<f>). 
dD 3D 

Then Stokes' formula and Definition 1.1 yield the conclusion. 
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REMARK 3.4. If P is a matrix factorization of the Laplace operator in Rn, and if 
$ = Ijf„ then TP is a single layer potential. 

For ^eWm+J-2p + 1/2'2(FJ\dD)(0^j^p- 1) denote by g(©^) the following 
integral: 

p - i 

g(©^)(*) = E J ( ( ^ . B y ^ i ) ^ 3 ; ) ? ^ ) y ^ ( x e x \ 3 D ) . 
7 3D 

And let g(©^)~ = g ( © ^ ) | D , g (©^) + = g(0^) |x\D. 

LEMMA 3.5. Let {Bj }jp=~o* be an extension of the Dirichlet system {BJ^IQ to a Dirich­
let system of order (2p — 1) an 3D (as above bj =/). Then 

(3.3) (Byg(©^.)- ) U " (B/g(©*y)+ )|a> = |° ' ^ < ' < I T 1i 

PROOF. This follows from [17, Lemma 2.7]. • 

PROPOSITION 3.6. J/" P satisfies Definition 3.1, and if $ = Ij<p„, then for any f g e 
eS%>2(D) (m&l) 

Hp
l{Mfg)= j(PS(f\PS(g))xdx, Hl(TPfg) = \{PfPg)xdx. 

Rn\D D 

PROOF. Let JB0 = I, and let C0 be the Dirichlet boundary operator corresponding to 
J50 by Lemma 1.2. Then, similarly to (3.2), 

(3.4) |(*FoB0g, (*f/ C0 *P)Pf)xds = j GP(*FPf, g) = J (Pf, Pg)xdx . 
3D 3D 3D 

Since lim S(f)(x) = 0 we obtain a similar formula for S(f): 
\x\ —» oo 

(3.5) J ( ( * F O B 0 ) % ) , ( * F „ 1 C O * F ) W ( / ) » = { (PS(f),PS(g))Jx. 
3D R«\D 

By definition f\ dD = S{f) \ dD then (3.4), (3.5) imply that 

(3.6) Hf(fg) = J ( K B 0 ) ^ , ( ^ o
1 C 0 ^ ) P / - ( * F 0

1 C 0 * F ) W ( / ) > , ^ . 

3D 

Set (TP/)+ = (fP/)|jj»\D, ( T P / r = (TP/)|D, and introduce similar notations 
forM/.Since^ = 9J / t hen^^3and(M/ ) + G^ w ' 2 (EU n D ) and lim (Mf)+ (x) = 

= 0. It easy_to see from (1.2) that (M/)+ = (TPf)+, and therefore (TPf)+e 
eJS;r,2(«"\D).-'rhenLemmata3.3and3.5implythat(TP/)+ = (TPf)~ on3D,thatis, 
(TPf)+=S(TPf). 



ON ITERATIONS OF GREEN TYPE INTEGRALS FOR MATRIX FACTORIZATIONS ... I l l 

Since {BQ,*^1 C0*PP} is a Dirichlet system of the first order then (3.6), (3.3) and 
(3.4) yield 

(3.7) Hf(TPf,g) = j(*FoB0g, ^Co^PifP/r - *^C0*FP(TPf)+\ ds = 
3D 

= \{(*F0B0g),(*F0
1C0*P)Pf)yds= \{Pf,Pg)ydy . 

3D 3D 

Finally, (1.2), (3.7) and (3.5) imply that 

H?(Mf,g)=H?(f-ÎPf,g)= J (PS(f\PS(g))ydy. D 
Rn\D 

For fe. S™,2(D) and for P satisfying Definition 3.1 set 

TPS(f)(x) = \{$(x,y),*ïa
xC0*T)PS{f))yds, 

3D 

MS(f)(x) = - l(C0P*'$(x,y),S{f))yds. 
3D 

LEMMA 3.7. If $ = I^n then for any fe ST 2(D) (m & 1) 

\f(x)y xeD, 
(TPf)(x)-(TPS(f))(x) = 

S(f)(x), xeRn\D. 

PROOF. First note that, as in the proof of Lemma 3.3, i*^1 C0*FoPS(f))\dD e 
eWm-3/2(F0{dD). Therefore the integrals ÎPS(f)(x), MS(f)(x) are well defined. 

Proposition 9.5 of[19] implies that TPS(f)+MS(f) = - J GP(P*'9,S(f)) -
r r 3D 

- I GP(<2>, PS{/)) = - J GA{$, S(f)). Hence by Stokes formula, Definition 1.1, and 
3D 3D 

because lim S(f)(x) = 0 we obtain 

(3.8) -(TPS(f))(x)-(MS(f))(x) = \ 
0, x e D , 

5( /)(x) , xeRn\D. 

Since/| aD = 5( / ) |a D by definition then Mf=MS(f). Now adding (1.2) and (3.8) 
we obtain the statement. • 

In the following lemma G = Rn X CN (N ^ i). 

LEMMA 3.8. If P G dox {E —» F), Qe dox (E —> G) ^re matrix factorizations of the 
Laplace operators in Rn then, for any f g<=S™>2(D) (m ^ 1), Hf(fg) = Hp(f,g). 

PROOF. If C0 is the boundary operator corresponding to B0 = I, and Q by Lemma 
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1.2 then Lemmata 3.3, 3.5, and 3.7 imply that 

(3.9) (*^ C0 *G Qf) 13D - ( < C0 *G Q5(/)) | dD = 

= ( * f „ 1 C o * G Q [ ( 7 P / ) - - ( I P 5 ( / ) ) - ] ) | a D -

- ( * f 0
1 C 0 * G Q [ ( f P / ) + - CfPS( / ) ) + ] )U D = 

= (^Co'cQUfPf)- - ( T P / ) + ] ) U -

- ( * F 0
1 Q * G Q [ ( f P 5 ( / ) ) - - ( f ? 5 ( / ) ) + ] ) | 3 D = 

= ( V Co *F P/) 13D - ( *f0
x C0 *F PS(f)) | aD . 

Now (3.9) and (3.6) yield Hf ( / , « ) = H ? (/, g). D 

PROPOSITION 3.9. The topologies induced in Si'2 (D) by Hf (• ,•) and by the standard 
scalar product of Wl'2(E\D) are equivalent. 

PROOF. Since P*P = —A„Ii, there are constants clt c2 > 0 such that for any 
feSl-HD) 

{PfPfl^c, E {D'f,D'f)x, (PS(f),PS(f))x^c2 E {D'S(f),D'S{f))x. 
| « | S 1 | a | « l 

On the other hand, the topological isomorphisms between Si'2 (D), Si'2 (R" \D), and 
W1^2'2(F0\gD) (see[8, p. 126]) imply that there exists a constant c3 such that, for any 

fsSl'2(D), ||S(/)||^(K*y5) =£ c.Wffsi^. Hence Hf ( / , / ) =S (c, + c2ci)\\ffsy(T)). 
Conversely, since the gradient operator Gr in Rn is a factorization of the Laplace 

operator, Lemma 3.8 (with Q = Gr®Ij) implies that for/, g sSl,2{D) 

H f ( / , « ) = E f ( D a / > D a £ ) > + E f (D-5(/) ,D-5(g))xA.. 
H = 1 J \a\ = 1 J 

Therefore one can conclude that 

E f (D«S(f)yD"S(f))xdx^Hf ( / , / ) , f (S(f),S(f))xdx**cAH? ( / , / ) , 
|a| = 1 J J 

where c4 is a constant which does not depend on / . 
Thus, to complete the proof it suffices to note that there is a constant c5 > 0 such 

that, for myfsSl'2(D), | | / | | ^ ( D ) ^ <:5|lS(/)||j].'«.\D) (see[8,p.l26]). • 

THEOREM 3.10. I/P is a matrix factorization of the Laplace operator and if $ = <p„I,-
then in the strong operator topology in W1,2(E\D) 

hm MV = iKs}-2(D))n(sk2(£>)), 

lim (T?)v = i7(^ 2 (KB \D))Ì7(5i ' 2 (D))+7T(N 1> 2 (D)) . 
v—> oo 

PROOF. Propositions 3.6 and 3.9 imply that (7) and (17) hold for 77f (• ,•). Proposi­

tion 3.6 imply that ker TP = Sp'2 (D). Proposition 3.6 and Lemma 3.7 imply that Mf = 
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= OJf and only if S(f) <=S£>2(Rn\D). Finally, since S(f)\dD =f\dD by definition, 
kerM = Sp'2(Rn\D). Hence the theorem follows from Corollary 2.3. • 

4. We consider now some examples and applications. 

EXAMPLE 4.1. In [15] A. V. Romanov obtained Theorem 3.10 for 

P = 2 ••• 

in Cn (n ^ 2 ) {P*P = ~Aln )• I*1 this case, if 3D is connected, the theorem on remov­
able compact singularities of holomorphic functions implies that Sp,2(Cn\D) = {0} 
(m ^ 1). 

EXAMPLE 4.2. If P be the gradient operator in Rn (n ̂  3) then P*P = -An and, if 
3D is connected, S^'2(Rn\D) = {0} (m&l). 

EXAMPLE 4.3. Let x E R4n {n ^ 1 ), qj = Xj + y-lxj + 2n, 9 /%/ = (d/dxj -

-yf-ïd/dx/ + H)/2, d/.dQ=(d/dxj + yf^ïd/dxJ + H)/2 (l^j^2n) and let 

Then Q* Q = —12̂ 4« • In this case, for n — 1, the operator M is already the orthogonal 
projector onto SQ'2(D) {rn ^ 1). 

EXAMPLE 4.4. Let Aq be the bundle of (complex valued) exterior forms of degree q 
over Rn (Aq * 0 only for 0 ^ q ^ n)\ let dq E dol{Aq —> A* + * ) be the exterior deriva­
tive operator, and d* edo1{Aq + 1 -*Aq)be the formal adjoint operator of dq. Then for 
the «laplacians» of the de Rham complex (d* dq + dq _ ! </*_ x ) E JO2 (Aq —» A* ) we have 
(d*dq +dq-id*-i) = Ij(q)A„ (see[18, p. 85]). Therefore the operators 

P, = L / UdoM^W + ̂ A*-1)) 

are matrix factorizations of the Laplace operator in Rn. The space 5p*> (D) is the space 
of the differential forms of degree q whose coefficients are harmonic Wm'2 (E \D )-func­
tions. 

EXAMPLE 4.5. Let At,q be the bundle of (complex valued) exterior forms of bide-
gree (t,q) over C", A(>q * 0 only for O^t^n, O^q^n. Let âttqedoi(A''q-+ 
—>At,q + l)be the Cauchy-Riemann operator extended to forms of bidegree (t,q), and let 
d*qe.doi{At,q + l-^At,q) be the formal adjoint operator of dtyq. Then for the «lapla­
cians» of the Dolbeault complex ( 3*q dt>q + 3,>q _ i d*q _ i ) E do2 (A *>q —> A*>q ) we have 
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4(3*<?̂ <? + dt,q-id*q-i) -h(t,q)^2n (see [18, p. 88]), Therefore the operators 

p = 2 _ *'" e^ 1(A' '«->.(A /- ' + 1 ,A ' ' * - 1 ) ) 

are matrix factorizations of the Laplace operator in R2n. The space Sp* pt (i^) is the 
space of the differential forms of bidegree (t,q) whose coefficients are harmonic 
1Fw'2(£|D)-functions. 

Consider now some applications of Theorem 3.10. The following corollary in the 
case P = 3 in Cn was obtained by A. M. Kytmanov (see [11, p. 170]). 

COROLLARY 4.6. Let P be a matrix factorization of the Laplace operator in Rn, 
Q{xyy)=Ii<pH(x-y),andfeWm>2(E\D) (m&l). Then / e S?'2(D) if and only if 
Mf=f 

PROOF. Theorem 1.3 implies that Mf = f for feSp,2(D). Conversely, if Mf=f 
t h e n / = lim Mvf in the Wm,2(E\D)-norm. Then the statement follows from The­
orem 3.10. • 

Theorem 3.10 implies that, for any function/e W1,2(E\D) and any matrix factor­
ization P of the Laplace operator inRn, decomposition (2.4) holds. For P = d this de­
composition was obtained by A. V. Romanov [15]. In this case it is a higher dimensional 
analogue of the Cauchy-Green formula in the plane (see [8,9]). Earlier some multi-di­
mensional analogues of the Cauchy-Green formula were obtained by constructing, for 
holomorphic functions, special integral representations with holomorphic kernels 
(see [2,3,7]). 

Decomposition (2.4) has interesting application to elliptic differential complexes: in 
particular, to the de Rham and Dolbeault complexes. 

In the following theorem D is a bounded domain in Cn (n > L), and Mtyqt Tt><? are 
the integrals defined by (1.2) for P = Ptiq and $ — h{t,q)(?in-

THEOREM 4.7. Let D he a strictly pseudo-convex domain with a boundary 3D G C °° 
(or a pseudo-convex domain with a real analytic boundary). Then for any d-closed form 
usW^2(A^ + 1) the series 

/-2,f. *«.M3 
converges in the W1,2(A $ )-norm, and 

(4.D 9 , , , / = « , 3 £ , - i / = 0 

where (u\ erWl>2W>< + 1 | D , A*>*~ 1 \D)l 

PROOF. In view of the hypotheses on the domain D, results established in [5,10] 
(see also[7]) imply that for any 3-closed form ue Wl,2{At,q + l \D) there exists a 
unique solution Nu eW2,2(At,q + 1 \D) of the 3-Neumann problem, and 
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dtiq(d?t1Nu) = u inD. It is clear that (df>9Nu) e W1-2(A'-9 + 1 \D), aaiPti9(dfi9Nu) = 
= I I. Then Corollary 2.4 implies that 

(dt,qNu)= lim Mlq(dZqNu)+ Ì m,JtJ
U\ 

and the series / converges in the W1,2(At,q |D)-norm. Therefore 

f/2 = (dt,,m-Jim MZq(dtt1Nu) and P^f/2 = Pli9(dtt1Nu) = Q . U 

Certainly, conditions on the domain D and the form u in Theorem 4.7 are suf­
ficient. From the proof one can see that the statement holds if for the form 
ueW°-2(At^ + 1\D) there exists a form 9reW1-2(At^\D) such that \q&=u, 
9 , % - i ^ = 0 . 

REMARK 4.8. Proposition 2.5 implies that the series/is the unique solution of the 
5-equation which belongs to N1'2(D) 0 (S^(D))1. 

In the case when « is a (0, l)-form Theorem 4.7 was obtained by A. V. Ro­
manov [15]. In this case the theorem holds for a pseudo-convex domain D with 
S D G C 0 0 . 

Earlier explicit formulae for solutions of equation (0.2) (D is a strictly pseudo-con­
vex domain with dD e C2 and u is a (0,#)-form with continuous in D coefficients) were 
obtained in [3,8] (see also [7]). 

In [6] the explicit formula for the operator N was obtained in the case where D is 
the unit open euclidean ball in Cn. 

Proposition 2.6 implies that convergence of the series /yields (4.1) if this series de­
fines an injective operator from W°'2(At>q +1 \D) to Wl'2(A*'q'\D). Romanov 
(see [15, Theorem 3 and Lemma 5]) proved that, if D is a bounded domain in C2 with a 
connected boundary dDeC1 and u e. W1,2(A0,1 \D) then the convergence of the 
series / implies d0>0f=uinD. 

Similar results can be stated for the de Rham complex and for a convex do­
main D. 
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