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Geometria algebrica. — On the automorphisms of surfaces of general type in positive 
characteristic, II. Nota(*) di EDOARDO B ALLIGO, presentata dal Corrisp. E. Alba­
rello. 

ABSTRACT. — Here we give an upper polynomial bound (as function of Kx2 but independent onp) for 
the order of a p-subgroup of Aut (X)red with X minimal surface of general type defined over the field K with 
char (K) = p > 0. Then we discuss the non existence of similar bounds for the dimension as K-vector space 
of the structural sheaf of the scheme Aut(X). 

KEY WORDS: Surfaces of general type; Automorphism group; Group scheme; p-group. 

RIASSUNTO. — Sugli automorfismì delle superfici di tipo generale in caratteristica positiva, II In questa No­
ta si dimostra una stima polinomiale (come funzione di Kx2) indipendente dap per l'ordine deip-sottogrup­
pi di Aut(X)red, con X superfìcie minimale di tipo generale definita sul campo K con char (K) = p > 0. Si 
mostra anche la non esistenza di analoghe stime per la dimensione come K-spazio vettoriale del fascio 
strutturale dello schema Aut(X). 

In the last few years several mathematicians (see [4], announcement in the intro­
duction after the statement of 3.14 [5,9,10,20,21]) considered the problem of bound­
ing (in terms of suitable numerical invariants, e.g. the Chern numbers) the order of the 
automorphism group Aut (X) of a smooth projective manifold X of general type or with 
Kx ample. Here «bounding» means «find a good polynomial bound». Except for the 
work in progress mentioned in the introduction of [4], all the quoted papers considered 
the case in which X is a surface of general type. All the quoted papers used in an essen­
tial way the fact that the algebraically closed base field K has char (K) = 0. We think 
that the problem is interesting even i£ p := char(K) > 0. This paper is a continuation 
of [1]. In the first section we prove the following result. 

THEOREM 0.1. Let X be a minimal surface of general type defined over an alge­
braically closed field K; set c := Kxz. Then there is a universal constant D (which does 
not depend on char (K)) such that for every p-subgroup G of Aut(X) we have 
Card(G) ^Dc6. 

In [1, Th. 0.1], it was proved a result corresponding to Theorem 0.1 for every sub­
group of Aut (X) with order prime to p (and with «45/2» instead of «6» as exponent). 
We stress that the exponent «6» is just for funny: the important fact is that it is inde­
pendent of the prime p (as it is the universal constant) and that it is explicit. The union 
of the statements of Theorem 0.1 and[l, Th. 0.1], gives bounds on the existence of 
suitable subgroups of Aut (X)re<i (e.g. the solvable ones), but it seems to us not good 
enough for reasonable results on card (Aut (X)recj); see the discussion at the end of sec­
tion 1. 

(*) Pervenuta all'Accademia il 24 settembre 1993. 
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Theorem 0.1 concludes (from our point of view) the/?-power part of the «discrete» 
part {i.e. Aut (X)reci) of the research project on Aut (X) (with X minimal surface of gen­
eral type) raised in the introduction of [1]. It remained also to gain informations on the 
connected 0-dimensional component of the identity of the group scheme Aut {X). Re­
call that its tangent space at the identity is H° (X, TX). It was proved [2,3.12] that 
h° (X, TX) ^ 18{KX2). Note that if X is defined over a field K of characteristic p and / 
denotes h°{X, TX), the scheme Aut (X) has dimension (as K-vector space of its struc­
tural sheaf) at leastp t. Thus the following result shows that, even fixing the prime/?, 
there is no polynomial bound for this vector space dimension (and shows that the 
bound «h°{X, TX) ^ 18(Xx2)» given in[2,3.12] is, up to the constant, the right 
bound). 

THEOREM 0.2. Fix an odd prime p congruent to 2 modulo 3 and an algebraically 
closed field K with char(K)=/?. Set C{p)~1 = 2p4. Then there is a sequence 
{X{n )}„ =» j of minimal surfaces of general type over K with Kx(*)2 g o ^ g t o infinity with n 
and with h°{X{n), TX{n)) ^ C{p){Kx{n)2) for every n. 

Theorem 0.2 will be proved (just using the examples constructed in [14]) in the sec­
ond (and last) section. 

1. PROOF OF THEOREM 0.1 

In the first part of this section we collect a few remarks needed for the proof of 
Theorem 0.1. Then we give the proof of 0.1. At the end of this section we discuss the 
implications of 0.1 and of[l,Th. 0.1], for the structure of Aut (X)red. 

From now on in this section we fix a prime p and an algebraically closed base field K 
with char {K) = p. We fix a minimal surface of general type X over K, and set K : = Kx 

and c := K2. For simplicity we will write Aut (X) instead of Aut (X)recl. The notation 
<2> oc r means that there is a universal constant D (not depending on the characteristic 
of the base field) such that $ ^ Dr; the notation oc r means that there is a universal 
constant D such that the object considered in that sentence has order at most Dr; usu­
ally when we use this notation T will be an explicit power of c (the unique exception 
arising with T power of the genus of a suitable curve). 

REMARK 1.1. Let W:= P{V) be a projective space and H a p-group contained in 
Aut (W0. By [3, proof of 3.1.4, p. 409, lines 11-15], the action of H on TP lifts to a linear 
action of H on V. Fix any such linear action of H. There is a basis of V in which every 
h e H is in triangular form with only 1 on the diagonal. 

REMARK 1.2. By a particular case of 1.1 every ̂ -subgroup H of Aut (P1) has a com­
mon fixed point. Taking any such fixed point as the point at infinity, we see that H acts 
as a group of translations. Hence H is abelian, every h G H, h ^ Id, has order/?, and fix­
es only the point at infinity. 

REMARK 1.3. Let C be a singular rational curve C; set t := card (Csing). First assume 
t ^ 2 and fix two point P, Q of Csing. Taking the normalization, we see that C has no au-
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tomorphism of order p fixing both P and Q; hence every/?-subgroup of Aut (C) has or­
der at most t(t - 1). Now assume t = 1 and call /' the number of branches of C at its 
singular point, P. If t' ^ 2 for the same reason every/?-subgroup of Aut (C) has order at 
most t'{t' — 1). Now assume t' = 1. By the discussion in 1.2, the curve C may have a 
family of abelian elementary p-subgroups of Aut (C) with unbounded cardinality (the 
translations on the affine line). Fix L E Pic (C), L ample. We claim that C has no auto­
morphism of order p fixing the isomorphism class of L. Taking a partial normalization, 
to prove the claim we may assume that C has an ordinary cusp, i.e. that Pic0 (C) is iso­
morphic to the additive group, K. The claim follows from the last part of 1.2. 

REMARK 1.5. Fix a smooth the curve C of genus g ^ 2. Then card (Aut(C)) oc g3 

and every cyclic subgroup of Aut (C) has order oc g (use e.g. the lifting theorem in [15] 
to extends the classical characteristic 0 case given e.g. in [7]). 

REMARK 1.5. Fix a singular curve T and let C -» T be its normalization. Fix ap-sub-
group H of Aut (T) (hence of Aut (C)). Let H' be the subgroup of H fixing every singu­
lar point of T. l£pa (C) = 1, H' acts on C with at least a common fixed point. Note that 
if H is contained in Aut (X), then it fixes the isomorphism class of Kx \ T. Hence if H is 
contained in Aut(X) the group Hf is trivial by 1.3. 

REMARK 1.6. 1.6.1. The number of irreducible components of C is ex c (this was 
proved in [1, part (bl) of the proof of 1.1]), using the fact (checked in [1, Remark 1.6]) 
that the number of smooth rational curves, Z, contained in X and with K • Z = 0 is 
oc c). 

1.6.2. Every irreducible component T of Crefj has pa(T) oc c, because K • T + 
+ T2 = 2pa(T) — 2 and C is numerically connected (hence T • (X — T) ^ 0, while (K — 
— T) - K ^ 0). The same computation shows that the sum of the arithmetic genera of all 
the irreducible components of Creci is & c. 

1.6.3. Let H be a p-subgroup of Aut (C). Fix an irreducible component, T, of 
Crea. By 1.6.1 H has a subgroup H' of index ex c which stabilizes T. Since C is numeri­
cally connected, we see that for every elliptic curve E Ç Crea there is P G E such that 
h(P) = P for every h eH. Hence by 1.4 there is a subgroup H" of index oc c

2 in H' and 
fixing every point of T if the normalization of T is not rational. By 1.3 we may find such 
a subgroup fixing pointwise T also if T is not smooth. By 1.3 we may find such a sub­
group fixing also every smooth rational curve, R, intersecting Cre^\R in at least 2 
points (note that card ( (C r e d \R) 0 R) oc c because C is numerical connected and 
Pa(C) *c). 

PROOF OF 0.1. The proof is divided into 5 parts. 

(a) Fix ap-subgroup H of Aut (X) (e.g. ap-Sylow subgroup) and a small integers, 
sayx = 12, such that the linear system \xK\ has no base point and the associated mor-
phism gives the canonical model of X. Set V := H°(X, K®x). In this part we assume 
dim (VH) ^ 2 and prove card (H) oc c4. Fix a pencil generated by two invariant pluri-
canonical divisors; hence every curve in this pencil is sent into itself by H and H acts on 
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the generic fiber of the pencil. Call B the base component of the pencil ând J the gener­
ic fiber (over a suitable function field obtained by the Stein factorization of the rational 
map induced by the pencil) of the invariant pencil obtained deleting B. If the geometric 
genus of J is at least 1, we have card (H) oc c2 by 1.6.1 and 1.6.2. If J" has geometric 
genus 0, it has at least a cusp and we find card (H) oc c by 1.6.1 and 1.5. Hence from 
now on we will assume dim(VH) = 1. 

(b) Fix any H-invariant pencil. Let B be the sum of the base components of this 
pencil. Hence, after deleting B and making a few blow-ups (obtaining a surface X' on 
which H acts) we get an H-invariant morphism n\ X' —» P 1 . Let B + J the invariant 
fiber of the pencil. Assume the existence of a singular fiber different from /. In this part 
we will assume that n has only finitely many singular fibers. Thus by [6] n has oc c singu­
lar fibers. Hence there is a subgroup H' of H with index oc c and fixing two fibers of n. 
By the proof of part {a) we have card (Hf) ^ oc c. Hence card (H) oc c

5. 

(c) Let A be the subgroup of H fixing every point of T : = /red. By the proof of 
part (a) to obtain an upper bound for card (A) we may (and will) assume that \xK\A = 
= {/}; by part (b) we may assume that every A -invariant pencil of \xK\ has either/ as 
unique singular fiber or all fibers are singular; call ($) this property. Call 77 the image of 
Xin 17: = \xK\ (hence its canonical model) and 17* its dual in the dual projective space 
77*. Since we may takex = 2y with |yK | inducing the canonical model of X the follow­
ing facts are known as general properties of Veronese embedding (see [11, Th. 2.5] 
or [12, Th. (20), p. 180]). 77* is a hypersurface and it is reflexive (hence biduality holds 
for 77). Let/* E IF be the point corresponding to /; by assumption/* e 17* . Fix a gen­
eral point O eT and take the A -invariant hyperplane H0 of \xK\ formed by divisors 
containing 0. By 1.1 HQ contains at least an invariant pencil, V0; by assumption ($) ei­
ther VQ c 77* or V0 intersects 77"* exactly at O. Since T is infinite, varying O we see that 
77* has multiplicity deg ( 77* ) at /* . Hence 77* is a cone with vertex/* . By biduality we 
have 77 = 77** ; hence 77 is contained in the hyperplane dual t o / * (the image of T), 
contradiction. 

(d) Note that in part (c) to obtain that 77* is a cone we needed only that the p-
group has as fixed points at least an irreducible component of T. Here we assume that 
T contains no smooth rational curve, Z, with K • Z = 0, leaving the case with such Z for 
the next (and last) step. Hence by 1.1, 1.2 and 1.5 we conclude unless every irreducible 
component of T is a smooth rational curve and card (Sing(Trecj)) ^ 1. Tre^ cannot be 
smooth, because it is connected, K2 > 0 and no smooth rational curve on X moves. 
Taking a partial normalization, we see that Pic°(Treci) has a unipotent subgroup, unless 
Treci is the union of two smooth rational curves, /" and T", meeting transversally. If 
Pic°(Treci) has a unipotent subgroup, use the proof given for a cuspidal rational curve. 
In the remaining case the contradiction comes from the following inequalities: (J" + 
+ T")2 > 0, /" • r = 1, J"2 < 0 and V'2 < 0. 

(e) Here we assume the existence of a smooth rational curve Z c(T + / ) with 
K • Z = 0. If the fundamental cycle corresponding to Z is contained in other curves of 
V0, then it is in the base locus of V0 and we may repeat the calculation of part (d) on the 
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movable part of the pencil. If Z is contained only in T + / (hence in T) we may assume 
by 1.6.1 (adding 1 to the exponent of the bound obtained) and part (b) that Z is the 
unique rational curve in the corresponding fundamental cycles, that the same is true for 
the other curves, Z', with K • Z' = 0 and that Z Pi (Tte(^\Z) is the unique singular 
point of J + T (hence the reduction of the base locus of V0). Again, the numerical com­
putations at the end of part (d) work and conclude the proof of 0.1. 4 

Suppose to have a bound (say <x ca) for the subgroups, G, of Aut(X) with 
card (G) prime top, and a bound (say oc cb) for the subgroups with order a power ofp; 
by [1, Th. 0.1] we may take a = 45/2, while by 0.1 we may take b = 6. We do not see 
how to obtain only from these informations a good bound for card (Aut(X)). Of 
course, we must have/? <* ch and every prime ^ p which divides card (Aut (X)) is oc ca. 
However, in this way we obtain only card (Aut (X)) oc c

hg{c). By [17, Ch. 4, Th. 5.6] 
every solvable subgroup of Aut (X) has order oc ca + b. 

2. PROOF OF THEOREM 0.2 

In this section we prove 0.2 using the examples constructed in [14]. For other ex­
amples of surfaces of general type with non trivial vector fields, see [8] and [13]. The 
surfaces constructed in[14] depend on various integral invariants/? (the characteristic), 
d and n. We need only the ones with n = 1. In this case one start with a smooth curve, 
C (which will be the Albanese variety) and X would be a smooth fibration over C. 
The integer d is the degree of a suitable line bundle L on C with L ® ^ _ 1 ) = W c . 
By [14, Th. 1] we have b°{X, TX) ^h°(C, L) and the lower bound claimed by 0.2 is 
satisfied for the corresponding surface X if we may find (C,L) with h°(C,L) ^ d/2 
(hence, since d := deg(L), with C hyper elliptic) (see [14, Th. 2]). To check that the ex­
amples given at the end of [14] are sufficient to prove Theorem 0.2 we will use the for­
mula for the Hasse-Manin matrix and Cartier operator of hyperelliptic curves proved 
by Yui ( [19] or see [16], bottom of page 55). We use the notations of [14,§3]; set w : = 
: = p(p — 1) d + 3 — 2g + 1 (withg : = pa (C)). With these notations in our situation the 
condition on the Cartier operator given in the discussion and formula at the bottom 
of [16, p. 55], is that the polynomial (xw — l ) ( p ~ 1)/2 has no monomial with non zero co­
efficient and with exponent [3p — 1 with /3 integer, i.e. the non existence of an a with 
l ^ a ^ ( p — l ) / 2 with fov = cup - 1. Just note that if p is congruent to 2 modulo 3, 
then (p — l ) / 3 is not an integer, while (2p — l ) / 3 is an integer bigger than (p — l ) / 2 . 
Hence we conclude the proof of 0.2. 

REMARK 2.1. Note that the surfaces, X, constructed in [14] and just considered an­
swer a question raised in [18, end of p. 317], i.e. they are smooth projective varieties, X 
(with p > 2 ) having an ample line bundle, M, with h ° (X, TX (g) M * ) ^ 0 ; indeed by the 
formulas in [14, pp. 171 and 172], the zero locus of any non trivial section of TX is an 
ample divisor. 

The author was partially supported by MURST and GNSAGA of CNR (Italy). 
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