Rendiconti Lincei Matematica E Applicazioni

Edoardo Ballico

On the automorphisms of surfaces of general type in positive characteristic, II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.1, p. 63-68.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1994_9_5_1_63_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI \& UMI
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Geometria algebrica. - On the automorphisms of surfaces of general type in positive characteristic, II. Nota (*) di Edoardo Ballico, presentata dal Corrisp. E. Arbarello.

Abstract

Here we give an upper polynomial bound (as function of $K_{X^{2}}$ but independent on p) for the order of a p-subgroup of $\operatorname{Aut}(X)_{\text {red }}$ with X minimal surface of general type defined over the field \boldsymbol{K} with char $(\boldsymbol{K})=p>0$. Then we discuss the non existence of similar bounds for the dimension as \boldsymbol{K}-vector space of the structural sheaf of the scheme $\operatorname{Aut}(X)$.

Key words: Surfaces of general type; Automorphism group; Group scheme; p-group.

Riassunto. - Sugli automorfismi delle superfici di tipo generale in caratteristica positiva, II. In questa No$t a$ si dimostra una stima polinomiale (come funzione di $K_{X^{2}}$) indipendente da p per l'ordine dei p-sottogruppi di Aut $(X)_{\text {red }}$, con X superficie minimale di tipo generale definita sul campo K con char $(\boldsymbol{K})=p>0$. Si mostra anche la non esistenza di analoghe stime per la dimensione come K-spazio vettoriale del fascio strutturale dello schema $\operatorname{Aut}(X)$.

In the last few years several mathematicians (see [4], announcement in the introduction after the statement of $3.14[5,9,10,20,21])$ considered the problem of bounding (in terms of suitable numerical invariants, e.g. the Chern numbers) the order of the automorphism group Aut (X) of a smooth projective manifold X of general type or with K_{X} ample. Here «bounding» means «find a good polynomial bound». Except for the work in progress mentioned in the introduction of [4], all the quoted papers considered the case in which X is a surface of general type. All the quoted papers used in an essential way the fact that the algebraically closed base field \boldsymbol{K} has char $(\boldsymbol{K})=0$. We think that the problem is interesting even if $p:=\operatorname{char}(\boldsymbol{K})>0$. This paper is a continuation of [1]. In the first section we prove the following result.

Theorem 0.1. Let X be a minimal surface of general type defined over an algebraically closed field K; set $c:=K_{X^{2}}$. Then there is a universal constant D (which does not depend on char (\boldsymbol{K})) such that for every p-subgroup G of $\operatorname{Aut}(X)$ we have $C \operatorname{ard}(G) \leqslant D c^{6}$.

In [1, Th. 0.1], it was proved a result corresponding to Theorem 0.1 for every subgroup of $\operatorname{Aut}(X)$ with order prime to p (and with «45/2» instead of «6» as exponent). We stress that the exponent «6» is just for funny: the important fact is that it is independent of the prime p (as it is the universal constant) and that it is explicit. The union of the statements of Theorem 0.1 and [1, Th. 0.1], gives bounds on the existence of suitable subgroups of $\operatorname{Aut}(X)_{\text {red }}$ (e.g. the solvable ones), but it seems to us not good enough for reasonable results on card $\left(\operatorname{Aut}(X)_{\text {red }}\right)$; see the discussion at the end of section 1.
(*) Pervenuta all'Accademia il 24 settembre 1993.

Theorem 0.1 concludes (from our point of view) the p-power part of the «discrete» part (i.e. Aut $(X)_{\text {red }}$) of the research project on Aut (X) (with X minimal surface of general type) raised in the introduction of [1]. It remained also to gain informations on the connected 0 -dimensional component of the identity of the group scheme Aut (X). Recall that its tangent space at the identity is $H^{0}(X, T X)$. It was proved $[2,3.12]$ that $b^{0}(X, T X) \leqslant 18\left(K_{X^{2}}\right)$. Note that if X is defined over a field \boldsymbol{K} of characteristic p and t denotes $b^{0}(X, T X)$, the scheme $\operatorname{Aut}(X)$ has dimension (as K-vector space of its structural sheaf) at least p^{t}. Thus the following result shows that, even fixing the prime p, there is no polynomial bound for this vector space dimension (and shows that the bound $« b^{0}(X, T X) \leqslant 18\left(K_{X^{2}}\right) »$ given in $[2,3.12]$ is, up to the constant, the right bound).

Theorem 0.2. Fix an odd prime p congruent to 2 modulo 3 and an algebraically closed field \boldsymbol{K} with $\operatorname{char}(\boldsymbol{K})=p$. Set $C(p)^{-1}=2 p^{4}$. Then there is a sequence $\{X(n)\}_{n \geqslant 1}$ of minimal surfaces of general type over \boldsymbol{K} with $K_{X(n)^{2}}$ going to infinity with n and with $b^{0}(X(n), T X(n)) \geqslant C(p)\left(K_{X(n)^{2}}\right)$ for every n.

Theorem 0.2 will be proved (just using the examples constructed in [14]) in the second (and last) section.

1. Proof of Theorem 0.1

In the first part of this section we collect a few remarks needed for the proof of Theorem 0.1. Then we give the proof of 0.1 . At the end of this section we discuss the implications of 0.1 and of [1, Th. 0.1], for the structure of Aut $(X)_{\text {red }}$.

From now on in this section we fix a prime p and an algebraically closed base field K with $\operatorname{char}(\boldsymbol{K})=p$. We fix a minimal surface of general type X over \boldsymbol{K}, and set $K:=K_{X}$ and $c:=K^{2}$. For simplicity we will write $\operatorname{Aut}(X)$ instead of $\operatorname{Aut}(X)_{\text {red }}$. The notation $\Phi \propto \Gamma$ means that there is a universal constant D (not depending on the characteristic of the base field) such that $\Phi \leqslant D \Gamma$; the notation $\propto \Gamma$ means that there is a universal constant D such that the object considered in that sentence has order at most $D \Gamma$; usually when we use this notation Γ will be an explicit power of c (the unique exception arising with Γ power of the genus of a suitable curve).

Remark 1.1. Let $W:=\boldsymbol{P}(V)$ be a projective space and H a p-group contained in Aut (W). By [3, proof of 3.1.4, p. 409, lines 11-15], the action of H on W lifts to a linear action of H on V. Fix any such linear action of H. There is a basis of V in which every $b \in H$ is in triangular form with only 1 on the diagonal.

Remark 1.2. By a particular case of 1.1 every p-subgroup H of $\operatorname{Aut}\left(\boldsymbol{P}^{1}\right)$ has a common fixed point. Taking any such fixed point as the point at infinity, we see that H acts as a group of translations. Hence H is abelian, every $b \in H, b \neq \mathrm{Id}$, has order p, and fixes only the point at infinity.

Remark 1.3. Let C be a singular rational curve C; set $t:=\operatorname{card}\left(C_{\text {sing }}\right)$. First assume $t \geqslant 2$ and fix two point P, Q of $C_{\text {sing }}$. Taking the normalization, we see that C has no au-
tomorphism of order p fixing both P and Q; hence every p-subgroup of Aut (C) has order at most $t(t-1)$. Now assume $t=1$ and call t^{\prime} the number of branches of C at its singular point, P. If $t^{\prime} \geqslant 2$ for the same reason every p-subgroup of Aut (C) has order at most $t^{\prime}\left(t^{\prime}-1\right)$. Now assume $t^{\prime}=1$. By the discussion in 1.2 , the curve C may have a family of abelian elementary p-subgroups of $\operatorname{Aut}(C)$ with unbounded cardinality (the translations on the affine line). Fix $L \in \operatorname{Pic}(C), L$ ample. We claim that C has no automorphism of order p fixing the isomorphism class of L. Taking a partial normalization, to prove the claim we may assume that C has an ordinary cusp, i.e. that $\operatorname{Pic}^{0}(C)$ is isomorphic to the additive group, \boldsymbol{K}. The claim follows from the last part of 1.2.

Remark 1.5. Fix a smooth the curve C of genus $g \geqslant 2$. Then card (Aut (C)) $\propto g^{3}$ and every cyclic subgroup of Aut (C) has order $\propto g$ (use e.g. the lifting theorem in [15] to extends the classical characteristic 0 case given e.g. in [7]).

Remark 1.5. Fix a singular curve T and let $C \rightarrow T$ be its normalization. Fix a p-subgroup H of $\operatorname{Aut}(T)$ (hence of Aut (C)). Let H^{\prime} be the subgroup of H fixing every singular point of T. If $p_{a}(C)=1, H^{\prime}$ acts on C with at least a common fixed point. Note that if H is contained in $\operatorname{Aut}(X)$, then it fixes the isomorphism class of $K_{X} \mid T$. Hence if H is contained in Aut (X) the group H^{\prime} is trivial by 1.3 .

Remark 1.6. 1.6.1. The number of irreducible components of C is \propto_{c} (this was proved in [1, part (b1) of the proof of 1.1]), using the fact (checked in [1, Remark 1.6]) that the number of smooth rational curves, Z, contained in X and with $K \cdot Z=0$ is $\propto c$).
1.6.2. Every irreducible component T of $C_{\text {red }}$ has $p_{a}(T) \propto c$, because $K \cdot T+$ $+T^{2}=2 p_{a}(T)-2$ and C is numerically connected (hence $T \cdot(K-T) \geqslant 0$, while ($K-$ $-T) \cdot K \geqslant 0$). The same computation shows that the sum of the arithmetic genera of all the irreducible components of $C_{\text {red }}$ is $\propto c$.
1.6.3. Let H be a p-subgroup of $\operatorname{Aut}(C)$. Fix an irreducible component, T, of $C_{\text {red }}$. By 1.6.1 H has a subgroup H^{\prime} of index $\propto c$ which stabilizes T. Since C is numerically connected, we see that for every elliptic curve $E \subseteq C_{\text {red }}$ there is $P \in E$ such that $h(P)=P$ for every $b \in H$. Hence by 1.4 there is a subgroup $H^{\prime \prime}$ of index $\propto c^{2}$ in H^{\prime} and fixing every point of T if the normalization of T is not rational. By 1.3 we may find such a subgroup fixing pointwise T also if T is not smooth. By 1.3 we may find such a subgroup fixing also every smooth rational curve, R, intersecting $C_{\text {red }} \backslash R$ in at least 2 points (note that card $\left(\left(C_{\text {red }} \backslash R\right) \cap R\right) \propto c$ because C is numerical connected and $\left.p_{a}(C) \propto c\right)$.

Proof of 0.1. The proof is divided into 5 parts.
(a) Fix a p-subgroup H of $\operatorname{Aut}(X)$ (e.g. a p-Sylow subgroup) and a small integer x, say $x=12$, such that the linear system $|x K|$ has no base point and the associated morphism gives the canonical model of X. Set $V:=H^{0}\left(X, K^{\otimes_{X}}\right)$. In this part we assume $\operatorname{dim}\left(V^{H}\right) \geqslant 2$ and prove card $(H) \propto c^{4}$. Fix a pencil generated by two invariant pluricanonical divisors; hence every curve in this pencil is sent into itself by H and H acts on
the generic fiber of the pencil. Call B the base component of the pencil and J the generic fiber (over a suitable function field obtained by the Stein factorization of the rational map induced by the pencil) of the invariant pencil obtained deleting B. If the geometric genus of \boldsymbol{J} is at least 1 , we have card $(H) \propto c^{2}$ by 1.6 .1 and 1.6.2. If \boldsymbol{J} has geometric genus 0 , it has at least a cusp and we find $\operatorname{card}(H) \propto c$ by 1.6.1 and 1.5. Hence from now on we will assume $\operatorname{dim}\left(V^{H}\right)=1$.
(b) Fix any H-invariant pencil. Let B be the sum of the base components of this pencil. Hence, after deleting B and making a few blow-ups (obtaining a surface X^{\prime} on which H acts) we get an H-invariant morphism $\pi: X^{\prime} \rightarrow \boldsymbol{P}^{1}$. Let $B+J$ the invariant fiber of the pencil. Assume the existence of a singular fiber different from J. In this part we will assume that π has only finitely many singular fibers. Thus by [6] π has $\propto c$ singular fibers. Hence there is a subgroup H^{\prime} of H with index $\propto c$ and fixing two fibers of π. By the proof of part (a) we have card $\left(H^{\prime}\right) \leqslant \propto c$. Hence card $(H) \propto c^{5}$.
(c) Let A be the subgroup of H fixing every point of $T:=J_{\text {red }}$. By the proof of part (a) to obtain an upper bound for card (A) we may (and will) assume that $|x K|^{A}=$ $=\{J\}$; by part (b) we may assume that every A-invariant pencil of $|x K|$ has either J as unique singular fiber or all fibers are singular; call (\$) this property. Call U the image of X in $\boldsymbol{\Pi}:=|x K|$ (hence its canonical model) and U^{*} its dual in the dual projective space Π^{*}. Since we may take $x=2 y$ with $|y K|$ inducing the canonical model of X the following facts are known as general properties of Veronese embedding (see [11, Th. 2.5] or [12, Th. (20), p. 180]). U^{*} is a hypersurface and it is reflexive (hence biduality holds for U). Let $j^{*} \in \boldsymbol{\Pi}^{*}$ be the point corresponding to J; by assumption $j^{*} \in U^{*}$. Fix a general point $O \in T$ and take the A-invariant hyperplane H_{O} of $|x K|$ formed by divisors containing 0 . By $1.1 H_{O}$ contains at least an invariant pencil, V_{0}; by assumption ($\$$) either $V_{0} \subset U^{*}$ or V_{0} intersects U^{*} exactly at O. Since T is infinite, varying O we see that U^{*} has multiplicity $\operatorname{deg}\left(U^{*}\right)$ at j^{*}. Hence U^{*} is a cone with vertex j^{*}. By biduality we have $U=U^{* *}$; hence U is contained in the hyperplane dual to j^{*} (the image of T), contradiction.
(d) Note that in part (c) to obtain that U^{*} is a cone we needed only that the p group has as fixed points at least an irreducible component of T. Here we assume that T contains no smooth rational curve, Z, with $K \cdot Z=0$, leaving the case with such Z for the next (and last) step. Hence by 1.1, 1.2 and 1.5 we conclude unless every irreducible component of T is a smooth rational curve and card $\left(\operatorname{Sing}\left(T_{\text {red }}\right)\right) \leqslant 1 . T_{\text {red }}$ cannot be smooth, because it is connected, $K^{2}>0$ and no smooth rational curve on X moves. Taking a partial normalization, we see that $\operatorname{Pic}^{0}\left(\mathrm{~T}_{\text {red }}\right)$ has a unipotent subgroup, unless $T_{\text {red }}$ is the union of two smooth rational curves, $J^{\prime \prime}$ and $T^{\prime \prime}$, meeting transversally. If $\mathrm{Pic}^{0}\left(T_{\text {red }}\right)$ has a unipotent subgroup, use the proof given for a cuspidal rational curve. In the remaining case the contradiction comes from the following inequalities: $\left(J^{\prime \prime}+\right.$ $\left.+T^{\prime \prime}\right)^{2}>0, J^{\prime \prime} \cdot T^{\prime \prime}=1, J^{\prime \prime 2}<0$ and $T^{\prime \prime 2}<0$.
(e) Here we assume the existence of a smooth rational curve $Z \subseteq(T+J)$ with $K \cdot Z=0$. If the fundamental cycle corresponding to Z is contained in other curves of V_{0}, then it is in the base locus of V_{0} and we may repeat the calculation of part (d) on the
movable part of the pencil. If Z is contained only in $T+J$ (hence in T) we may assume by 1.6.1 (adding 1 to the exponent of the bound obtained) and part (b) that Z is the unique rational curve in the corresponding fundamental cycles, that the same is true for the other curves, Z^{\prime}, with $K \cdot Z^{\prime}=0$ and that $Z \cap\left(T_{\text {red }} \backslash Z\right)$ is the unique singular point of $J+T$ (hence the reduction of the base locus of V_{0}). Again, the numerical computations at the end of part (d) work and conclude the proof of 0.1 .

Suppose to have a bound (say $\propto c^{a}$) for the subgroups, G, of $\operatorname{Aut}(X)$ with card (G) prime to p, and a bound (say $\propto c^{b}$) for the subgroups with order a power of p; by [1, Th. 0.1] we may take $a=45 / 2$, while by 0.1 we may take $b=6$. We do not see how to obtain only from these informations a good bound for card $(\operatorname{Aut}(X))$. Of course, we must have $p \propto c^{b}$ and every prime $\neq p$ which divides card $(\operatorname{Aut}(X))$ is $\propto c^{a}$. However, in this way we obtain only card $(\operatorname{Aut}(X)) \propto c^{\log (c)}$. By [17, Ch. 4, Th. 5.6] every solvable subgroup of $\operatorname{Aut}(X)$ has order $\propto c^{a+b}$.

2. Proof of Theorem 0.2

In this section we prove 0.2 using the examples constructed in [14]. For other examples of surfaces of general type with non trivial vector fields, see [8] and [13]. The surfaces constructed in [14] depend on various integral invariants p (the characteristic), d and n. We need only the ones with $n=1$. In this case one start with a smooth curve, C (which will be the Albanese variety) and X would be a smooth fibration over C. The integer d is the degree of a suitable line bundle L on C with $L^{\otimes p(p-1)} \cong \omega_{C}$. By [14, Th. 1] we have $b^{0}(X, T X) \geqslant b^{0}(C, L)$ and the lower bound claimed by 0.2 is satisfied for the corresponding surface X if we may find (C, L) with $b^{0}(C, L) \geqslant d / 2$ (hence, since $d:=\operatorname{deg}(L)$, with C hyperelliptic) (see [14, Th. 2]). To check that the examples given at the end of [14] are sufficient to prove Theorem 0.2 we will use the formula for the Hasse-Manin matrix and Cartier operator of hyperelliptic curves proved by Yui ([19] or see [16], bottom of page 55). We use the notations of [14, §3]; set $w:=$ $:=p(p-1) d+3=2 g+1$ (with $\left.g:=p_{a}(C)\right)$. With these notations in our situation the condition on the Cartier operator given in the discussion and formula at the bottom of [16, p. 55], is that the polynomial $\left(x^{W}-1\right)^{(p-1) / 2}$ has no monomial with non zero coefficient and with exponent $\beta p-1$ with β integer, i.e. the non existence of an α with $1 \leqslant \alpha \leqslant(p-1) / 2$ with $\beta w=\alpha p-1$. Just note that if p is congruent to 2 modulo 3 , then $(p-1) / 3$ is not an integer, while $(2 p-1) / 3$ is an integer bigger than $(p-1) / 2$. Hence we conclude the proof of 0.2 .

Remark 2.1. Note that the surfaces, X, constructed in [14] and just considered answer a question raised in [18, end of p. 317], i.e. they are smooth projective varieties, X (with $p>2$) having an ample line bundle, M, with $b^{\circ}\left(X, T X \otimes M^{*}\right) \neq 0$; indeed by the formulas in [14, pp. 171 and 172], the zero locus of any non trivial section of TX is an ample divisor.

References

[1] E. Ballico, On the automorphisms of surfaces of general type in positive characteristic. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 121-129.
[2] E. Ballico - C. Cliberto, On Gaussian maps for projective varieties. Geometry of Complex Projective Varieties, Proc. Cetraro Conferences, Mediterranean Press, 1993, 35-54.
[3] W. Browder - N. Katz, Free actions of finite groups on varieties, II. Math. Ann., vol. 260, 1982, 403-412.
[4] F. Catanese - M. Schneider, Bounds for stable bundles and degrees of Weierstrass schemes. Math. Ann., vol. 293, 1992, 579-594.
[5] A. Corti, Polynomial bounds for the number of automorphisms of a sufface of general type. Ann. scient. Ec. Norm. Sup., (4), vol. 24, 1991, 113-137.
[6] I. Dolgachev, The Euler characteristic of a family of algebraic varieties. Math. USSR Sb., vol. 18, 1972, 303-319.
[7] H. Farkas - I. Kra, Riemann Surfaces. Grad. Text in Math., 71, Springer-Verlag, 1980.
[8] R. Ganong - P. Russell, The tangent bundle of a ruled surface. Math. Ann., vol. 271, 1985, 527-548.
[9] A. Howard - A. J. Sommese, On the orders of the automorphism groups of certain projective manifolds. In: Manifolds and Lie Groups. Progress in Math., vol. 14, Birkhaüser, Boston-Basel-Stuttgart 1981, 145-158.
[10] A. T. Huckleberry - M. Sauer, On the order of the automorphism group of a surface of general type. Math. Z., vol. 205, 1990, 321-329.
[11] N. Katz, Pinceaux de Lefschetz: théorème d'existence. SGA 7 II, Exposé XVII, pp. 212-253, Lect. Notes in Math. 340, Springer-Verlag, 1973.
[12] S. Kleiman, Tangency and duality. Proceedings of the 1984 Vancouver Conference in Algebraic Geometry. CMS-AMS Conference Proceedings, 6, 1985, 163-226.
[13] H. Kurke, Example of false ruled surfaces. Proceedings of Symposium on Algebraic Geometry. Kinosaki 1981, 203-223.
[14] W. Lang, Example of surfaces of general type with vector fields. In: Arithmetic and Geometry, papers dedicated to I. R. Shafarevich, Vol. 2. Progress in Math., vol. 36, Birkhaüser, Boston-Basel-Stuttgart 1983, 167-173.
[15] T. Sekiguchi - F. Oort - N. Suwa, On the deformation of Artin-Scbreyer to Kummer. Ann Scient. Ec. Norm. Sup., (4), vol. 22, 1989, 345-375.
[16] K-O. Stöhr - J. F. Voloch, A formula for the Cartier operator on plane algebraic curves. J. Reine Angew. Math., vol. 377, 1987, 49-64.
[17] M. Suzuki, Group Theory II. Springer-Verlag, 1986.
[18] J. WAHL, A cohomological characterization of P^{n}. Invent. Math., vol. 72, 1983, 315-322.
[19] N. YuI, On the jacobian varieties of byperelliptic curves over fields of characteristic $p>0$. J. Algebra, vol. 52, 1978, 378-410.
[20] G. XIAO, On abelian automorphism groups of a surface of general type. Invent. Math., vol. 102, 1990, 619-631.
[21] G. XIAO, Bound of automorphisms of surfaces of general type, I. Preprint Max-Planck-Institüt MPI/91-55.

Dipartimento di Matematica Università degli Studi di Trento 38050 Povo TN

