EDOARDO VESSENTINI

Rigidity of holomorphic isometries

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1994_9_5_1_55_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.
Geometria. — Rigidity of holomorphic isometries. Nota(*) del Socio EDOARDO VESENTINI.

ABSTRACT. — A rigidity theorem for holomorphic families of holomorphic isometries acting on Cartan domains is proved.

KEY WORDS: Cartan factors; Carathéodory distance; Holomorphic isometry; Extreme point.

RIASSUNTO. — Rigidità di isometrie olomorfe. Si stabilisce un teorema di rigidità per famiglie di isometrie olomorfe in domini di Cartan.

1. Let D and D' be bounded domains in two complex Banach spaces \mathcal{E} and \mathcal{E}', and let $\text{Iso}(D, D')$ be the family of all holomorphic maps of D into D' which are isometries for the Carathéodory distances c_D and $c_{D'}$, in D and D'. Denoting by A a domain in \mathbb{C}, let f be a holomorphic map of $A \times D$ into D'. According to Lemma 2.3 of [6], if, for every pair points x, y in D, there is $\zeta \in A$ such that $c_D(f(\zeta, x), f(\zeta, y)) = c_D(x, y)$, then $f(\zeta, \cdot) \in \text{Iso}(D, D')$ for all $\zeta \in A$. As a consequence, the following proposition holds:

Proposition 1. If there is a point $\zeta_0 \in A$ such that $f(\zeta_0, \cdot) \in \text{Iso}(D, D')$, then, $f(\zeta, \cdot) \in \text{Iso}(D, D')$ for all $\zeta \in A$.

Let $D = D'$ (in which case $\text{Iso}D$ will stand for $\text{Iso}(D, D')$) and let $\text{Aut}D \subset \text{Iso}D$ be the group of all holomorphic automorphisms of D. According to Proposition V.1.10 of [1], if $f(\zeta_0, \cdot) \in \text{Aut}D$ for some $\zeta_0 \in A$, then $f(\zeta, \cdot)$ is independent of $\zeta \in A$, i.e.

$$f(\zeta_0, \cdot) = f(\zeta, \cdot) \quad \text{for all } \zeta \in A. \quad (1)$$

Under which conditions on D and D' does this latter conclusion hold when $\text{Aut}D$ is replaced by $\text{Iso}(D, D')$?

It was shown in [9] that, if D is the open unit ball B of \mathcal{E}, and if \mathcal{E} is a complex Hilbert space, the fact that $f(\zeta_0, \cdot) \in \text{Iso}B$ for some $\zeta_0 \in A$ implies (1).

Let \mathcal{E} be the C^* algebra $\mathcal{E} = \mathcal{L}(\mathcal{H})$ of all bounded linear operators on a complex Hilbert space \mathcal{H}. Starting from any infinite dimensional \mathcal{H}, an example was constructed in [5] of a non-trivial holomorphic family of holomorphic isometries of the open unit ball B of \mathcal{E}, i.e. a holomorphic map $f: A \times B \rightarrow B$ such that $f(\zeta, \cdot) \in \text{Iso}B$ depends effectively on ζ.

The C^* algebra $\mathcal{L}(\mathcal{H})$ belongs to the class of J^*-algebras: in L. A. Harris’ termino-
logy [2], it is a special kind of Cartan factor of type one. It was also shown in [5] that the same conclusion holds when \mathcal{E} is any infinite dimensional Cartan factor of type two or three.

The investigation will be pursued in this Note by considering all Cartan domains of type four and a class of Cartan domains of type one. It will be shown that – in contrast with the results established in [5] – no non-trivial holomorphic families of holomorphic isometries exist in these cases. More specifically, let B and B' be the open unit balls of \mathcal{E} and \mathcal{E}', and let $f \in \text{Hol}(A \times B, B')$ (the set of all holomorphic maps of $A \times B$ into B') be such that $f(\zeta_0, \cdot) \in \text{Iso}(B, B')$ for some $\zeta_0 \in A$. The purpose of this Note is that of proving the following.

Theorem. If \mathcal{E} and \mathcal{E}' are both Cartan factors of type four, or if $\mathcal{E} = \mathcal{E}(X, X), \mathcal{E}' = \mathcal{E}(X, X')$, where X, X and X' are complex Hilbert spaces and $\dim_C X < \infty$, then f is independent of $\zeta \in A$.

This theorem extends a similar result which was previously established by the author when $\mathcal{E} = \mathcal{E}'$ and $f(\zeta, \cdot)$ is a holomorphic isometry for all $\zeta \in A$. A similar question to the one posed at the beginning can be formulated in the case in which D and D' are hyperbolic domains and the Carathéodory distances are replaced by the Kobayashi distances. This question is obviously answered by the above theorem in the case when $D = B$, $D' = B'$, because then Carathéodory’s and Kobayashi’s distances coincide. If \mathcal{E}' has finite dimension (and therefore $\dim_C \mathcal{E} \leq \dim_C \mathcal{E}'$) and if the domains D and D' are bounded, the same question can be posed in terms of the Bergman metrics on D and D'. This question seems to be open, also in the particular case in which D and D' are the euclidean open unit balls of \mathcal{E} and \mathcal{E}'.

2. This section will be devoted to some preliminaries. Let A be a connected open neighbourhood of 0 in \mathbb{C}. If $f \in \text{Hol}(A \times B, B')$, for $\zeta \in A, X \in B$, $d_1 f(\zeta, X) \in \mathcal{E}'$ and $d_2 f(\zeta, X) \in \mathcal{L}(\mathcal{E}, \mathcal{E}')$ will indicate the partial Fréchet differentials of f with respect to the first and the second variable, evaluated at the point (ζ, X).

Suppose that:

(i) $f(0, 0) = 0$;

(ii) $d_2 f(0, 0) \in \mathcal{L}(\mathcal{E}, \mathcal{E}')$ is a linear isometry of \mathcal{E} onto a closed linear subspace \mathcal{F}' of \mathcal{E}';

(iii) there is a projector P' in \mathcal{E}' such that

$$P'(B') = B' \cap \mathcal{F}' .$$

Note that $\|P'\| \leq 1$.

As a consequence of (ii), there is a map $L \in \mathcal{L}(\mathcal{F}', \mathcal{E})$ which is a linear isometry of \mathcal{F}' onto \mathcal{E}, for which $L \circ d_2 f(0, 0)$ is the identity on \mathcal{E}. Let $\tilde{P}' \in \mathcal{L}(\mathcal{E}', \mathcal{F}')$ be the map induced by P', and let $g \in \text{Hol}(A \times B, B)$ be the map defined by $g = L \circ \tilde{P}' \circ f$.

Then $d_2g(\zeta, X) = L \circ \bar{P}' \circ d_2 f(\zeta, X)$, and therefore $d_2g(0, 0) = L \circ \bar{P}' \circ d_2 f(0, 0) = I$ the identity on E. Thus, by H. Cartan's uniqueness theorem [1], $g(0, X) = X$ for all $X \in B$, and, by Proposition V.1.10 of [1] $g(\zeta, X)$ is independent of $\zeta \in A$, i.e.

(3) \hspace{1cm} g(\zeta, X) = X \hspace{1cm} \text{for all } X \in B \text{ and all } \zeta \in A.

Let $f(\zeta, X) = Q_0(\zeta) + Q_1(\zeta, X) + Q_2(\zeta, X) + \ldots$, be the power series expansion of $f(\zeta, \cdot)$ in B, where $Q_\nu(\zeta, \cdot)$ is a continuous homogeneous polynomial $E \to E'$ of degree $\nu = 0, 1, \ldots$, expressed, for $\zeta \in A, X \in B$, by the integral

(4) \hspace{1cm} Q_\nu(\zeta, X) = \frac{1}{2\pi} \int_0^{2\pi} \exp(-i\nu \theta) f(\zeta, X) d\theta,

and where $Q_1(\zeta, X) = d_2 f(\zeta, 0) X$.

Equation (3) implies that, for all $\zeta \in A, X \in B$,

(5) \hspace{1cm} L \circ \bar{P}' \circ Q_1(\zeta, X) = X,

(6) \hspace{1cm} \bar{P}' \circ Q_\nu(\zeta, X) = 0 \hspace{1cm} \text{for } \nu = 0, 2, 3, \ldots.

Since, by (4), $\|Q_1(\zeta, \cdot)\| \leq 1$, (5) yields $\|X\| = \|L \circ \bar{P}' \circ Q_1(\zeta, X)\| \leq \|L\| \|P'\| \|Q_1(\zeta, X)\| \leq \|Q_1(\zeta, X)\| \leq \|X\|$, whence $\|Q_1(\zeta, X)\| = \|X\|$ for all $X \in E$.

Thus, $Q_1(\zeta, \cdot)$ is a linear isometry of E into E' for all $\zeta \in A$.

Example (3.1) of p. 301 of [5] shows that $Q_1(\zeta, \cdot)$ can depend on $\zeta \in A$. However, the following result holds.

Let H and H' be the sets of all real extreme points of the closures \overline{B} and $\overline{B'}$ of B and B'.

Lemma 2. If f satisfies conditions (i)-(iii), if

(7) \hspace{1cm} d_2 f(0, 0) H \subset H',

and if E is reflexive, then

(8) \hspace{1cm} Q_1(\zeta, \cdot) = d_2 f(0, 0) \hspace{1cm} \text{for all } \zeta \in A.

Proof. If $d_2 f(0, 0) Y$ is a complex extreme point of $\overline{B'}$, the strong maximum principle [1] yields $Q_1(\zeta, Y) = Q_1(0, Y) = d_2 f(0, 0) Y$ for all $\zeta \in A$. By (7), these equalities hold for all $Y \in H$. Let $X \in B$. For any continuous linear form λ' on E' and for any $\varepsilon > 0$, there is a finite convex combination $\sum a^i X_i$ of points $X_i \in H$ such that $|\lambda' \circ Q_1(\zeta, X - \sum a^i X_i)| < \varepsilon/2$, $|\lambda' \circ d_2 f(0, 0)(X - \sum a^i X_i)| < \varepsilon/2$.

Since $Q_1(\zeta, X_i) = d_2 f(0, 0) X_i$, then $|\lambda' \circ (Q_1(\zeta, X) - d_2 f(0, 0) X)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

The fact that λ' and ε are arbitrary, and the Hahn-Banach theorem, imply then that $Q_1(\zeta, X) = d_2 f(0, 0) X$ for all $\zeta \in A$ and all $X \in E$. Q.E.D.

3. If \mathcal{X} and \mathcal{X}' are two complex Hilbert spaces, the space $\mathcal{L}(\mathcal{X}, \mathcal{X}')$ of all bounded linear maps from \mathcal{X} to \mathcal{X}' is a complex Banach space with respect to the uniform operator norm $\|\|$.
It will be assumed henceforth that \(n = \dim \mathcal{K} < \infty \).

If \(e_1, \ldots, e_n \) is an orthonormal basis of \(\mathcal{X} \), for any \(X' \in \mathcal{L}(\mathcal{X}, \mathcal{X}') \) let \(X'_j = X' e_j \).

Then, for \(x = \sum_{j=1}^{n} a^j e_j \in \mathcal{X} \) (\(a^j \in \mathbb{C} \)), \(X' x = \sum_{j=1}^{n} a^j X'_j \), and, denoting by the same symbols (\(\langle \cdot, \cdot \rangle \) and \(\| \cdot \| \)) inner products and norms in \(\mathcal{X} \) and \(\mathcal{X}' \),

\[
\| X' x \|^2 = \sum_{j=1}^{n} |a^j|^2 \| X'_j \|^2 + 2 \Re \sum_{j<k}^{n} a^j a^k \langle X'_j, X'_k \rangle \leq \leq n \sum_{j=1}^{n} |a^j|^2 \| X'_j \|^2 \leq n (\Max\{ \| X'_j \| : j = 1, \ldots, n \})^2 \sum_{j=1}^{n} |a^j|^2 = n (\Max\{ \| X'_j \| : j = 1, \ldots, n \})^2 \| x \|^2,
\]

whence

(9) \(\| X' \| \leq \sqrt{n} \Max\{ \| X'_j \| : j = 1, \ldots, n \} \).

Let \(\tilde{X}' \) be the vector \((X'_1, \ldots, X'_n)\) in the Hilbert space direct sum \(\oplus_1^n \mathcal{X}' \) of \(n \) copies of \(\mathcal{X}' \). Then, by (9), the norm \(\| X' \| \) of \(X' \) is estimated by \(\| X' \|^2 \leq n \| \tilde{X}' \|^2 \).

Hence, the bijective linear map \(X' \to \tilde{X}' \) of \(\mathcal{L}(\mathcal{X}, \mathcal{X}') \) into \(\oplus_1^n \mathcal{X}' \) is bi-continuous.

That shows that, if \(\dim \mathcal{K} < \infty \), the Banach space \(\mathcal{L}(\mathcal{X}, \mathcal{X}') \) is reflexive.

Let \(\{ f'_\mu : \mu \in M \} \) be an orthonormal basis of \(\mathcal{X}' \), indexed by a set \(M \). Every \(X' \in \mathcal{L}(\mathcal{X}, \mathcal{X}') \) is expressed by

\[
X' = \sum_{\mu \in M} \left(\sum_{\nu = 1}^{n} (X'_\nu | f'_\mu)(f'_\mu \otimes e^*_\nu) \right),
\]

where the right-hand side (is summable and) converges to \(X' \) in the norm of \(\mathcal{L}(\mathcal{X}, \mathcal{X}') \) [7, Lemma 5]. For \(x \in \mathcal{X} \), \(f'_\mu \otimes e^*_\nu (x) = (x | e_\nu) f'_\mu \), and therefore

(10) \(\| X' x \|^2 = \sum_{\mu \in M} \left\| \sum_{\nu = 1}^{n} (X'_\nu | f'_\mu)(x | e_\nu) \right\|^2 \).

Let \(M_0 \) be a non-empty subset of \(M \) and let \(P' \) be the projector acting on \(\mathcal{L}(\mathcal{X}, \mathcal{X}') \), defined on \(X' \) by \(P' X' = \sum_{\mu \in M} \left(\sum_{\nu = 1}^{n} (X'_\nu | f'_\mu)(f'_\mu \otimes e^*_\nu) \right) \).

Since, by (10), \(\| P' X' x \| \leq \| X' x \| \) for all \(x \in \mathcal{X} \), then \(\| P' X' \| \leq \| X' \| \) for all \(X' \in \mathcal{L}(\mathcal{X}, \mathcal{X}') \) and therefore the norm \(\| P' \| \) of \(P' \) is

(11) \(\| P' \| \leq 1 \).

Furthermore, \(I - P' = 0 \) if \(M_0 = M \) while, if \(M_0 \neq M \), then

\[
(I - P') X' = \sum_{\mu \in M \setminus M_0} \left(\sum_{\nu = 1}^{n} (X'_\nu | f'_\mu)(f'_\mu \otimes e^*_\nu) \right),
\]

and, by the same argument as before, \(\| I - P' \| \leq 1 \).
For all $x \in \mathcal{X}$
\[(P'X'x | (I - P')X'x) = \sum_{\mu_1 \in M_0} \sum_{\mu_2 \in M \setminus M_0} \sum_{v_1, v_2 = 1}^n (X' e_{v_1} | f'_{\mu_1} (X' e_{v_2} | f'_{\mu_2}) \cdot (x | e_{v_1} (x | e_{v_2} (f'_{\mu_1} | f'_{\mu_2}) = 0\]
and therefore
\[(12) \quad \|X'x\|^2 = \|P'X'x\|^2 + \|(I - P')X'x\|^2 .\]

Let \mathcal{E} be another complex Hilbert space and let B and B' be the open unit balls of $\mathcal{E} = \mathcal{E}(\mathcal{X}, \mathcal{X})$ and of $\mathcal{E}' = \mathcal{E}(\mathcal{X}, \mathcal{X}')$. If $f \in \text{Hol}(A \times B, B')$ is such that $f(\zeta_0, \cdot) \in \text{Iso}(B, B')$ for some $\zeta_0 \in A$, then $f(\zeta, \cdot) \in \text{Iso}(B, B')$ for all $\zeta \in A$, and, in particular, for $\zeta = 0 \in A$.

Since B' is homogeneous [2], there is no restriction in assuming $f(0, 0) = 0$. Since the Carathéodory differential metric is the derivative of the Carathéodory distance (14); cf. also, e.g. [9]), and since the Carathéodory differential metrics of B and B' at the center 0 coincide with the norms in \mathcal{E} and in \mathcal{E}', then $d_2 f(0, 0)$ is a linear isometry of \mathcal{E} into \mathcal{E}'. According to Theorem I of [7], there exists a unitary operator V on \mathcal{X} and a linear isometry U of \mathcal{X} into \mathcal{X}' such that
\[(13) \quad d_2 f(0, 0) x = U \circ X \circ V \quad \text{for all } x \in \mathcal{E}(\mathcal{X}, \mathcal{X}').\]

Remark. Theorem I was established in [7] when $\mathcal{E} = \mathcal{E}'$, but the proof holds, with only purely formal changes, in the more general context considered here.

Given an orthonormal basis in \mathcal{X}, its image by V is an orthonormal basis $\{e_1, \ldots, e_n\}$ in \mathcal{X}. On the other hand, the image by U of an orthonormal basis in \mathcal{E} is an orthonormal set in \mathcal{E}', which, by a standard orthogonalization process, can be identified with a subset, $\{f'_\mu\}_{\mu \in M_0}$ of an orthonormal basis $\{f_\mu\}_{\mu \in M}$ of $\mathcal{E}'(M_0 \subset M)$. Since the closed linear span of $\{f'_\mu \otimes e_\nu^*: \nu = 1, \ldots, n; \mu \in M_0\}$ is the space $\mathcal{F}' = = d_2 f(0, 0) \mathcal{E}$, the above considerations show that there exists a projector P' in \mathcal{E}' with range \mathcal{F}', satisfying (11) and therefore (2).

Hence, all the hypotheses of Lemma 2 are satisfied, and (8) holds.

Since, by (6),
\[Q_0(x) + \sum_{\nu = 2}^\infty Q_\nu(x) = (I - P') f(x, X),\]
then (12) yields, for all $x \in \mathcal{X}$,
\[(14) \quad \|x\|^2 \geq \|f(\zeta, X)x\|^2 = \|d_2 f(0, 0) X x\|^2 + \left(\left(Q_0(\zeta) + \sum_{\nu = 2}^\infty Q_\nu(\zeta, X)\right) x\right)^2 .\]

If $X: \mathcal{X} \to \mathcal{E}$ is a linear isometry, (13) implies that $d_2 f(0, 0) X: \mathcal{X} \to \mathcal{E}'$ is a linear isometry. For $0 < t < 1$, $tX \in B$ and (14) yields
\[t^2 \|x\|^2 + \left(\left(Q_0(\zeta) + \sum_{\nu = 2}^\infty Q_\nu(\zeta, tX)\right) x\right)^2 \leq \|x\|^2 .\]
for all \(x \in \mathcal{X} \), whence

\[
\left\| Q_0(X) + \sum_{v=2}^{+\infty} Q_v(\xi, tX) \right\| = (1 - t^2)^{1/2},
\]

for all linear isometries \(X : \mathcal{X} \to \mathcal{X} \). Since \(0 < t < 1 \), the function \(Z \to Q_0(\xi) + \sum_{v=2}^{+\infty} Q_v(\xi, tZ) \) is holomorphic in a neighbourhood of \(\overline{B} \). By Proposition 2 of [7] and Proposition 2 of [2], the set of all linear isometries \(\mathcal{X} \to \mathcal{X} \) is stable. Thus, Harris' maximum principle [2, Theorem 9] entails that (15) holds for all \(X \in \overline{B} \) and all \(t \in (0, 1) \), implying that

\[
Q_0(\xi) + \sum_{v=2}^{+\infty} Q_v(\xi, X) = 0,
\]

and therefore

\[
f(\xi, X) = d \frac{1}{2} f(0, 0) X
\]

for all \(\xi \in A \) and all \(X \in B \).

That proves the part of the theorem stated in n. 1, concerning the Cartan factors of type one \(\mathcal{E} = \mathcal{L}(\mathcal{X}, \mathcal{X}) \) and \(\mathcal{E}' = \mathcal{L}(\mathcal{X}', \mathcal{X'}) \).

It is easily seen that the conclusion of the theorem does not always hold when \(\mathcal{E}' = \mathcal{L}(\mathcal{X}', \mathcal{X}) \) and \(\mathcal{E} = \mathcal{L}(\mathcal{X}, \mathcal{X}') \), \(\mathcal{X}' \) being a finite dimensional Hilbert space with \(\dim_{\mathbb{C}} \mathcal{X} \leq \dim_{\mathbb{C}} \mathcal{X}' \). A simple example is given by \(\mathcal{X} = \mathcal{X} = \mathbb{C} \), \(\mathcal{X}' = \mathbb{C}^2 \) (endowed with the euclidean metric). Let \(X_1', X_2' \) be two vectors in \(\mathcal{X}' \), with \(\| X_1' \| = \| X_2' \| = 1 \), \((X_1' \mid X_2') = 0 \), and choosing \(A \) to be the open unit disc \(\Delta \) of \(\mathbb{C} \) – let \(f \in \text{Hol}(\Delta \times \Delta, B') \) be the function whose value at \((\xi, z) \in \Delta \times \Delta \) is the linear map \(z(x^1 X_1' + \xi x^2 X_2') \) of \(\mathbb{C} \) into \(\mathcal{X}' \). For every \(\xi \in \Delta \), \(f(\xi, \cdot) \in \text{Hol}(\Delta, B') \) is a complex geodesic for \(c_{B'} \), and therefore \(f(\xi, \cdot) \), which depends effectively on \(\xi \in \Delta \), is a holomorphic isometry of \(\Delta \) into \(B' \).

4. Given a complex Hilbert space \(\mathcal{X}' \) with \(\dim_{\mathbb{C}} \mathcal{X}' > 1 \), consider the complex Banach space \(\mathcal{L}(\mathcal{X}') \) of all bounded linear operators on \(\mathcal{X}' \), and let a closed linear subspace \(\mathcal{E}' \) of \(\mathcal{L}(\mathcal{X}') \) be a Cartan factor of type four \([2,8]\). Let \(B' \) be the open unit ball of \(\mathcal{E}' \). This latter space is endowed with a Hilbert space structure defined by a positive-definite inner product \((\mid \mid) \) whose associated norm \(\| \| \) is equivalent to the uniform operator norm \(\| \| \). More specifically \([2]\)

\[
(1/2) \| X' \|_2^2 \leq \| X' \|_2 \leq \| X' \|_2^2 \quad \text{for all } X' \in \mathcal{E}'.
\]

A complete spin system \(H' = \{ U'_\mu : \mu \in M \} \) in \(\mathcal{E}' \) is an orthonormal basis of \(\mathcal{E}' \), whose elements \(U'_\mu \) are self-adjoint, unitary operators on \(\mathcal{X}' \) – called spin-operators on \(\mathcal{X}' \) – such that \(U'_\mu \circ U'_{\mu_2} + U'_{\mu_2} \circ U'_\mu = 2 \delta_{\mu_1\mu_2} I \) (\(\mu_1, \mu_2 \in M \)).

Every \(X' \in \mathcal{E}' \) is represented, in terms of \(H' \), by the Fourier series expansion

\[
X' = \sum_{\mu \in M} (X' | U'_\mu) U'_\mu.
\]
If \(\emptyset \neq M_0 \subset M \), the map \(P' : \mathcal{E}' \to \mathcal{E}' \) defined by
\[
P' X' = \sum_{\mu \in M_0} (X'|U'_\mu) U'_\mu
\]
is an orthogonal projector on the Hilbert space \(\mathcal{E}' \).

The set \(H' \) is the family of all real (= complex) extreme points of \(\bar{B}' \). Since \(\mathcal{E}' \) is reflexive, the norm of \(P' \) as a linear operator in the Banach space \((\mathcal{E}', \|\|) \), satisfies (11).

Let \(\mathcal{H} \) be a complex Hilbert space and let a closed linear subspace \(\mathcal{E} \) of \(\mathcal{E}(\mathcal{H}) \) be a Cartan factor of type four. Let \(B \) be the open unit ball of \(\mathcal{E} \) and let \(f \in \text{Hol}(A \times B, B') \) be such that \(f(\zeta_0, \cdot) \in \text{Iso}(B, B') \) at some \(\zeta_0 \in A \) and therefore – by Proposition 1 – at all \(\zeta \in A \). Since \(B' \) is homogeneous, there is no restriction in assuming \(f(0, 0) = 0 \). As before, that implies that \(d_2 f(0, 0) \) is a linear isometry of \(\mathcal{E} \) into \(\mathcal{E}' \) for the norm \(\|\| \).

By theorem 1 and by the Remark in [8], there exists a constant \(a \in \mathbb{C} \), with \(|a| = 1 \), such that \(ad_2 f(0, 0) \) is a real linear isometry of the Hilbert space \(\mathcal{E} \) into the Hilbert space \(\mathcal{E}' \). Thus, if \(\{U_\mu : \mu \in M_0\} \) is a complete spin system in \(\mathcal{E} \), then \(\{ad_2 f(0, 0) U_\mu : \mu \in M_0\} \) is a spin system in \(\mathcal{E}' \). Thus there is a complete spin system \(\{U'_\mu : \mu \in M\} \) containing \(\{ad_2 f(0, 0) U_\mu : \mu \in M_0\} \) as a subset. The closed linear span of this subset is the image \(\mathcal{E}' = d_2 f(0, 0) \mathcal{E} \). Thus the above argument shows that there is a projector \(P' \) whose range is \(\mathcal{E}' \) and which satisfies (11) and therefore also (2). Hence all the hypotheses of Lemma 2 are fulfilled, and (8) holds.

Since the orthogonal projectors \(P' \) and \(I - P' \) are orthogonal to each other with respect to the Hilbert space structure of \(\mathcal{E}' \), then (6) yields
\[
(I - P') Q_\nu(\zeta, X) = Q_\nu(\zeta, X) \quad (\zeta \in A, \ X \in B, \ \nu = 0, 2, 3, \ldots)
\]

By (18), \(\|f(\zeta, X)\| \leq 1 \), and that is equivalent to
\[
\|d_2 f(0, 0) X\|^2 + \left\| Q_0(\zeta) + \sum_{\nu = 2}^{+\infty} Q_\nu(\zeta, X) \right\|^2 \leq 1,
\]
because, by (19), \(d_2 f(0, 0) = P' d_2 f(0, 0) \) is orthogonal to \(Q_\nu(\zeta, X) \) for \(\nu = 0, 2, 3, \ldots \). Since \(\|d_2 f(0, 0) X\| = \|X\| \) for all \(X \in \mathcal{E} \), (20) yields
\[
\left\| Q_0(\zeta) + \sum_{\nu = 2}^{+\infty} Q_\nu(\zeta, X) \right\|^2 \leq 1 - \|X\|^2
\]
for all \(X \in B \) and all \(\zeta \in A \). This latter inequality is satisfied when \(X = t Z \), where \(0 < t < 1 \) and \(Z \) is any spin-operator on \(\mathcal{E} \). Since the set of all spin-operators coincides with the set \(H \) of all real (= complex) extreme points of \(\bar{B} \) and the set \(H \) is stable, L. A. Harris' maximum principle implies, as at the end of n. 3, that (16) and (17) hold. That completes the proof of the theorem stated in n. 1.

References

Scuola Normale Superiore
Piazza dei Cavalieri, 7 - 56126 PISA