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Geometria. — Angular limits and derivatives for holomorphic maps of infinite dimen-
sional bounded homogeneous domains. Nota (*) di Kazimierz WroDARCZYK, presentata
dal Socio E. Vesentini.

AsstraCT. — An infinite dimensional extension of the Pick-Julia theorem is used to derive the condi-
tions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for
holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in ] *-algebras and in
complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are
given.

Key woros: Infinite dimensional bounded symmetric homogeneous domain; Holomorphic map; Op-
erator-valued analytic map; Angular derivative; J*-algebra.

RiassuNTO. — Limiti e derivate angolari per le applicazioni olomorfe di domini limitati omogenei di dimen-
sione infinita. Da un’estensione di dimensione infinita del teorema di Pick-Julia vengono dedotte condizioni,
«alla Carathéodory», sufficienti per I'esistenza di limiti angolari e derivate angolari per applicazioni olomor-
fe di domini limitati omogenei simmetrici in algebre J* ed in spazi di Hilbert. Si considerano alcuni esempi
e si studiano funzioni analitiche i -cui valori sono degli operatori.

1. INTRODUCTION

The extensive investigations and applications of angular limits and angular deriva-
tives to problems of function theory in finite dimensional complex spaces (in particular,
to studies of the Wolff-Denjoy fixed points), initiated by Carathéodory, are well docu-
mented in a series of books and papers (see e.g. [1,3-7,10-12, 14, 16-19]). Rudin in [18]
proved results for holomorphic maps of the unit balls in C”, analogous to the following
classical theorem of Carathéodory.

Tueorem 1.1 [5, p. 96]. Let A = {x € C: |x| < 1} be the open unit disc in the com-
plex plane C and let F: A— A be a holomorphic map. If {x,} is any sequence of numbers ly-
ing within some angularset D, = {x e C: |1 — x| < a(1 — |x|?)/2}, @ > 1, and tending
to x =1, then lim [1 — F(x,)1(1 — x,) ! exists as n — . This limit is either + © or a
number L > 0. In the second case, we also have lim DF(x,) = L as n — | and we refer to
this number as the «angular derivative» of the map F at the point x = 1.

Let H and K be Hilbert spaces over C and let £(H, K) denote the Banach space of
all bounded linear operators X from H to K with the operator norm.

In infinite dimension, the situation is much more complicated and it is not
easy to find formulations which are analogous to the finite variables results and
have hopes to hold true. For a discussion of these problems, we refer to Ky
Fan[9] where a nice generalization of Carathéodory’s theorem for operator-valued

(*) Pervenuta all’Accademia il 22 settembre 1993.
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analytic maps of the right half-plane IT = {x € C: Re x > 0 } into the Siegel domain
{Xe £(H,H):Re X >0} is given.

Let B c £(H, K) denote a closed complex linear subspace of £(H, K) such that
XX*X e B whenever X e B, and let B,={XeB: |X| <1}.

In this paper we use the ideas of functional analysis and operator theory to establish
the conditions which guarantee the existence of angular limits and angular derivatives
for holomorphic maps F: B, — B, in bounded symmetric homogeneous domains ‘B,
of infinite dimensional complex Banach spaces B, called ] *-algebras, which were intro-
duced and investigated by Harris in [13] (the set of the Harris domains includes the set
of the classical Cartan [8] bounded symmetric homogeneous domains in C”). The spe-
cial case when J *-algebra B is a complex Hilbert space (i.e. when B = K = £(C, K)) is
considered and, also, the conditions which guarantee the existence of angular limits and
angular derivatives for operator-valued analytic maps of 4 into B, are given. We
present three examples. This paper is a continuation of the studies in[25,26].

2. DEFINITIONS, NOTATIONS AND STATEMENT OF RESULTS

Let H and K be Hilbert spaces over C, let £(H, K) denote the Banach space of all
bounded linear operators X from H to K with the operator norm, and let 8 ¢ £(H, K)
be a J*-algebra, z.e. a closed complex linear subspace of £(H, K) such that XX* X e B
whenever X e B.

For two Hermitian operators A, B € £(H, H), we write A = B to indicate that A —
— Bis a positive operator, z.e. (A — B)x, x) = 0 for allx € H. The strict inequality A > B
means that A — B is positive and invertible.

Let Iy and Iy denote the identity maps on H and K, respectively. If X € £(H, H),
we write Re X = (X +X*)/2, Im X = (X — X*)/(21).

Let By={XeB: ||X]<1}; for YeDB,, let Ay=Iy—Y*Y and By=1Ix -
—YY*, and let Ty: B, — B, denote the Mobius biholomorphic map of the form
(see[13, Theorem 2, p. 20])

Ty(X) =By P(X-Y)Ig—- Y*X)"'A¥?, Xe'B,.
We start by proving the following general result of the Pick-Julia type in arbitrary
J*-algebras. It differs from those given in[2,9,22,25].

Tueorem 2.1. Let BcL(H,K) be a [*algebra. If F:B,—p, p={Xe
€ &(H, H): Re X > 0}, is a holomorphic map such that F(Z) = Iy for some Z e By,
then

2.1) [FCO| <1+ [T, 001 = [T,C0M™"  for X e By.
For a > 1 and Y € 8%, we let
D, (Y)={Xe®B: ||Iy- Y*X| <a(1—|X|P)/2}.

Of course, D, (Y) c B, for all « > 1. When « < 1 this set is empty. We call the sets
D,(Y), a > 1, angular sets. ‘
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We shall need the following relation between D,(Y) and Dy(Y), 1<f8<a,
Y € %0 .

PropostTioN 2.1. Assume that Y e 9%8,,

(2.2) 1<f<a, 8=(1/B—-1/a)/3

and X e Dy(Y), ie.

(2.3) Iz — Y*X| < g1 - ||IX[P)/2.

I

(2.4) (A <8|ly - Y*X],

then X+ AY e D, (Y), ie.

(2.5) g = Y*(X+ 2Y)| < a(1 = | X + AY|?)/2.

For Y e %, we define a holomorphic map My: B, — £(H, H) by the formula
My(X) = (Iy + Y*X)(Iy — Y*X)~', Xe®B,. Let us observe that Re My(X) =
=(Ig—-X*Y) Mg - X*YY*X)(Iy - Y*X)™!, Xe%B,. Obviously, the operator
My (X) is invertible, ze. [My(X)]™! exists and My(X)ep for all Xe B, and
Y € 9%B,.

The above results are the principal tools in the proof of the following theorem con-
cerning the existence of angular limits and angular derivatives for holomorphic maps of
bounded symmetric homogeneous domains in a [*-algebra containing an isometry.

Tueorem 2.2. Let Bc L(H,K) be a ]*-algebnf containing an isometry U, let
F: B,— B, be a holomorphic map in B, and let W e 3B,.
(@) Suppose there is a Hermitian operator A € £(H, H) satisfying
(2.6) AV2[Re (My o F)(X)]AY? > Re My (X)

for all X € By. If D, (U) stands for an angular set such that, for any € > 0, there exists a
point Z € D, (U) for which the inequality

2.7) ~ JA™[Re (My oF)(Z)JAY2 — Re My (Z)] < ¢
holds, then

(2.8) lim ||[My (X)1A ™2 [(My o F)(X)1™' = A™?|| =0
and

290  lim ||[Re My (X)]A Y2[Re (My o F)(X)]"! = A¥2|| = 0

as X— U, XeD,(U). Moreover,
(210)  lim [[D{A T [(My « FY(X)]™! = [My (X)] 7' A2} (U)] = 0
as X—>U, XeDyg(U), 1 <B<a.

(b) Suppose there is a Hermitian operator A € £(H, H) satisfying
(2.11) AY2[Re (My o F)(X)1AY? = Re My (X)

for all X eB,. Then assertion (2.8)-(2.10) hold as X — U, X e D,(U), for all a,
1<a.
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Remark 2.1. Equality (2.8) may be represented in the form lim (I — U*X)™*-
A"y —W*F(X)1=2"*AY2(Iy+ W* W) when limF(X)=W as X—U, XeD,(U).
Moreover, since D([My (X)17')(P)= —2(Ig+ U*X)"' U*P(Izy+ U*X)™! and
D(IMy o F)X)1™Y)(P)= —2[Iy+ W*FX)1" ' W*DF(X)(P)[Iy+ W*F(X)1™}, equality
(2.10) may be represented in the form lim W*DF(X)(U) =4 Iy + W*W)-
Al + W* W) when lim F(X) =W as X—>U, XeDy(U), 1<f<a.

Let Ky = {x e K: ||x|| < 1} and, for y € 8Ky, let T,: K, — K, denote the Moblus
biholomorphic map of the form T, (x)=[E,+( —||y||2)1/2 (Ig—E)] (x=»)(1— e,y 7!
where E, denotes the linear projection of H onto the subspace {wy: we C}.

For yedK,;, we define a holomorphic map M,: Kg—C=£(C,C) by
the formula M, (x) = (1 + (x,y)) (1 = (x,y)) 7", xeKO Let us observe that
Re M, (x) = (1 = |{x,y)|?) |1 = {x,5)| 2, x € K,. Obviously, M, (x) e I for x € Ky,

where IT = {x € C: Re x > 0}.
‘ For « > 1 and y € 9K,, we let D,(y) = {x e K: |1 —{x,y)| <a(1 —|x|?)/2}.

If H = C and the ] *-algebra B is of the form 6 = K = £(C, K), then Theorems 2.1
and 2.2 immediately yield the following two results.

Tueorem 2.3. Let K be a complex Hilbert space. If F: Ky — II is a holomorphic map
such that F(z) = 1 for some z € Ky, then |F(x)| <1+ ||T, ()| 101 = || Tz ()17 for

xeK,.

Tureorem 2.4, Let K, be the open unit ball in a complex Hilbert space K, let F: Ky —
— Ky be a holomorphic map in Ky and let u, w e K, .

(a) Suppose there is a number L satisfying LIRe (My, o F)(x)] < Re M, (x) for all
xeKy. If D,(u) stands for an angular set such that, for any € > 0, there exists a point
zeD,(u) for wbzcb the inequality LIRe (My o F)(z)] — Re M, (z) < ¢ holds, then

(2.12) o lim |[[M, )My s F)®)]™ = L| =0
and

213) . lm |[Re M, (®)][Re (My oF)(x)]' = L| =0
as x —>u, x € D,(u).. Moreover,

214 . lim [D{I(My - F)x)17' = [M,(x)]"'L}&)| =0

as x—u, xe€Dg(u), 1 <f<a.

(b) Suppose there is a number L satisfying L[Re (My oF )(x)] = Re'M,, (x) for all
x € Ky. Then assertions (2.12)-(2.14) hold as x > u, x eD u) for all o, 1 <a.

Remark 2.2. Equalities(2.12) and  (2.14) may be represented in the forms
lim[1 - (F(x) w)l(1 —(x,u)) "' =L when limF(x) =w as x >u, xeD,(u), and
lim (DF(x)(«), w) = L when lim F(x) =w as x >u, x € Dy(u), 1 << a, respect-
ively.

LetA= {xe C: |x| <1} and, fory € 34, let T,: A— 4 denote the Mébius biholo-
morphic map of the form T, (x) = (x —y)(1 —yx)~".
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For ye€dd, we define a holomorphic map M,:4—C by the formula
M,(x) = (1+x)(1—yx)"", xed. Let us observe that Re M, (x) = (1 — |yx|?)
1 =9yx| 72> 0, x e

For « > 1 and yeaA, we let

(2.15) ={xeC: [1—-yx| <a(l-—|x|?)/2}.

To continue, we require the analogue of Theorem 2.1 for operator- valued analytlc
maps. It takes the following form:

Tueorem 2.5. If F: A— D is an operator-valued analytic map in A such that F(z) = Iy
for some z € A, then |F(x)|| < [1+4 |T,(x)| 11— |T,(x)|17" for x € A.

Theorem 2.2 remains valid for the operator-valued analytic maps announced
before. : ”

Taeorem 2,6. Let B ¢ &(H, K) be a [ *-algebra, let F: A— B be an operator-valuéd
analytic map in A and let uw e 34, W e 3%5,.

a) Suppose  there is a  Hermitian operator Ae £(H,H) satisfying

AY2[Re (My o F)(x)]AY? > [Re M, (x)1Iy for all x € A. If D, (u) stands for an angular set

sucb that, for any € >0, there exists a point z € D,(u) for which the mequalzty
|AY2[Re (My, oF)(z)]Al/2 [Re M, (2)1Iy || < € holds, then

(2.16) lim [|[M, ()1I[(My o F)(x)1"! = Al|= 0
and ,

(2.17) | lim ||[Re M, (x)1[Re (My o F)(x)1"' — 4| = 0
as x > u, x € D,(u). Moreover,

(2.18) lim |[D{[(My o F)(x)1™! = [M, (x)17'A} ()| =

as x—>U, XeDg(u), 1 <B<a.
(6) Suppose there is a Hermitian operator A € L(H, H) satisfying
(2.19) A [Re (My oF)(x)]A"? = [Re M, (x)1 Iy

for all xeA. Then assertions (2.16)-(2.18) hold as x —>u, xe€D,(u), for all «,
1<a.

Remark 2.3. Equalities (2.16) and (2.18) may be represented in the
forms lim[Iy — W*F(x)I(1 —ax) ' =2"1A(Ig + W*W) when lim F(x) =W as
x—>u, xeD,(u), and lim W*DF(x)(u) =4 '(Iy + W* W) Ay + W* W) when
lim F(x) = W as x > u, x € Dg(u), 1 < < a, respectively.

For a J*-algebra B c£(H,K) containing an isometry U, we define the
J*-algebra By = {XyeB: Xy=xU,xeC} cLH,K) and, in By, the unit ball
(By)o = {XyeBy: Xy =xU, xeA}.

For a > 1, an isometry U e 8 and y € 94, we let D,(U,y) = {Xye By: Xy =
=xU, xeD,(y)} where D,(y) is defined by (2.15).



48 K. WLODARCZYK

Theorem 2.1 also provides tools for proving the following analogue of The-
orem 2.2:

Tueorem 2.7. Let B c L(H,K) be a [*-algebra containing an isometry U, let
F: B,— B, be a holomorphic map in By and let W e 3%,.

(@) Suppose there is a  Hermitian operator Ae £(H,H) satisfying
A"?[Re (My o F)(Xy)1A"? > Re My (Xy) for all Xy=xUce (By)y. If D,(U, 1)
stands for an angular set such that, for any € > 0, there exists a point Zy € D, (U, 1) for
which the inequality ||AY?[Re (My, o F)(Zy)1AY? — Re My (Zy)|| < ¢ bolds, then

(2.20) lim ||[My (Xy)Il(My o F)(X)1 ™' = Al = 0

and

(2.21) lim [[[Re My (Xy)][Re (My o F)(X)1~! — A = 0
as Xy— U, XyeD,(U, 1). Moreover,

(2.22) lim | D{[(My o F)(X)]1™" = [My (X)1 ' A} (U)] =0

as Xy—U, XyeDg(U, 1), 1 <B<a.
(b) Suppose there is a Hermitian operator A € £(H, H) satisfying
AY2[Re (My o F)(Xy)]1AY2 = Re My (Xy)
for all Xy € (By)y. Then assertions (2.20)-(2.22) hold as Xy — U, Xy e D, (U, 1), for all
a, 1 <a.

Remark 2.4. Equalities (2.20) and (2.22) may be represented in the forms
lim[Igy — W*F(Xp)l(1 —%)"'=2"1AIg+ W*W) when limF(Xy)=W as
Xy—U,XyeD,(U, 1),andlim W*DF(Xy)(U) =47 (Iy + W* W) A(Iy + W* W)
when lim F(Xy) = W as Xy — U, XyeDy(U, 1), 1 < < a, respectively.

3. ExampLEsS

Exampie 1. Let B c 2(H, K) be a J*-algebra containing an isometry U and let
F: B, — B, be a holomorphic map of the form F(X) = (X + U)/2. Then F(U) = U
and, for all X e B, ’

Re My oF)(X)=(Ig—X*U)'[2(Ig— X*X)+ (X* = U*)X-U)IUg—-U*X)"!;
Re My(X) =g —X*U) Iy - X*X)Iy - U*X)"";
(Ig—U*X)" 'Ig— U*FX)1 =21y, U*DF(X)(U) =271y .
Consequently, the map F satisfies (2.6)-(2.10) for W = U and for A = 27! I in all an-

gular sets D, (U), a« > 1.

ExampiE 2. Let B ¢ £(H, K) be a J*-algebra containing a unitary operator U and
let F: By— B, be a biholomorphic map in B, of the form (see[20, Section 3])
FX)=[aU+ (2-a)X1[(2+a)Iy—aU*X]"', XeB,, where a €I is arbitrary
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and fixed. Then F(U) = U, F(%B,) # B, and, for X € B,, we have
Re (My o F)(X) = (Iy — X*U)~ 1[1H X*X+Rea)X*—U*)(X-U)IIg—U*X)™"
Re My(X) = Iy — X*U) Iy - X*X)(Iy - U*X)™!

Iy —=U*X)" "Iy — U*FX)1=2[(2+a)ly—aU*X]};
U*DF(X)(U) =4U*[(2 +a)Ix —aXU*]17'UL2 + a) Iy —aU*X]7".
Consequently, the map F satisfies (2.6)-(2.10) for W = U and for A = Iy in all angular

sets D, (U), a« > 1.

Exampie 3. Let B c £(H,K) be a J*-algebra containing an isometry V and let
0 < |a| < 1 be arbitrary and fixed. Let F = T,y,. Then F is a biholomorphic map of B,
onto By, has two fixed points U; = a|a| !V and U, = —a|a| "'V and is of the form
(see [20, Theorem 2.1 (c)])
FOX) = (I — |aPVVE) 2 (X = aV)(Iy — aV*X) 1 (1 = |a])2,  Xe%B,.
For X e %B, and for 7 =1, 2, we have
Re My, (X) = (I — X* U) ™ (I = X* VV*X)(Iy — UX) !
Further, since (see[23, formula (7), p. 328])
Vfr IK Ialzvv-;. 1/2_____(IH_ la|2V*V)_1/2V*,
we obtain F(X)*V = (Iy—aX*V) 1 (X*V —aly), XeB,. Consequently, if we
denote A; = (14 |a|)(1— |a]|) "Iy and A, = (1 — |a]|)(1 + |a|) "Iy, then, for
XeB,, we get
A;[Re (My, o F)(X)] = Re My, (X) for W;=U,, i=1,2;

(Ig— UX) 'y — UFEX)1 = (1 + |a|)Uyg —aV*X)"?;
(Ig = U3X) "Iy — UsFX)]1 = (1 = |a|)UIg +aV*X)™!
and
UDFX)(U,) = UNIx — |a|>VV* )2 (Ig — aXV*) "\ U, (Iy— aV* X) (1 — |a|?)2.

Hence all the assumptions and assertions of Theorem 2.2 (b) are satisfied.

Remark 3.1. In Examples 1-3 the maps F and their fixed points satisfy the assump-
tions of [21, Lemma 2.1].

4. Proor ofF THEOREM 2.1

Let ®,={X e £H, H): |X| < 1} and let f: D, — p be a Cayley biholomorphic
map of the form f(X) = Iz + X)Ig—X)"!, Xe D,.

We define a map g: By— D, by the formula g(X) = (f "'oFoT; ") (X),
X e B,. Since g(0) = (f 1o F)(Z) = f “'(Iy) = 0, using Schwarz’s lemma, we obtain
g < |IS]| for SeB,. In particular, for §=T;(X), we get |[(f 'F)(X)| <
< Tz (X)|l, X € By, or, equivalently, {(f ' o F)(X)}* {(f "' o F)(X)} < r?I}; where
r=|Tz(X)||. But (f "' o F)(X) = [F(X) — Igl[Iy + F(X)]™!, and thus, F(X)* F(X) —
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—(1+7)(1=r)'FX)* = (14 7)(1 — ) 'F(X) + Iy < 0. Consequently, ||F(X) —
—(1+7(1-r"1L “ < 2rY2(1 —r)™', which yields (2.1).

5. Proor ofF Prorosition 2.1

From (2.2) we have

(5.1) [A2< A, 2/a<2, (58+2/a)<2/B
whenever || is sufficiently small. From (2.3) we get
(5.2) IXIP + (2/8) 11 = Y*X]| < 1.

Thus, using (5.1), (2.4) and (5.2), we obtain

1X+2YP + (2/a) Iy = Y* (X + AV)|| < |XIP + 3|A] + (2/a) [Ty — Y*X| +
+(2/a) [A] < |XIP+5(2] + (2/a) Iy - Y*X|| < |XIP + (2/8) |y - Y*X|| < 1.
This yields (2.5).

6. Proor or THEOREM 2.2

(@) Let € > 0 be arbitrary and fixed. By (2.7), there exists Z € D, (U) such that
A2 [Re (My o F)(Z)]AY2 — Re My (Z)|| < ¢. We define maps E and G, holomorphic
in By, by the formulae E(X) = AY2[(My oF)(X)]AY* — My (X) and
(6.1) G(X) = [Re E(Z)]" "2 [E(X) — i - Im E(Z)][Re E(2)]7'?,

respectively. Let us observe that, by (2.6), Re E(X) >0 and Re G(X) >0 for all X € B,
G(Z) = Iy and, since (see[24, formula (18), p.247]) (1 —||T,(X)||*)~!'=D(Z, X)
where D(Z, X) = ||A7 Y (Iy — Z*X) Ax ' (Iy — X* Z) A7 2|, applying Theorem 2.1 to
the map G, we get |[G(X)|| < [1+ (1 - D(Z, X)")*?I[1 - (1 - D(Z,X) )] =
=D(Z, X)[1+ ||T;(X)||1? < 4D(Z, X) for X € B,. Now, from (6.1) we obtain

[EG)IMy CO17H = |AY2 LMy « F)CO1AY? [My (X)1 7! = Iy|| <
< || My (X)]™! || I| [Re E(Z)]1"*G(X)[Re E(Z)]"? + i+ Im E(Z)|| <
< [[IMy COIMI{I Re E2)|| - GO + | Im E(Z)]|} .
Since ||[My(X)17Y| < Iy = U*X||| Iz + U*X17!| and
D(Z,X) < || Iy — X*ZIPI(L = | x|y = |z,
it follows that
A2 [(My o F)(X)]AY? My (X)17! = Iy|| € 2ea- (1 = | Z|P) M| Uy + U= X1
I = X* Z|P + (2/2)(1 = [|X|P) [T + U* X1 ||| Tm E(2)] .

Moreover, since the right-hand side of the above inequality tends to
ea(1—|Z|P)~* |Ig — U* Z|P? < ex? and, since >0 can be arbitrarily small, this
proves that lim [[4 ™2 [My (X)1A ™2 [(My o F)(X)]1™* = I4||=0 as X—U, Xe D, (U),
ie. (2.8) holds.
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Now, let us observe that

I[Re ECX)IRe My (X)1™|| = |42 [Re (Myy o F)(X)] A2 [Re My (X)]~" — L]l <

< |ECO||IIRe My CO17H | < [IECOIMy (X017 || My (X) ||| [Re My (X171}
But

1My GO < |11z + U* X[ (1 = XD~
and
IlRe My COT7| < [I1 = U XIP (1 = |XIP)~ .

Thus |4 "2 [Re (My o F)(X)] A2 [Re My (X)]' — Iy || < o? | ECOIMy (X)1 || Since,
by (2.8), the right-hand side of the above inequality tends to zero, this proves that
lim |4 ~Y2[Re My (X)]A " Y?[Re (My o F)(X)1™! — Iy||=0 as X— U, XeD,(U),
ie. (2.9) holds.

Now, we prove (2.10). By Proposition 2.1 and the Cauchy integral formula ([15,
Proposition 2, p. 21]), we have

(62) D{A My -F)(X)1™' = [My(X)]'AY?}(U) = =——

My (X +20)]7?
AZ

{IMy (X + AU)TA "2 [(My o F)(X + AU)1"! — A2} dx
[Al =7
where A =r-exp (it), r = r(X) = 8| Iy — U*X||, € [0; 27]. But

[[My (X + 20017 [A] 7 < g = U X[ + [2] 1Ty + U* (X + 20017 [A] 71 =

=@ '+ 1)Uy +U*X+20)17Y.

Since the right-hand side of the above inequality tends to 271 (87! + 1), from (6.2),
using (2.8) and Proposition 2.1, we get (2.10).

(b) If (2.11) holds for all X € By, let ¢ > 0 be arbitrary and fixed and let ¢ be
such that 0 < ¢ < ¢. Then AY?[Re (My o F)(X)]AY? + 8l > Re My (X) for all X e
€ B, . Moreover, obviously, then there exists some Z € D, (U) for which the inequality
[AY2[Re (My o F)(Z)]AY — Re My (Z) + ¢Iy||=6< e holds. Now, we define
maps E;,; and G;, holomorphic in B,, by the formulae E,(X) = E(X) + Iy,
E(X) =AY [(My oF)(X)]AY? — My (X) and G,(X) = [Re E;(Z)]"?[E;(X) — -
Im E;(Z)1[Re E;(Z)]" 2, respectively. Let us observe that Re E,(X) >0 and
Re G;(X) > 0 for all X e B,, G;(Z) = Iy and, using analogous considerations as in
part (), we have, respectively,

|ECOIMy (X)1~ 1|1—MA‘/Z[(MWoF)(X)]AW[MU(XH P—Iyll <
< 2ea(1 = ||ZIP) ! Uy + U* XTIy — X* Z|? +
+(a/2)(1 = [|X|) |y + U* X1 [ {|| Im E(Z)]| + &} .

This implies (2.8). Moreover, using analogous argumentation as in part (¢), we prove

that also (2.9) and (2.10) hold as X —- U, Xe D, (U), for all a, 1 <a.
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7. Proor or THEOREM 2.6

(@) Let € > 0 be arbitrary and fixed. By our assumptions, there exists z € D, ()

such that [A"?[Re (My oF)(z)]A" — [Re M, ()] ]| < e.

We define operator-valued maps E and G, analytic in 4, by the formulae
E(x) = A" [(My o F)(x)1AY? — [M, (x)]1Iy and
(7.1) G(x) = [Re E(2)]1""?[E(x) — i - Im E(2)] [Re E(2)]7"2,
respectively. Let us observe that Re E(x) > 0 and Re G(x) > O for allx e 4, G(z) = Iy
and, since [1— |(x —2)(1—2zx)"'|?1"'=d(z,x) where d(z,x)=|1—2x|?"
‘[(1 = |z|®)(1 = |x|?)]"" applying Theorem 2.5 to the map G, we get
(7.2) (G| s d(z, %)« [1+ |(x —2)(1 —2¢) 71| 1? < 4d(z, x)
for x € 4. Now, from (7.1), we obtain
IEG)IM, ()17 | = |4 My o F)(x)] A" [M,, ()] ™" = I || <

< [IM, )17 [{[ Re EQ)|| - [|Gx)]| + [ Im E(2)][} .
Consequently, by (7.2),
A2 [(My o F)(x)]AY [M, (x)]7' — Iy| <

S 2ea |1 — 2|21 +ax| (1= 2|17 + («/2)(1 = |%]?) |1 + zx| ™' || Im E(2)]|.
Since the right-hand side of the above inequality tends to ex(1 — |z]|?)7'|1 —
—zu|?<ea® and, since €>0 can be arbitrarily small, this proves that
lim || (M, (x)][(My o F)(x)]1 ' — A|| =0 as x > u, xe D,(x), ie. (2.16) holds.

Now, let us observe that
[[Re E(x)IRe M, (x)]~1|| = A2 [Re (My o F)(x)]AY2 [Re M, (x)]"! — Iy <

< E@) |Re M, (6)17!| < [|EG)IM, ()17 M, ()| |[Re M, ()17 .
But
M, (x)| < |1+ ax|(1—|x])!
and
[[Re M, (x)171] < |1 —ax|?(1— |x|*)7t.
Thus ||AY2[Re (My oF)(x)]AY?[Re M, (x)]7* — Iyl < «?||E(x)[M, (x)17||. Since
the right-hand side of the above inequality tends to zero, this proves that

lim ||[Re M, (x)][Re (My oF)(x)]™' — A|| =0 as x —u, x € D, (u), i.e. (2.17) holds.
Using (2.19), we prove equality (2.18) analogously as equality (2.10).

() We use analogous considerations as in the proof of Theorem 2.2 (b).
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