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Meccanica dei solidi. — The role of deviatone and volumetrie non-associativities on 

strain localization. Nota di AHMED BENALLAL e CLAUDIA COMI, presentata (*) dal Cor-

risp. G. Maier. 

ABSTRACT. — A homogeneous solid subject to quasi-static loading in the small strain range is conside­

red. The material model assumed is rate-independent, non-associative and incrementally bilinear. The 

strain localization conditions are analytically solved using a geometric method. The expressions of the criti­

cal hardening moduli, their domains of validity and the form of the strain rate discontinuity are obtained. 

Finally these results, and in particular the role of hydrostatic and deviatoric non-normality, are discussed 

with reference to an elastic-plastic model for rock-like materials. 

KEY WORDS: Localization; Strain discontinuity; Non-associative plasticity. 

RIASSUNTO. — Il ruolo della non associatività deviatorica e volumetrica nella localizzazione delle deforma­

zioni. Si considera un solido omogeneo soggetto ad azioni variabili staticamente, in regime di piccole defor­

mazioni; si assume che il comportamento del materiale sia descritto da una legge incrementalmente bilinea-

re, genericamente non associata. Le condizioni di localizzazione delle deformazioni vengono risolte analiti­

camente facendo uso di un metodo geometrico. Si ottengono le espressioni dei moduli di incrudimento cri­

tici, i loro domini di validità e la forma della discontinuità delle velocità di deformazione. Tali risultati ed in 

particolare il ruolo della non associatività sia volumetrica che deviatorica sono poi discussi con riferimento 

ad un modello elastoplastico per materiali lapidei. 

NOTATION: Throughout the paper tensor notation is used. The symbol ® denotes 

the tensor product, the symbol : denotes the doubly contracted product and the sym­

bol • denotes the scalar product. 

1. INTRODUCTION 

Localization phenomena observed in ductile materials as well as in cohesive-brittle 

materials can be interpreted as an instability manifestation in the inelastic behaviour. 

The condition of strain localization which corresponds to the loss of ellipticity of the 

governing equations has been formulated by Rudnicki and Rice [1], Rice and Rudnic-

ki[2] , Borre and Maier [3]. 

Several studies on this subject have shown the key role of the non-associativity of 

the material model on localization [1, 4]. All these results concern elasto-plastic models 

in which the direction of plastic flow differs from the normal direction to the yield sur­

face by a vector parallel to the hydrostatic axis (volumetric non-associativity). 

In [5] the localization analysis is performed for a Mohr material model which is non-

associative both on the volumetric and deviatoric parts, but with the two non-associa­

tivities governed by the same parameter. 

In this Note localization phenomena are investigated as for the role of a complete 

(*) Nella seduta dell'8 maggio 1993. 
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non-associativity of the model (volumetric non-associativity and deviatoric non-associa­
tivity). To this purpose the localization conditions for rate-independent materials obey­
ing the constitutive equations (1) are solved. The solution method leads to closed-form 
expressions for the critical hardening modulus and the normal to the localization plane 
and rests on a geometric interpretation of the localization conditions in the Mohr plane 
associated to an arbitrary tensor cy coaxial to the second-order coaxial tensors a and P 
which show up in equations (1). The result obtained herein extend those of Rudnicki 
and Rice [1], generalize those of Perrin and Leblond [4] and refine those of Bigoni and 
Hueckel [6]. The geometric approach to localization analysis in a simpler case was first 
proposed in [7] and extensively studied in [8] in a quite different form. 

In sect. 4 the theoretical results established in sect. 3 are applied to non-associative 
models for concrete-like materials. When the particular case of uniaxial compression is 
considered, it is observed that, while volumetric non-associativity is essentially destabi­
lizing, deviatoric non-associativity can have both stabilizing or destabilizing effects on 
localization. 

2. FORMULATION 

The general class of rate constitutive laws here considered can be expressed in the 
form: 

(1) &=L:è, 
E if/< 0 or/=0 and/< 0, 

H = E ~^- if /=0 and/=0, 
H 

where G is the stress tensor, s the strain tensor, E is the isotropic elastic tensor (with 
Lamé constants A and /x), L is the tangent tensor,/is the yield function and H is a scalar 
such that (H — a: E~l : fi) is the hardening modulus h. In eq. (1) a and p are second 
order tensors which can be decomposed in their deviatoric and hydrostatic parts: a = 
= a + pi (p = tr (a)/3) and p = b + q\ (q = tr (j8)/3), 1 denoting the second order 
identity tensor, a and P are assumed to be coaxial, but otherwise arbitrary in order to 
represent generically non-associative behaviours (p 5* q corresponding to hydrostatic 
non-normality and a ^ b to deviatoric non-normality). 

Let us consider a homogeneous unbounded body subject to quasi-static loading in 
the small strain range so that the stress (and strain) field is initially homogeneous. The 
necessary and sufficient conditions under which non-uniqueness of the rate problem in 
the form of strain localization into a planar band of normal n can occur are expressed in 
the form (see [1-3]): 

(2) de t («-H-«) ^ 0 , a-n*0, p-n^O 

where n*H*n is the acoustic tensor. The equality sign in (2) corresponds to continuous 
localization i.e. to «inelastic yielding» (loading) on both sides of the discontinuity sur­
face, while the strict inequality corresponds to discontinuous localization, i.e. to loading 
on one side of the discontinuity surface and elastic unloading on the other. 
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The strain rate discontinuity satisfies the Maxwell compatibility conditions: 

(3) lè} = (g®n + n®g)/2 

where [ ] indicates the discontinuity or «jump» and g is the vector which defines the 
jump in the velocity gradient. 

3. LOCALIZATION ANALYSIS 

Using eq. (1), the acoustic tensor is expressed in the form: 

(4) n-H-n=[xl + lx+[x- -—\n®n- — {n-a®b-n+pn®b-n+qn-a®n) 

and the localization condition (2) becomes: 

(5) det{n'H*n) = (JL\ - (À + 2^)-— {n-a){b-n) + (À + (j.)-—{n*a-n)(n'b'n) -
[ H H 

— {n*a-n) + —(n-b'ti) 
H H ( * • * - £ ) 

+ [JL À + 2[X ^ 0 . 

The vector g is the right eigenvector of the acoustic tensor associated to the zero eigen­
value and can be expressed in the form: 

/•\ ^ ^ + M / \ 
(6) g = a-n + pn - (n-a-n)n. 

A + 2[à A + 2(j. 

Taking into account eq. (3), the normal and tangential components of the strain discon­
tinuity are: 
(7) I * L = n-lèl-n =g-n , \s\nt= [ ( [c]-»)([c]-«) - [^L2]1/2 . 

Localization takes place in the form of shear band, when g is orthogonal to n, namely, 
according to eq. (6), when: 

(8) n*a'n = —p . 

A pure split mode occurs when \è\nt vanishes. This happens if g is parallel to n, i.e. 
if: 

(9) (a*n)(a'n) - (n*a*n)2 = 0 . 

Let us introduce a second order tensor c coaxial to a and b and such that tr{c) = 0. De­
note by c1, c2 and c3 its eigenvalues, assumed to be distinct, and define the square mag­
nitude T and the normal component U of the vector en as: 

(10) U = n*cn, T = (cn)(cn). 

F r o m n o w o n w e d e n o t e by i, j , k a tr iplet of dist inct n u m b e r be longing t o t h e set 

(1,2,3). In the common principal frame of a> b and c the normal components may be 
defined by using the classical Mohr formulas: 

T + C.S + C:Cu 

(11) nf=1 ' ' \ , O^n^l. 
(Cj - CjiiC; ~ Ck) 
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By substituting eq. (11) into the localization condition (5) one obtains: 

(12) H//(A + 2[x) ^ (X + 2fx) • 

T + c1U + c2c3 T + c2H + c1c3 T + c3U + CxC2 
a\b\~ ~/ 7 ~^~ a2^2 1 r, 7 + a3b3 

- (A+fx) 

(ci - c2){cl - c3) 

T + C\S + c2c3 

(c2 - ci)(c2 - c3) 

T + c22 + c1c3 _l_ a _|_ ^ 

(c3 - cl){c3 - c2) 

T + c3U + ^^2 

+ 

(ci - c2){cl - c3)
 2 (c2 - cx){c2 - c3)

 3 (c3 - Ci)(c3 - c2) 

T + CiH + c2c3 T + c2H + cxc3 T + c3U + cxc2 

hi 7 + h2 - 7 + b3 (cx - c2){cl - c3) (c2 - Ci){c2 ~ c3) (c3 - cl){c3 - c2) + 

+ (x\q 
T + ciU + c2c3 T + c2H + c1c3 T + c3Z + cxc2 

(c1 - c2){ci - c3)
 2 (c2 - cl){c2 - c3)

 3 (c3 - c1)(c3 - c2) 

+p 
T + CiU + c2c3 T + c2U + c1c3 T + c3E + c1c2 

hx — — + h2 + b3 
(ex ~ c2)(ci - c3) (c2 - Ci){c2 - c3) (c3 - Ci){c3 - c2) 

+ 

+ (Jipq . 

With the equality sign inequality (12) represents, in the (U, T) plane, a conical 
curve ^changing in position and/or «size» with parameter H. By computing its discrim­
inant one can easily realize that this curve is either a hyperbola or a parabola. In the 
same plane the set of a points which satisfy inequalities (lib) is represented by a trian­
gle 3 of vertices A : (c3, c2), B: (c2i c2) and C: (ci, c2) («admissible region», see fig. 1). 
This admissible region in the (U, T) plane can be conceived as obtained from the tradi­
tional Mohr's diagram in the (S, S = \T - H2) plane through the mapping: 
T = S2+22. 

T i 

C3 C2 

yj 
/ / ^ 3 N 

Cl X 

Fig. 1. - Geometrical interpretation of the localization condition in the (U, T), plane. The admissible do­
main is the triangular area 3 and the domain representing the localization condition is bounded by the 

hyperbola 5\ 
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If at the beginning of the inelastic process there is a point (E, T) belonging to the 

triangle 3 and to the region bounded by the hyperbola (12), localization occurs immedi­

ately. If such points do not exist, continuous localization will occur first either when the 

conical curve passes through a vertex or when it becomes tangent to one of the sides of 

the triangle, say Lzy defined by the equation: T + ckE + qcj = 0. 

In the case where localization occurs at a vertex V^ (k = 1, 2, 3), we have n^ — 1, 

ni = tij = 0,E = cj^ and T = c£ and the critical value of H at localization is easily derived 

from (12): 

(13) Hk = (ak + p)(bk + q)/(X + 2fx) = ockPk/U + 2fx). 

In eq. (13) and in what follows the index of H indicates the axis coinciding with the nor­

mal to the corresponding localization plane; two indices of H indicate the plane con­

taining the corresponding normal. * 

Consider now the case when localization occurs for n different from a principal di­

rection. The condition that the hyperbola & be tangent to the side Lz> is obtained by re­

quiring that the normal to the conic curve be orthogonal to L^ : (d&jdT) c^ = d&/dU. 

This condition reads: 

(14) 2(A + [j.)E{at - aj){bt- bj) = (A + 2(x){q - Cj)^^- - ajbj) + (A + (x) • 

•[(*, - aj){cjbi - qbj) + (bi - b^CjUi - qa;)] + (x(q - Cj)[q{a^ - a/j + p(b4 - bj)]. 

If Ay = (aï - aj){bi - bj) ^ 0, the corresponding value of H is obtained by substitut­

ing (14) and the equation of the segment Lzy into (12): 

1 
(15) Ht1 = lJ 16fi(X + ix)(ai - aj)(bi - bj) 

fx[(2p - ak){bi - bj) + (2q - bk)(a{ - a^f + 

+ 4(A + !*)[(*; - aj)(b{ - bj)]1 - ^ A + j * [(2p - ak)(bt - bj) - (2q - bk)(a; - a0 
A ~T 2[J. 

This expression is valid if E given by eq. ( 14) is between c{ and Cj, i.e. if the following 

inequalities are fulfilled: 

(16) B^O and BJt^0, BtJ = ^ ~ [(2p -a^b^bj) + (2q -bk){a~ a^ - 1 

v being the Poisson ratio. 

From (IL*) and (14) the normal to the localization plane turns out to have the fol­

lowing components: n^ = 0 and 

o 2 - q 
(17) nf= J- = c- — c 

i j 

{X + 2(j.)(a;bi - ajbj) - (X + [/.Ma; - aj) bj + (b; - bj)aj] + (j.[q(a, - aj) + p(b; - bj)] 

2(A + ii)(ai -aj)(bj - bj) 

(18) nf = - S 

Ci ~ Cj 

(A + 2(i)(aibi - ajbj) - (A + [x)[(a, - aj) bi + (bj - bj) * J + [x[q{a^ - aj) +p(b; - bj)] 

2(X + n)(ai-aJ)(bi-bj) 
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If Uk and bk are double eigenvalues, i.e. if a and b are axisymmetric with the same axis of 
symmetry e{ or (ej), only the n component corresponding to the simple eigenvalue, rij 
(or Hj ), is uniquely defined, while the other two are indeterminate. Therefore the nor­
mal to the localization plane describes a cone of axis et (or ej). 

Let us now consider the case A{j
 = (az- — ay)(bt- — bj) = 0. When the right hand side 

of (14) is non-zero, the critical hardening modulus can never be Hjj. If the right hand 
side of (14) is zero, i.e. if ûJ = aj and bj = bj-, eq. (14) is fulfilled for every U belonging to 
Ljj including the vertices Vj and Vj. The critical H is Hj = Hj, the expression of which is 
given by eq. (13). For this value of H the hyperbola degenerates in two straight lines, 
one of these lines coinciding with L^. In this case the set of normals to the localization 
plane is the plane 77zy orthogonal to the direction e^. 

Note that the results obtained are, as expected, independent of the chosen 
tensor c. 

In order to find the critical value of H, one should compute the maximum of the Hj 
and of the admissible Hjj {ij= 1, 2, 3 ), keeping in mind that Hjj is valid only if condi­
tions (16) are complied with. From (13) and (15) one can compute the following differ­
ences (for more details see [8]): 

4fx(A + 2i«) i3' ij j 4/x(A+ 2fx) ji ' 
(19) Hv-H^-Zr—f-Ej, Hij-Hj= / ' Bj; 

(20a) H{j - Hik = 4*x
++2) (AìJB§ - AikBfk), 

(20b) Hij~Hk = 4 ^ " ^ } \AM + 4Aik (Bik + 1 ) ] , 

(2p - ak)(b, - bj) + (2g - bk)(ai - aj) 
( 2 1 ) H>~HJ- 2(A + 2pO • 

As a consequence of eqs. (19)-(21), the following statements are easily seen to hold 
for ( / , / ,£) distinct and belonging to the set (1,2,3): 

{a) the critical value Hc is Hjj if the following inequalities are simultaneously 
satisfied: 

(22) J 
[ AijBfj > AikBfk , AjjBfj ^ AjkBfk , A^Bjj + AAlk {Btk + 1 ) ^ 0 ; 

(b) the critical value Hc is H{ if one of the following inequalities sets is 
fulfilled: 

(23) A y ^ O , Ajk^0y Bjj^O, Blk^0 
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or 

(24) Aij&O, Alk^0y Btj&O, Afk(Bik+1)&0 

or 

(25) A y ^ O , A ^ O , B , y ^ - 1 , B , * ^ - l , 4 ^ - + 44* (B* + 1) ^ 0 . 

When Ars = 0, £„ is not defined and the inequalities involving it should be dropped 
from (22)-(25). 

The material model, the values of its parameters and the loading histories will deter­
mine which one of the above inequality sets can be fulfilled; as a consequence one of 
eqs. (13) and (15) with ij e (1,2,3) will yield the critical H. It is worth stressing that a 
priori each one of inequality sets (22)-(25) must be considered as a possible condition 
to satisfy. 

4 . A P P L I C A T I O N T O N O N - A S S O C I A T I V E M O D E L S F O R C O N C R E T E - L I K E M A T E R I A L S 

The above results are applied to a general set of constitutive relations used to de­
scribe the plastic fracturing behaviour of concrete-like materials. The Hsieh-Ting-
Chen model, the Ottosen and the William-Wranke models are included. For details on 
these models, see e.g. chapter IV in Chen-Han's book [9]. 

The tangent modulus has the general form: 

( * S + ps + yâl) ® ( ^-S + p's + y vl) 
(26) H = E - - U j U ' 

h + -^aoc' + | / T + (#*' + a?' )(3N3 - N) â 2 , , S2 

2 ^ + r r Y 

where K is the bulk modulus, s is the stress deviator, a = y 3/2 s : s is the equivalent 
stress, N is the intermediate eigenvalue of s/cr (Nz denoting the /-th eigenvalue, 
/ = 1,2,3) and S is the gradient of the third invariant J3 = 1/3 ($•$): s with respect to 

dj3 i 
(7, i.e. S = -r— = s's tr(s's) 1. By setting a = a ' = 0 and p = p' the Drucker-

a (7 3 
Prager non-associative model treated in[l] is recovered. 

Since in all real cases ppr > 0, one can divide the numerator and the denominator 
in (26) by pp ' ; by a suitable redefinition of the symbols a, a ' , 7, y ' and Z>, this is equiv­
alent to setting P = p' = 1 in eq. (26), as it will be assumed in what follows. Therefore 
the model considered in this section (eq. (26)) is obtained from (1) by setting: 

(27) 
a = •=• S + s , b = -=- S + s , p — ya, q = y' 

<J <7 

H = h + %;«*' + f +(«' + a)(3N3-N) S2 . , â 2 

By virtue of eqs. {21a, b) a and b turn out to be coaxial; oc — a' measures the deviatoric 
non-associativity and y — y' the volumetric non-associativity. If h is computed from eq. 
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(276"), eqs. (13) and (15) acquire the form: 

(28) 
â 2 1 + v 

V 4(j.2(l-«Nk)(l-oc'Nk) 
2N,-2aaf{Ni-^)Nk 

- — (oc + oc' ) + —— (y + y ' - {ya + y' a)Nk) 
y 1 + v 

+ N i - 4" l i a - a ' + 

+ 
( l - 2 v ) 2 

1 - v 2 2( \zr^)['Nk + i ) ( a " «') " r + y' + (y«' - r'«)N, 

(29) 
V- [x(X + 2fx) 

( N | - | ) a + N* + yVNê - | ) a ' + Nk + r ' 

— a a ' + - + (a ' + a ) ( 3 N 3 - N ) 
- 2 

^ - y y ' ^ = [ i f ( i - a N , ) ( i - a ' N , ) * o ] = 
2|Ur N * 

4 ^ ( 1 ~ocNk)(l -*'Nk 

1 + v 
1 - V 

Nu — OLOL •(«-f) N , - ^ - ( a + a') 

1 - 2 v 
1 + v 

( r + r ' - ( r a ' + r ' a ) N , ) [ ( l - a N , ) ( l - a ' N , ) ] 2 ( | - 3 N , 2 ) + 

: i - 2 v ) 2 

1 - V 

1 + V 

1 - 2 v 
( N | - | ) ( a - a ' ) - y + y ' + ( y a ' - y ' a ) N , 

Equations (28) or [29b) provide the critical hardening modulus as algebraic sums of 
squares. This clearly shows that, as expected, the critical hardening modulus is never 
positive for associative constitutive behaviour. On the other hand, deviatoric and/or 
volumetric non-associatives may result into localization within the hardening 

r e g i m e ' \éc 

The normalized critical hardening modulus —^ is represented in fig. 2 vs. N (note 
a 

that this parameter takes values between 1/3 and — 1/3 only) for the following fixed 
constitutive parameters: a = 0, a ' = 4, y =0.8, y ' =0.2, v =0.2. In this figure, denot­
ing by 1 the axis corresponding to Nx ^ N, by 2 the axis corresponding to N and by 3 
the axis corresponding to N3 ^ N, we represent the six different possible values of the 
hardening modulus given by (28) and (29) (the h/s by dashed lines and the hj/s by solid 
lines) and the critical value at localization (heavy solid line). For this particular choice 
of parameters the model is non-associative both on the deviatoric and on the volumet­
ric part and localization is predicted to occur in the hardening regime (hc > 0) for every 
loading condition. The critical hardening modulus is given by hi3 for N ^ 0.144 and by 
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hx for N ^ 0.144. To obtain this optimal value, account has been taken of relations (22)-
(25). Figure 2 shows also the straight line corresponding to A23 = 0 and the points cor­
responding to By = 0, i.e. the points where h^ = h{ and the two curves are tangent. It is 
worth noting that the admissibility conditions play an important role: in fact the critical 
hardening modulus is not simply the maximum between the h^ and the ht (see fig. 2 for 
N > 0).The value N = 1/3 (N = — 1/3) corresponds to axially symmetric compres­
sion (respectively tension); this symmetry entails that: h13 = h23 and h2 — hi(hi3 = h12), 
as one can note in fig. 2. 

J * 

-0.2 
-0.333 

Fig. 2. - Normalized critical hardening modulus vs. N. 

4.1. Uniaxial compression 

Let us denote by et the axis of compression and by a ^ 0 the compression stress. 
Being the loading condition axially symmetric, the other two principal axis are undeter­
mined in the plane of normal ex and one has: a2 = a3, b2 = b3, A23 = 0, A12 = Ai3, 
B12 = Bl3. Moreover, Nx = - 2 / 3 , N2-N3 = 1/3 and 5 = - o- (note that the Nz are 
not ordered as in fig. 2). Substituting this values into (22)-(25), we can draw the follow­
ing conclusions on the critical hardening modulus hc\ 

(a) hc — h12 = h13 given by eq. (28) with i — \ and/ = 2 or 3 when the following 
conditions are fulfilled: 

(30a) A 2 = ( l - f ) ( l - y ) * 2 > 0 , 

O0b) B12 = 1 - 2 v 

M ) ( - T ) 
yoc + 7 oc 

(7 + 7') + 
27 9 3 

- 1 ^ 0 , 
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(30c) B21=-B12-2=- 1 - 2 v 

M)( 
3 7 7 27 

(è) £c = hi given by eq. (29) with k = 1, when: 

a + q ' , J_ 
9 3 

1 ^ 0 , 

(31) A12 > 0 and J312 ^ 0 , or A12 ^ 0 and 51 2 ^ - 1 , 

(c) hc = h2 — h3 given again by (29) with k = 2 or 3, when: 

(32) A 21 : i412 > 0 and B21 ^ 0 , or A21 ^ 0 and B21 ^ - 1 

Notice that A 2 = 0, £12 = 0, B21 = 0 and B12= - 1 represent in the plane ( 7 - 7 ' , 
a — a') an horizontal line £AU and three hyperbolas <2B12, GBH ^nd CBI2= - 1 ; fig. 3 
shows the branches of interest of these hyperbolas for fixed y + y ' = l , q = 0 (plastic 
potential of Drucker-Prager) and v =0.2. 

The domains of validity of hi, h2 = h3 and hu = hi3 are also shown in fig. 3, using 
eqs. (30)-(32). The potential normal to the localization plane: is the axis of compression 
if hc = hi ; it belongs to the plane 2-3 if hc = h2= h3; it belongs to a cone of axis ex if 
hc = hu = h13. 

By using eqs. (8) and (9) one can conclude that pure split modes of localization cor­
respond to the vertex values hi and h2( = h3), while for hu ( = hi3) mixed localization 
modes (shear modes superposed to split modes) are predicted. The pure shear band 
mode occurs for the constitutive parameters corresponding to the dashed line in fig. 3. 
The two dotted segments correspond to material models for which a 'n = 0 or fi -n = 
= 0. For these particular combinations of material parameters localization is a priori 
excluded. 

In the same figure we also plot the isocurves for the critical hardening modulus hc. 
This allows to visualize the role of non-associativity on localization. In the case of asso­
ciative model or for «slightly» non-associative models (region surrounding the origin in 
the fig. 3), localization occurs in the softening regime. The isocurves are almost sym­
metric with respect to the axis y — 7 ' = 0 and this implies that the presence of volu­
metric non-associativity has basically a destabilizing effect. On the other hand devia­
tone non-associativity has different effects on localization depending on the sign of a — 
— q ' . I fq — q ' < 0 the deviation from normality in the deviatoric plane anticipates local­
ization (hc increases moving from a - a ' = 0 t o a - a ' = - 7 ) . If a — a' > 0 there is 
an interaction between deviatoric and volumetric non-associativity, namely: an increase 
in deviatoric non-associativity anticipates localization for high volumetric non-associa­
tivity, while it postpones localization for low volumetric non-associativity. 

This latter conclusion concerns only the compression case. Further study is needed 
in order to generalize this result. 
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Fig. 3. - Isocurves of the normalized critical hardening modulus and domains of validity of its various 
expressions for uniaxial compression. 

5. CONCLUSIONS 

This Note focused on the influence of non-associativity on localization phenomena, 
namely on the destabilizing effects of the deviation from normality in material models. 
The findings of the present study can be summarized as follows. 

1. At localization the critical hardening modulus is shown to have six different 
expressions in the general case, each of these expressions being valid in a specific range 
of the constitutive parameters for a given loading path. The admissibility conditions for 
each value are important and a simple maximization between the available expressions 
does not lead to the correct critical hardening modulus. 

2. When the second order tensors a and /?, defined as those which appear in the 
tangent tensor (1), have distinct eigenvalues, the normal to the localization plane is al­
ways contained in one of their principal planes. In some circumstances this normal co­
incides with one of the principal directions of a and p. This conclusion holds also when 
a and fi have each a double eigenvalue corresponding to distinct principal planes. 

3. When a and p have a double eigenvalue and this eigenvalue is associated to 
the same principal plane, the normal to the localization plane is either the principal di­
rection associated to the simple eigenvalue, or an arbitrary direction in the principal 
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plane corresponding to the double eigenvalue, or a direction belonging to a cone the 
axis of which is the principal direction corresponding to the simple eigenvalue. 

4. Both the deviatoric and volumetric non-associativities have primarily destabi­
lizing effects: localization may occur in the hardening regime in the presence of devia­
toric and/or volumetric non-associativity, while it can occur only in the softening branch 
for associative models. However, in some particular cases, a combination of the two 
non-associativities may postpone localization. This stabilizing effect never occurs for 
the simpler models considered in[l] . 
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