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Analisi matematica. — Multiplicity of homoclinic orbits for a class of asymptotically
periodic Hamiltonian systems. Nota di PlERo MONTECCHIAR, presentata (*) dal Corrisp.

A. Ambrosetti.

Asstract. — We prove the existence of infinitely many geometrically distinct homoclinic orbits for a
class of asymptotically periodic second order Hamiltonian systems.

Kevy worps: Hamiltonian systems; Homoclinic orbits; Multibump solutions; Minimax argument.

Riassunto. — Molteplicita di orbite omocline per sistemi bamiltoniani asintoticamente periodici. Si dimo-
stra I'esistenza di infinite orbite omocline geometricamente distinte per una classe di sistemi Hamiltoniani
del secondo ordine asintoticamente periodici.

1. INTRODUCTION

In this work we study the problem of existence of homoclinic solutions of
a second order asymptotically periodic Hamiltonian system: find g € C* (R, R”)\{0}
such that:

(HS) G=q—-VV(t,q), q(t)—>0 and G(t) -0 as |t| — o

VV being asymptotic, as t— — o, to a periodic function VV_. Precisely we
assume that V, V_e C!(R X R”, R) satisfy

V1) |VV(,x)|, |VV_(,x)| =olx) asx—0,

V2) |VV(, )|, |VV_(2 )| are locally lipschitz continuous functions

V3) Fu>2/0<pV(t,x) SVV(t,x)x and 0 <puV_(t,x) S VV_(t,x)x Yx =0,
uniformly with respect to # € R, and

V4) AT_>0/V_(t+T_,x)=V_{(¢,x) V(t,x) e R X R",

V5) |VV(t,x) = VV_(¢,x)| >0 as t — — © unif. on the compacts of R™.

This setting is a natural generalization of the case in which V is periodic in
time (see[1] for a study of the asymptotically periodic problem for a class of
semilinear elliptic equations on R”). We note that the periodic problem always
admits at least one non trivial solution, see[3,5,8]. This is not the case for
the asymptotically periodic problem which presents situations in which there are
no solutions different from ¢ = 0, like for example the case in which V(¢,x) = (= +
+ arctan (¢)) - |x|*. This does not happen if we make a discreteness hypothesis on
the set of critical points of the functional associated to the problem at — o : ¢ _ () =

=(1/2)|«|3 , - JV_ (¢,u)dt, ue W"?(R, R"). To be precise, letting ¢ be the
, R
mountain pass level of ¢ _, and noting that ¢ _ is invariant under the Z-action:

(*) Nella seduta del 18 giugno 1993.
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J—u(-—;5T_) we require that
(%) there exists a ¢* > ¢ such that K" [ Z is finite

where K¢ is the set of critical points of ¢ _ with critical value less or equal to ¢*.
In this setting we are able to prove our main theorem:

Tueorem 1.1. If V1)-V5) and («) hold then (HS) admits infinitely many homoclinic
solutions.

Precisely there exists a homoclinic solution u # 0 of the equation § =q — VV_ (¢, q)
Jor which we have that Nr > 0 there exists M = M(r) > 0 and ny = ny(r) € Z such that
Jor each finite sequence {p,,...,pr} CZ that verifies p;—p; 1 >M, j=1,....,k =1
and py <ny, there exists a homoclinic solution x of (HS) such that, if we put py= +
Pev1=— 0, then |x(¢) —u(t —p,T_)| <r Vee((1/2)(p; +p;+1) T-,(1/2)(p, +
+p-0)T-), 7=1,... k.

In particular for £ = 1 we obtain that if p € Z is smaller than a certain value #,, then
near #(+ — pT _) there is a homoclinic solution of (HS). For £ > 1 we obtain homoclinic
solutions of (HS) which go away from zero and return near it, £ times, staying near
translates of «.

We call this type of solution £-bump solution.

The first proof of existence of 2-bump solutions, under the hypothesis (),
was given in[9] for a class of first order Hamiltonian systems, and then in[4] was
proved the existence of &-bump solutions for any £ € N for a class of second order
Hamiltonian systems.

Independence from £ of the distance of the bumps was proved by Eric Séré [10] for
first order convex and periodic Hamiltonian systems and its main consequence is the
existence of a new class of solutions, which seems to be related to the chaotic behavior
of this type of systems. We note that in [10], instead of (), it is assumed only that the
set of critical points of the functional associated to the problem, with critical value less
then or equal to ¢*, is denumerable.

Our result is the analogous of the Séré” one for a second order, asymptotically peri-
odic Hamiltonian system. When V is periodic, there are no restrictions on p;, and The-
orem 1.1 strengthens the result in[4], showing that the distance between any two
bumps of a £-bump solution is independent of 4. In particular, from Theorem 1.1, as
in[10], we deduce:

CoroLLary 1.2. Assume V1)-V5) and (*). Then for the same u of Theorem 1.1 we
have that NIr > 0 there exists M = M(r) >0, ny=ny(r) € Z such that if {p;};cnCZ
satisfies py < o, p; — pj+1 = M, Xj € N then there exists x € C*(R, R”) such that (t) =
=x(¢) — VV(¢,x(¢)), ¥Vt € R and such that sze put po= + o, then lje N |x(¢) —
—u(t—p,T_)| <rVee((1/2)(p; +pj+1) T-,(1/2)(p; +p,»1)T_).

Obviously an analogous of Theorem 1.1 holds if the potential V' is asymptotic at

+ o in the sense of V5), to a certain periodic potential V', which satisfies also V1)-V4)
and ().
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2. PRELIMINARIES

We set X = W"2(R,R”), || =l 2, and, for e X,
o(u) = (1/2)||u|P - jvu,u)dz, o (u)=(1/2)|ul? - jv- (¢, u)dt .

K K
We have that ¢, ¢~ € C'(X,R) and if K_ = {u e X\ {0}/9" () =0}, K={ue
e X\{0}/¢'(u) =0} thenA = KinUfKHuH > 0. We have that ¢ and ¢ _ satisfy the geo-

metrical hypotheses of the Mountain Pass theorem. The Palais Smale condition,
see [2], does not hold for the invariance of ¢ _ under the action of the non compact
group of translations by integer multiples of T_ . In any case, by V1) and the continuity
of the embedding X — L * (R, R™), we get that there exists ¢, > 0 such that if {#,}, .~
is a Palais Smale sequence of ¢; with ||, | < 2p,, then #,— 0 as # — . From this
simple fact and using the concentration-compactness lemma [6], if we put for A mea-

surable cR, ||u, |} = J li, |2 + |u,|?dt, we get:

A
Prorosrrion 2.1. Assume V1)-V5) and let {u,},.nCX such that ¢(u,)—b,
o' (4,) = 0,as n — © and finally AR > 0 such that ||u,|, > x < eo. Then there exist a sub-
sequence of {u,}nen (still denoted with {u,},.n), a critical point u of ¢, an integer
ke NU {0}, k sequences {t.},nCZ and k non zero critical points of ¢ _, vie K_,
i=1,...,k such that

1) tls -0 and ) -t ' -, =2k,

2) w,—u weakly in X,

k

U, —u — Ev,-(--t,ﬁT_)”—>0 as n— o
i=1

3)

£
4) b =ou)+ ;lso_ (v;).

In particular if a Palais Smale sequence {#,}, . x at a level b of ¢ does not converge and
satisfies for an R > 0, ||, | > z < ¢, then for any R_ < 0, we have that, up to a subse-
quence, ||u, |, <x_ > (1/2)A for # sufficiently large.

Lemma 2.2. Assume V1)-V5) and let r' = (1/2) min{A, po}. Then any Palais Smale
sequence {u,}, . n at a level b of ¢ such that there exists R > O with ||u, ||, sg <7'VneN
admits a converging subsequence.

By the concentration-compactness lemma it is also possible to characterize the
Palais Smale sequences of ¢ _ . This characterization together with the hypothesis (),
allow us to bound from below |¢” ()] in certain regions of X even if ¢ _ does not sat-
isfy the Palais Smale condition. In fact by (*) we get that there exists a o; > 0 which is
smaller than the distance between any two point of K< . If for » > 0 we set N, (K )=
={xeX/ n}(fnx —y||<#} and if »"=min{r’, o, /3} then it is possible to prove
that: yeks
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Lemma 2.3. Assume V1)-V5) and (*). Then N¥ry < r,e (0,#"), u, = p 1 (ry, 1) >0
such that: g € N,,(K)\N,, (K<) and ¢ _(q) <c*=|o" (g)] = p,

Another important consequence of the hypothesis (+) together with the characteri-
zation of the Palais Smale sequence of ¢ _ is that the critical levels of ¢ _ are isolated
points of the set of asymptotic critical level of ¢ _ (we say that b € R is an asymptotic
critical level of ¢ _ if there exists at this level a Palais Smale sequence of ¢ _):

Lemma 2.4. Assume V1)-V5) and (). Then for any critical level (of o )b <c* there
exists Ao = Ao (D) € (0,c™ —b) such that (b — Xy, b + Xy) does not contain asymptotic
critical levels different from b.

From this we get that if be o _ (K<), b <c*, and A1, A5, A3, As€ (0, Ao(d)),
A1 <Ay, A3 < Ay, then there exists u, = p, (A1, As, A3, A4) > 0 such that

25 xegT (b =246 =2)Ub+2y,6+21))=]p" )] = p,
The last property we give here is connected with the asymptotic assumption on V:

Lemma 2.6. Ve >0, VC >0 t/?ere exists ny =ny (e, C) € Z such that: u € B(0, C),
u(t) =0Vt = n0=>”q)' (#) — 9" (u)| < e.

3. SkeTcH OF THE Proor oF THEOREM 1.1.

From now on we will assume for simplicity that T_ =1 and if /: X—R and
a,beR we set f*={xeX/f(x)<a}, f,=(—F)° fE=f2Nf. Also if se R and
xeX we put s*x =x(- —s).

Given neZ,k,Ne N, we say that p=(po,pl,...,pk,p,eﬂ)eP(k,ﬂ,N)
ifpp=+0, ppy1=—0,peZ 1<j<k p—p+ Z2N(N+3/2), 1<j<k,
and finally p; <#n — N(N +1). If peP(k,n,N), then for 7=1,.. ,/e we set

U= ((p; + pi+1)/2, (pi+ p;i—1)/2) and we define the functionals, ¢_ ,;(x) =

= (1/2)|lx|3, - JV t,x)dt, x € X, which are in C'(X,R). Also, if r,>r =0,

ueX and peP(k n,N), we set By (ry, ) = {xeX/r < max lloc = pirally, <7}
Putting K_(c)=K_N{xeX/¢ _(x)=c}, Theorem 1.1 will be proved if we show that

THEOREM 3.1. Assume V1)-V5) and (*). Then there exists u € K_ (c¢) such that ¥r > 0
AN =N(r) >0, n =n(r) € Z such that KN By (r,0) # 0, Vee N, Vp e P(k,n, N).

Proor. We give first two technical lemmas.
From Prop. 2.22 of[4] and Lemma 2.3, we can prove that 3" e (0, r") for
which

Lemma 3.2. 3u € K_(c) for which ¥re (0,7"), Vb, >0,3b_=h_(r)>0,3IR =
=R(r,h,) >0 and g e C([0, 1], X) such that:

1) supp (g(#)) c (=R, R) Ve [0, 11,
2) g(0), g(1) € OB(u, r) and g(t) € Blu,r) Vte [0, 1],



MULTIPLICITY OF HOMOCLINIC ORBITS FOR A CLASS OF ASYMPTOTICALLY ... 269

_(g®) <c+h
3) ,max. ¢ (g#) <c+bh,,

4) g(t)¢Blu,r/2)=>¢ _(g#)) S<c—h_,
5) Vg e C([0, 11, X) with g(0) = g(0), g(1) = g(1) we have max o () =c.

We claim that Theorem 3.1 holds with this #. In fact by Lemmas 2.3, 2.4, 2.6 and by
(2.5), we can prove also that

Lemma 3.3. Vry <7, <r;€(0,7") there exists = 1(ry,r3) >0 and, if we fix
Ay Ag, Az, Ase (0, 20(c)), Ay < Ay, As < Ay, thereexistsnge Z, 1 > 0, such that Ve e
€ (0, ¢,), AN, e N, for which Yk € N and p € P(k, ny, N.) there exists a locally lipschitz
continuous function 9: X —X such that V(x)eBj(2,0) VxeX, V(x)=0 Vxe
€ X\B, (3, 0) and

1) xeB(ry, 1) =¢'(x) V(x) = uy; |lx —pixu

ly € (r, ) =" (%) O(x) = uy,
2) x e B} (r;,r))=¢'(x) V(x) > 0; Hx—p,‘*u”ue(rz,r3)=>§o'_7,<(x)"\‘)(x)>O,
3) v e B (s, 0N (5 12U (o i) =5" (0 W) >0,

4) x e B} (r;, 0) and ,max ||x||f3,24€=><x, V() >01=0,....,k,

where Ey=(pro1 + NIN+1), py— N(N + 1)) and (x, 9(x));, = j x) + x O(x) dr.
Moreover if KN By (ry, 0) = ﬂ, then 3u, > 0 such that E

5) xeB)(r,0)=¢'(x) V(x) Zu,.

If we consider the flow associated to this pseudogradient field, we call it 3(:, x), we
get that, if K N By (r;, 0) = @, then ¢ is always decreasing along the trajectories of ¥
and, if for ani e {1, ...,&}, |n(s,x) = p;*ul, = r, Vs € [£, #,], then also the function
s— ¢ _ ;(n(s,x)) is decreasing on [#,, #;]. Moreover, thanks to (3) of Lemma 3.3, we
have that

(3.4) o<t M, 07 are positively invariant sets ,

that is (¢, o< " 1) cot 1, (e, 9 ) cot 4, Ve 2 0.
Setting & = {x € X/ ,max, ||x||fgl < 4c} by 4) of Lemma 3.3, we get also that

(3.5) 8 is a positively invariant set .

Assume now by contradiction that there exists 7 > 0, such that VN > 0, Vz e Z
there exist e N and peP(k,n,N) for which KN Bj(r, 0)=0. Fixing r,=
= (1/2) min {#", 7}, we can use Lemma 3.2 with», = (1/3)min {2, (c),(1/12) 7}
and r = r, getting that 3»_ € (0,5, ),R > 0,ge C' ([0, 11, X), which satisfy the listed
properties (1)-(5).

Put also ry =70/2, r,=2ry/3, rs=5r0/6, Ay = (4/3)b,, A3 =(5/3)b,, Ay =

(1/2)h_, x3=(1/3)h_ and fix a suitable small ¢. By the contradiction hypothesis
there exist N > max{R,N.}, n <n,, ke N, p e P(k,n, N) c P(k, n, N,), for which
K N By (ry, 0) =0, so by Lemma 3.3, we get a field © which satisfies the properties
(1)-(6) with this £ and p.
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Consider the function G: [0, 1I* =X, G(f Z pi*g(0;).
N E

For any 6 e [0, 11 we have supp (G(6)) c ( ) therefore G(6) € 8. More-

k
ovet, by construction, G(6) € B (r,, 0) N (.[_']1(90_’2,)”/\1) and if for a 6 e [0, 11* we

have G(6) e X\B, (r;, 0) then there exists 7€ {1,...,k} such that G(6)e
e ( o i )c A4

From this, using the pseudogradient flow, if ¢ was chosen sufficiently small, it is pos-
sible to prove that

Lemma 3.6. 6€3[0, 11*=n(z, G(6)) = G(8) V¢ > 0.
Lemma 3.7. 39> 0: Voe [0, 1]* Tj,e {1,... k}/qo_ ,0( (7,G(9)) <c - X4

From Lemma 3.7,if 0, = {0 € [0, 1]*/6, = 0}, 1, = {0 [0, 1]} /6, = 1},i = 1,... &,
and if we put G(0) = n(J, G(6)), 6 [0, 11* we get

~ Lemma 38 Fjpe{l,...k} FaeC([0, 11,00, 1F)/a(0)e0,,a(1) el
Glals)) e (go_,io)‘_l4/2 Yse[O, 1].

10

Defining the cutoff function 8 e C(R, R), such that 8(z) = 0 if ¢ ¢ U, , B(z) = 1 if
te U, \(E, U E0 _ 1) and in such a way it is linear on the intervals U;, N E; _ 1, U;, N
N E,O, we set y BG(a(s )),s € [0, 1]. By Lemma 3.6 we have that y(O) i, *g(0)
and y(1 )—p,0 (1), moreover, by (3.5), G(a(s)) € & for any s e [0, 1], therefore
lo— o (y(s) —e_ 4 ((_;(oc(s)))| < Ce Vs e [0, 1], with C = C(#") > 0. From this, if ¢
was chosen such that Ce < (1/4)2,, we get

(YD) = (y)) <o (Gals))) + 24/4<c—2,/4, Vselo,1]
which is in contradiction with Lemma 3.2. q.e.d.

The complete proofs and other results are contained in[7].
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