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Analisi matematica. — Compact embedding theorems for generalized Sobolev spaces. 

Nota di MARIA MANFREDINI, presentata!") dal Corrisp. B. Pini. 

ABSTRACT. — In this Note we give some compact embedding theorems for Sobolev spaces, related to 

^-tuples of vectors fields of C1 class on RN. 

KEY WORDS: Sobolev spaces; Compact embedding; Carathéodory-distance. 

RIASSUNTO. — Alcuni teoremi di immersione compatta per spazi di Sobolev generalizzati. In questa Nota 

dimostriamo alcuni teoremi di immersione compatta per spazi di Sobolev, relativi a /^-uple di campi vetto­

riali di classe C1 su RN. 

1. INTRODUCTION 

The aim of this Note is to establish some compact embedding theorems for Sobolev 
spaces related to a family of vector fields on an open subset of RN. 

More precisely, let X = (Xly... ,Xm) be a ^-tuple of vector fields, X;-e 
E C1 (RN, RN), j — 1 , . . . , m. Let Q be an open, bounded or unbounded, subset of RN 

and let p E [1 , + oo [. 
o 

We denote by WP
X(Q) the subspace of Lp (Û) obtained by completion of the space 

CQ(Q) with respect to the norm: 

11 UWP
X(Q) = 1 j(|«(*)|>+ l^Xjuix^AdxY , 

where we have identified the vector field Xj = (bjX,..., bjN) with the first order cliffer-

ential operator 2 bj;dx.. We note that for every u e WP
X(Q) there exists, in a weak 

. . i ^ 

sense, X;u œLP (Q) for every j = 1 , . . . , m. 
In this paper we give geometrical conditions on the open set Q related to the vector 

fields Xi,..., Xm and integral type inequalities which assure the compact embedding of 

WP
X(Q) mU{Q). 
This Note is organized as follows: 
In section 2 we define the control distance associated to the vector fields Xly... yXm 

and we prove some compact embedding theorems. 
In section 3 we apply our results when: 

(3a) The vector fields are invariant with respect to a group of translation. This 

example includes the Berger and Schechter's compactt embedding theorem, see [2], 
for the classical Sobolev space, (Xj = dx.,/ = 1, . . . , N) and a theorem by Garofalo and 
Lanconelli, in [11], for the Sobolev space on the Heisenberg group. 

(*) Nella seduta del 18 giugno 1993. 
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(3 b) The vector fields are of Grushin type. 

Moreover, we present an application of our results for a particular case when there 
are unbounded sets which have finite diameter with respect to the control dis­
tance. 

2. DEFINITIONS AND THEOREMS 

LetX=(X1,...,Xm) be a ^-tuple of vector fields, XJe CHRN, RN),J = 1,... 9m. 

DEFINITION 2.1. Let Û be an open subset ofRN and letp e [ 1, + oo [. We say that Q is 
o 

in Dip(X) if Wp
x (0) is compactly embedded in Lp (Q). If Q0 is an open subset of Q we say 

o 

that Q0e. Xp(X; Q) if the restriction U*-^U\QQ is a compact operator from WP
X{Q0) in 

L>(û0). 
In this Note we look for conditions on Q to assure that Q is in Xp(X). 
The next notion of subunitary curve, introduced by Fefferman and Phong in the 

smooth case [4] and subsequently considered by Franchi and Lanconelli in [7], in non 
regular cases, is essential for our purposes. 

DEFINITION 2.2. We say that a continuous curve y: [0, T]^>RN, with piecewise con­
tinuous first derivatives, is subunitary with respect to the vector fields X1,..., Xm if 

m 

f(t) = E aj(t)Xj{Y(t)) for almost every te [0, T] 
J= i 

with aj: [0, T]—>R, piecewise continuous and such that \aj(t)\ ^ 1 for every j — 
— 1,. . . ym and for every t 6 [0, T] . 

Let x,yeRN. If there exists (at least) a subunitary curve joining x to y, we 
define 

d(x,y) =inf {T> 0; there exists y: [0, T]-*RN, subunitary, y(0)=x, y(T)=y}. 

If RN is X-connected, that is for any x,y eRN there exists a subunitary curve connect­
ing x to y, then d is a distance on RN. It is said control-distance or Carathéodory-distance 
associated to the vector fields Xx,..., Xm. We indicate by Bd (x, r) the ball with center x 
and radius r with respect to the metric d: 

Bd(x,r) = {yeRN/d(x,y)<r}. 

Throughout this Note we shall suppose, about the distance d, the following covering 
property holds: 

(Cr) Let r > 0. There exists a positive integer M = M(r) and a finite or countable family of 
d-balls (Bj (XJ ,r))iy which is a covering of RN such that every point x eRN is contained 
in at most M balls of the family (J3j(x/, 2r))j. 

All the results of this Note are consequences of the following key observation, which 
we call Main Lemma for reading convenience: 
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MAIN LEMMA. Let Q be an open subset o/RN. Suppose that, for a suitable fixed r > 0 
the covering property (Cr) holds and for every e > 0 there exists Q0e Xp (X; Q), Q0cQ, 
such that for every u e CQ (Q) and for every d-balls Bd(x, r) of the covering (Cr): 

(Er) | \u(y)\?dyke J ( \u(y) \p + f \XjU(y) \p\dy . 

Then Q G Xp (X). 

NOTE. Here and in what follows, we denote by CQ(Q) the linear space of the 
continuous differentiable functions on the whole RN with compact support contained 
in Q. 

PROOF OF MAIN LEMMA. We begin by establishing the following statement which is 
a sufficient condition for precompactness of subsets of LP{Q). 

CLAIM. Let TcLp(Q) bounded. We suppose that for every £>0 there exist 
Û o, Q i C Q such that: 

(/) û = û 0 U û i ; 

(//) the set {U\Q0,U e T} is precompact in LP(Q0); 

(Hi) \u(y)\pdy ^ e for every u e T. 

Then T is precompact in LP(Q0). 

We assume this claim true for a moment. 
o 

Then, if T c Wp
x(0) is bounded, it is sufficient to prove that for any e > 0 there 

exists a decomposition of Û which satisfies (i)-(iii). Let e be a fixed positive number 
and let û 0 G Xp (X; û ) be a open subset of Q satisfying (Er). If we prove that for every 
U G T 

(2.1) J \u(y)\pdy 

Q\Q0 

then, since Q0 G Oip(X; Û), the decomposition {Q0, Q\Q0} of Q satisfies (/)-(///), so 
that T is precompact in LP(Q), hence Q G Xp(X). 

We prove (2.1). Let 

T* = {u* G Q1 m/\\u - u* | | o i ( û ) ^ e> for s o m e ueT} . 

If we show (2.1) for every u* e T'c then (2.1) follows straightforwardly for every 
u ET. 

Let B = (Bj:l)) = (B^ix;, r)) denote a covering of RN with balls of radius r, as in 
(Cr). 
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We have by hypothesis (Er): 

J \u*(y)\pdy = J \u*(y)\pdy^l J \u* (y)\pdy ^ 
Û X Û ° (û\û0)n(UBr<'->) ' (u\u0)nBr

(/) 

2 f [ l«*(y) | p + 2 |Xy«*:y)|>W 
^ n ^ / ^ i l 7 = 1 / /,(D\Do)nB,U)^0 (V) 

B 2 r 

Now since at most M of the sets J32*r
 n a v e nonempty intersection, we conclude that for 

every u* e T* : 

J | « * ( y ) | ^ ^ e M j ( | « * ( y ) K + Ë P Ç V ^ I ' W 
û \ û 0 û * 7 _ 1 ' 

which actually yields (2.1). 
It remains to prove the claim. 
Let e > 0 fixed and let Q0,Q1cQ satisfying (i)-(iii). Now from (it), there are 

«x,... ,um E T such that for every u eT there is / e { 1,... ,w} such that 

\u(y) - u{(y)\pdy ^ e. 
Do 

Then, from (/') and (///) 

\u(y) - Ui(y)\pdy ^ |«(y) - «/(y)|p^y + J |«(30 ~ « / W l ^ ^ 

^ £ + 2̂  f \u(y)\pdy+ J |«,-(y)|piy U 2^ + 2e . 
\ûi ûI / 

This proves the claim and completes the proof of our Main Lemma. 

To obtain more explicit compact embedding results, we first look for sufficient con­
ditions for the covering property (Cr) holds. 

The control distance d will be said verifying hypothesis (Hr) if: 

(Hr) The function (x,y) *->d(x,y) is continuous with respect to the Euclidean topology and 
there exists a constant D = D(r) > 0 such that 

(2.2) \Bd(x,2r)\**D\Bd(x,r)\ for every x e R N . 

| | denotes the Lebesgue measure on RN. 

COVERING LEMMA. If (Hr) holds then covering hypothesis (Cr) is verified. 

PROOF. The first part of the proof is essentially the same as in Lemma 3.2 in [11]. 
Since the distance d is continuous with respect to the Euclidean distance we can cover 
RN with a finite or countable family of balls B = (Bd (x\ r/3)) = (B^3 ). We select from 
B a collection of disjoint balls B* = (B$), such that (B^]) covers RN, in the following 
way. We let B^ = B{

rj
]
ò. Assume that B^, j = 1 , . . . ,n have been chosen. If B{

rj\ fi 
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H By3 ^ 0 for every i > k„ and for a suitable j = 1,... ,k„ then we have finished and in 
this case the family is finite. Otherwise we let 

k„ + 1 = min{/; / > kn,B%l H B$ = 0 for every j = 1, ...,kn} . 

To show that the family (B}kj)) covers RN we prove that each B î3 is contained in some 
B}kj). We suppose that B^3 does not belong to B* . If B* is infinite then kn/ oo so that 
there exists n e N such that kn^ i < kn + i . But from definition of £„ + j there exists a 
y e {1 , . . . , »} such that BJjlnB$ * 0, then B ^ ç B ^ ' . If B* = { B # \ . . . , B r ^ } , 
then B ^ Pi B,J3 ^ 0 for every i ^ k„ + 1 and for some y = 1,...,«. On the other hand, 
if £y ^ / < kj• + !, we can argue as before, and we reach the desired conclusion, in any 
case. 

To finish we have to show the «M-intersection» property. Let x be in B2J for every 

kj e I, beingIçN. Now U B2r
j) CBd(x, 4r) CB{

6
k
r
l) for everyk{ e I. Therefore for every 

•el kj&l 

y \B{k^\ = U B^ 
k,,I V3 

\Bd(x,4r)\ ^ \B£> (*,•) i 

Then (card I) min \B;%] | ^ |B^' ; |, for every k{ e I. On the other hand, from (2.2) 

there is a positive constant D = D(r) such that \B{
6r

j) | ^ D | B^" | for every kj e I. This 
prove that card I ^ D and completes the proof. 

Some remarks about hypothesis (Hr) are now in order. 

REMARK 2.1. If (RN, dy \ \ ) is a homogeneous space in the sense of Coifman and 
Weiss (see [3]), that is there is a positive constant c such that 

(2.3) |JBJ(X, 2r)\ ^ c\Bd(x,r)\ for every * e RN and for every r > 0 , 

then evidently (2.2) holds for every r > 0. On the other hand (2.2) and (2.3) are not 
equivalent. In fact, let Xx, X2 be the vector fields on R2 defined by X1 = dXl, X2 = 
= a{xi) dX2, where a(0) = 0 and oc(x1 ) = exp ( — x{2) forxx ^ 0. Since the distance d is 
invariant with respect to the translation parallel to the x2-axis (because such are XlyX2), 
and d is equivalent to Euclidean distance in {(xltx2)/ \xi | ^ l } , it is not difficult to 
shown that (2.2) holds. 

Moreover we can prove that there exists c > 0 such that 

\Bd(0,r)\/\Bd(0, 2r)\ ^ c e x p ( - l /2 r ) for every r > 0 . 

From this inequality it follows immediately that (2.3) does not hold. 
o 

REMARK 2.2. If d is not continuous the compact embedding of Wp
x(0) in Lp (Q) may 

fail, also in the case of bounded Q. On the other hand, the continuity of the control dis­
tance d is not guaranteed in general by the only hypothesis of X-connection of 
RN. 

In fact, for example, if $eC°°(R2,R), <j>^0, supp <f>cR2\([-1, I] X 
X[— 1, 1]), then JR2 is connected with respect to the vector fields 

Xi = dXl, X2 = ${xux2)dX2. 
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But, for ail h * 0, - K h < 1, we can easily prove that d((0, 0), (0, h)) ^ 2 . Sod is 
not continuous. 

Moreover, if we consider the sequence 

un{xlyx2) =n1/p f(xi - l/n)g(nx2), 

where g e C0°° (R), supp g c] - 2, 2[, 0 ^ g ^ 1 and g = 1 near zero, / e C0°° (R), 
supp/ç] - 1, 1[, 0 ^ / ^ 1 and / = 1 near zero. It is easy to see that (u„) is bounded 

o 

in WP
X{Q), Q = ( — 2, 2) X ( — 2, 2). On the other hand, there are no subsequences of 

(u„) which converge in LP(Q). Thus Q $ 9ip(X), for every p e [1 , + oo [. 
From Main Lemma we easily obtain the following: 

THEOREM 2.1. Létf 0 &e #« qpe# subset of RN. Suppose that, for a suitable fixed r > 0 
/&e covering property (Cr) Ao/di AW ròe following hypotheses are satisfied: 

For every S > 0 ròere Êxâ/s Q0e Dip (X; û) , QQçQ, such that 

\Bd(x9r)nQ\ 

|5j(x, r ) | 

For éwry £ > 0 there exists S > 0 J«Câ ^to 

(2.5) | laWI ' iy^e J f|«(y)\p + .Ë |^-«(y)lpW; 

Bd(x,r) Bd{x,2r) * • J~l / 

For every u GCQ(Q) and Bd(x,r) such that 

\BJ(X, r) fi supplì 
(2.6) ' ,R , ,, ' ^ -
Then QeXp(X). 

PROOF. We note that (2.4)-(2.6) imply condition (Er) and, since convering property 
also holds, the theorem follows from Main Lemma. 

The following corollaries as the condition (2.5)-(2.6) can be deduced from 
Poincaré-Sobolev type inequalities. 

We use the notations 

j f(x)dx = fA= -r—r \f(x)dx. 
A ' ' A 

COROLLARY 2.2. Let Q be an open subset of RN. Suppose that the following 
Poincaré-Sobolev type inequality holds: for a suitable r > 0 there are a k > 1 and 
a constant c = c(r) > 0 such that 

\l/kp I m_ \l/p 

H Ì 
Bd(x,r) J \Bd(x,2r) 

j \u(y)\kpdy\ ^c\ j IJXjMyil'dy 
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for every x e RN and for every u eC1 (Bd{x, 2r)) such that 

\{yeBd(xyr)/u(y) = 0}\ ^ \Bd(x,r)\/2. 

If (Q) and (2.4) hold then Q E %p(X). 

PROOF. We prove that, in this case, (2.5)-(2.6) holds with 8 = min { 1/2, pos. const. 

£k/(k-i)y inc)eecJ? if £ is the set of points of Bd (x, r) where u = 0, then from Holder in­

equality and (2.7), for every u G CQ{Q), we obtain 

r \vp / \BAx r)\E\ V1-1/^/ r \1/kP 

(*, r) / \ i » ^ > ' i / y Bj(x, r) 

|j,(x,,)n«w.|V'-*»/ | i , , , , , ^ ] * . 
Bd(x,r) J 

I r m Vip 
^^(i-i/^/W j. 2 \XjU{y)\pdy\ . 

\Bd(x,2r)J~l J 

The conclusion of Corollary 2.2 is also true if it is satisfied a more familiar 
Poincaré-Sobolev inequality, precisely: 

COROLLARY 2.3. Let Q be an open subset ofRN. Suppose that for a suitable r > 0 there 
are k > 1 and a constant c = c(r) > 0 such that 

I ç Vlkp j m Vip 
(2.8) -f \u(y)-uBdM\kpdy\ ^ ci j l^uiy^dyi 

\Bd(x,r) j \Bd(x,2r)J * / 

for every x G R N and u G C 1 (Bd(x, 2r)). If (Cr) and (2.4) hold then Q G Dip(X). 

PROOF. We prove that (2.7) holds. Let u G C 1 (Bd(xy 2r)) such that \E\ = 

= \{y eBd(x, r)/u{y) = 0 } | ^ |£^(x, r ) | / 2 . Thus by Holder inequality 

\UBd(x,r) I = TTTT | | « (^ ) ~ ^Bd(x,r) I ^ ^ T ^ 77 \ \u(y) ~ %,(*,,) \ dy ^ 
\h\ J \Bd{x,r)\ J 

t Bd{x,r) 

^ \B (x r)\ ^ ~uBd(x,r)Wkp{Bd{x,r)) \Bd {x, r) \l ~ 1/kp = 2 j - \u(y) - uBdM\kp dy\ 
d *' r \Bd(x,r) I 

Then by (2.8) 

, Vikp j V/kp 
j \u(y)\kpdy\ ^ j \u(y)-uBd(x,r)\

kpdy\ + \uBdUe,r)\ < 
\x,r) J \Bd(x,r) J 

r \1/kp I r \ 
j \u{y)-uBdM\kpdy\ ^3ci -f ^\XjU{y)\pdy\ 
(x,r) J \Bd(x,2r)J * j \Bd( 

that is (2.7). 
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Finally we prove that condition (2.5)-(2.6) is satisfied if a Sobolev inequality holds 
o 

for Wp
x(Bd(x,r)) and if there exist suitable cut-off functions. 

COROLLARY 2.4. Let Q he an open subset ofRN. Suppose that for a suitable r > 0 there 
exist q > p and a constant c = c(r) > 0 such that 

( - \Uq I , m \VP 

j \u(y)\*dy\ ^c(r)l j ^\Xju(y)\pdy\ , 
Bd(x,2r) J \Bd{x,2r)J~l j 

for every x e RN and u G CQ (Bd(x, 2r)). 
Moreover we assume that for every x eRN there exists <p e CQ (Bd (x, 2r)), such that 

<p = 1 in Bd(x, r), 0 ^ <p ^ 1 and 
m 

(2.10) X \Xj<p(y)\p ^ c{r) for every y eBd(xy 2r). 
J= i 

If (Cr) and (2.4) hold then Q G Xp(X). 

PROOF. We prove that in this case (2.5)-(2.6) holds with S = post, const. sq/{q ~p), so 
that from Theorem 2.1, our corollary follows. 

Let u G CQ (0) and let ^ be as before. If E = {y G Bd(x, r)/u(y) = 0}, by Holder 
inequality, (2.9) and (2.10) we have: 

J \u(y)\pdy^\Bd(x,r)\E\l-p/ql J \u{y)\qdyV ^ 
Bd(x,r) \Bd(x,r) j 

x,r)\E\l-p,q\ I \$(y)u(y)\qdy\ \Bd(x, 2r)\p,q ^ 
\Bd(x,2r) J 

^ d B ^ ^ r J X E l 1 ^ ! j ïjXJ^(y)u(y))\pdy\\Bd(xi 2r)\p/q ^ 
\Bd(x, 2r)J~l J 

< \BA> 

T, , r \Bd(x,r) Dsuppu\ 
then it j-r-— —. % o, we obtain 

\Bd(x,r)\ 

j - \u(y)\"dy^c's1-^ J (|«(y)|p+ S l^«(y) | p W 
Bd(x,r) Bd(x,2r) 

where c is a positive constant depending only on p and c. 
From this inequality, if c'8l~p/q = e, we immediately obtain (2.5)-(2.6). 
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3. SOME EXAMPLES 

òa. Invariant vector fields. 

Let Xi,..., Xm be C °° (RN, RN) vector fields satisfying Hòrmander's condition that 
is: rank Lie [Xiy... ,Xm] (x) = N, at every pointx e R N . Here JE = Lie\Xly... , Xw] de­
notes the Lie algebra generated by X1,..., Xm. We suppose that J£ is nilpotent and has 
dimension N. 

Then there exists a group G = (RN
 y o ) such that the vector fields X j , . . . , Xm are in­

variant with respect to the left translation of G, (see Proposition 8.41 in [10]). More­
over the exponential map is merely the identity, so that the Lebesgue measure on RN is 
a Haar measure on G, see Proposition 1.2 in [6]. 

In this case RN is X-connected (see the Theorem of Chow-Hermann in [12, chapter 
18]), and the control distance d is invariant with respect to the left translation of G. On 
the other hand the distance d is locally Holder continuous, see [4]. 

Moreover, as a consequence of |£^(x, r ) | = |J3j(0, r)\ for every xsRN, we 
straightforwardly obtain (2.2), in (Hr), choosing D{r) = \Bd(0, 2r)\/ \Bd(0yr)\, with 
r ^ r0f r0 such that \Bd(0, 2r0)\ < + oo. 

Then, from Covering lemma, (Cr) holds, for every r ^ r0. 
Now, for a fixed r > 0, choose a function <f> e CQ00 CB</(0, 2r)) such that ^ = 1 on 

£</(0, r), 0 ^ <p ^ 1. Therefore, if we define <p(y) = ^(x'1 oy), ^ is a cut-off function as 
required by Corollary 2.4. 

In addition Sobolev inequality (2.9) is true on the ball Bd(x,r) with center x = 0, 
see [5], so again by translation, it holds with a constant independing on the center of 
the ball, as required by (2.9). 

Finally, if Û is an open bounded set then WP
X(Q) is continuously embedded in a 

o 

classical Sobolev space Wp,e(Q), 0 < e ^ 1 suitable (Theorem 4.16 in [5]). Then, since 
o __ „ o 

Wp'£ (Û) is compactly embedded in Lp (Û), we get that Wp
x (Q) is compactly embedded 

in Lp (Q). As a consequence we easily obtain that Q0e. Dip (X; Q) for every bounded 
open set û 0 ç D. 

Then, from Corollary 2.4 we have: 

THEOREM 3.1. Let Q be an open subset ofRN and let p E [ 1, + oo [. j£ ybr # suitable 
fixed r, 0 < r ^ r0 for every e, there exists a bounded set K such that 

(3.1) (Q\K)nBd(x,r)*0 implies \Bd(x,r) CìQ\ ^ e, 

then Q<=Xp (X). 
o 

We note explicitely that, if Xy = dx , j = 1,. . . ,N (then the space space WP
X(Q) is 

the classical Sobolev space and the control distance is the Euclidean distance), (3.1) is 
the Berger and Schechter's thinness condition for compact embedding theorem, 
see [2]. 

Moreover, if we consider the following vector fields on Rn X Rn X R = RN : 

% = dXj + 2yjdn YJ = dyj - 2* ,^ , j = 1 , . . . ,n , (x,y,t)e RN, 
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then G is the Heisenberg group Hn and Theorem 3.1 give back a result proved by 
Garofalo and Lanconelli (Theorem 3.3 in [11]). 

3b. Vector fields of Grushin type. 

We consider the following vector fields on Rn x Rm = RN : 

Xt = dXt, Yj=\x\adyj9 /=1 , . . . ,« , j=l,...,m, a>0, z = b,y)eR"xRm. 

Franchi and Lanconelli in [7] wrote explicitely the control distance d and proved that d 
is locally Holder continuous, the <f-balls are bounded and verify the doubling property. 
More precisely, there are ciy c2 > 0 such that, for every z = {x,y) e R N 

(3.2) cx ^ — — — ^ c2 , 
rn + m(\x\ +r)am 

(Theorem 2.7 in [7]). We remark that the constants c1, c2 are independing on z and r. 
Then the control distance d verifies hypothesis (Hr) for every r > 0. 

Moreover, Theorem 2.6 in [8], assure that every bounded open subset of RN is in 
Dip(X) while (2.7) is granted by Theorem 4.1 in[9]. 

Then, by Corollary 2.2 and (3.2) we have: 

THEOREM 3.2. Let Q be an open subset of RN and let p e [ 1, + oo [. If for a suitable 
fixed r > 0, 

|QfWz,r)l ' 
— — >0 as \z -> °° , 

(|x| + r r 

3c. We consider in R2 the following vector fields: 

X^tt+xfrd^, X2 = dX2, (xlyx2)eR2. 

We prove the following 

THEOREM 3.3. Let Q be an open subset ofR2 and let p G [ 1, +<*>[. If for every L > 0, 
we have: 

(3.3) lim lu n (] - L, L[ X ]A - 7T, A + TT[) I = 0 
| A | ^ + o o 

First of all we remark that, in this case we can explicitely compute the control dis­
tance d: 

d((x1, x2), {x[ , x2 )) = max { | arctan^! — arctanx/ |, \x2 — x2 \ } = dx ((xi, x2), {x[ , x2 )) 

Then for big xx the J-balls of center (xx, x2) are not bounded and the J rball with center 

{xi, x2) and radius r = n is SX2 = R X]x2 — n, x2 + n\_. 
So that there are unbounded sets with bounded diameter, with respect to the control 

metric. Moreover, it easy to see that, with respect to the Jrballs, the covering property 
(Cr) holds for every r > 0. 

Now, we prove that the sets Qh = R X ]-h,h[, h > 0, are in Dip (X), for every/? G 
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G [ 1, + oo [. We introduce the trasformation 

T: R 2 E. IL 
2 ' 2 

XR 

(xi , x2) "-» (arctan xx, x2 ) . 
o 

If we put Qh = T{Qh) then compact embedding of Wp
x(Qh) in 1 / (û^)is equivalent to 

o _ o _ _ 

the compact embedding of WP
M (Qh) in L£ (Qh), where WÌ (Qh), Lp(Qh) are the (classi­

cal) weighted Sobolev and Lp spaces, respectively, with weight <w(f, 77) = 1 + tan2f. 
o 

Now&£ is a bounded set of] - TT/2, TT/2[ XR, then from Theorem 1.9 in [1], Wp
M{Qh) is 

compactly embedded in Lp
u{Qh) that is Qhedip(X). 

Now we are in position to prove Theorem 3.3. 

PROOF OF THE THEOREM 3.3. Because condition (Q) is satisfied for every r > 0, it is 
enough to prove condition (Er) of Main Lemma for r = n. Now from the previous re­
mark Sx e 3Lp (X), so that (by the translation invariant with respect to x2) for every e > 0 
there exists L > 0 such that 

(3.4) J \u(y)\pdy^j \(\u{y)\p + \Dxu{y)\p)dy, 
sxn{\Xl\^L} s, 

for every u £Cl{Sx) and for every A e R. Here and in the following we use the notation 

\Dxu\p for E \XjU\p. 
J = ! 

We choose a covering (Sx.) of R2 by ^-balls 5A. = J3^.((0, A,), 7r). 
Let s > 0 be fixed. We choose L > 0 as in (3.4) and S > 0 as we will fix later. From 

(3.3) there is a Â > 0 such that 

(3.5) | û n (] - L , L [ X ] A - 7 T , A + 7r[)| ^ £ for every A e R, | A | ^ A . 

We put Q0 = R X ] - Â - 7T, Â + TT[. Then û 0 H Û E ̂ p (X; Û), since û 0 is of Qh type. 
Therefore, if ( û \ û 0 ) n ^f- * 0 then |A,| ^ Â. Now 

J i«(y)hfy = 
(û \û 0 )n5 A / 

[ |«(y) |p^+ f \u(y)\pdy=I1+I2. 
((û\Q0)nsx-)n{\Xl\^L} ((Q\Q0)nSxi)n{\x1\^L} 

We estimate Ix and J2 separately. 
From (3.4): 

h< \ \u{y)\pdy^l \(\u(y)\>+\Dxu(y)\*)dy. 
sx.n{\Xl\^L} sx. 

Moreover, from the classical Sobolev inequality, if we put Q[ =] — L, L[ X ]AZ• — 
— 7T, Xj + 7r[, there exista > 1 and a positive constant c = c ( L ) = c , ( £ ) > 0 independing 
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on /, such that 

/ f \1/kp / r \1 7^ 

-f \u(y)\kpdy\ ^clj(\u(y)\p+\Du(y)\p)dy\ , 

\QL J \QL ) 

where Du is the classical gradient. Then from Holder inequality: 

\ \»w*\*[\M) [iìu{y)ìkPdy 

VP 
^c(\Q[C\ supplì )(1-1»W 1 {\u(y)\p+ \Du{y)\p)dy 

\QL 

Since | Q[ f! suppz/1 ^ | Q[ fï Û |, if we choose £ in (3.5) such that ^ (e) S1 " 1/fe ^ e/2, 
we thus obtain 

^ j | ( | « ( y ) | p + | D « ( y ) | p ) ^ ^ f \(\u(y)\p+\Dxu(y)\p)dy. 
QL

 S^ 

Therefore we finally get 

| \u(y)\pdy=I1 + I2^ej(\u(y)\p + \Dxu(y)\p)dy . 
(Q\Q0)nsXi sXï 

This proves (Er) with r = x and completes the proof of Theorem 3.3. 

I wish to thank Professor E. Lanconelli for suggesting the problem and for his helpful conversations 

during the preparing of this Note. 
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