ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

Maria Manfredini

Compact embedding theorems for generalized Sobolev spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 4 (1993), n.4, p. 251–263.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1993_9_4_4_251_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1993.

Analisi matematica. — Compact embedding theorems for generalized Sobolev spaces. Nota di Maria Manfredini, presentata (*) dal Corrisp. B. Pini.

ABSTRACT. — In this Note we give some compact embedding theorems for Sobolev spaces, related to *m*-tuples of vectors fields of C^1 class on \mathbb{R}^N .

KEY WORDS: Sobolev spaces; Compact embedding; Carathéodory-distance.

RIASSUNTO. — Alcuni teoremi di immersione compatta per spazi di Sobolev generalizzati. In questa Nota dimostriamo alcuni teoremi di immersione compatta per spazi di Sobolev, relativi a *m*-uple di campi vettoriali di classe C^1 su \mathbb{R}^N .

1. INTRODUCTION

The aim of this *Note* is to establish some compact embedding theorems for Sobolev spaces related to a family of vector fields on an open subset of R^N .

More precisely, let $X = (X_1, ..., X_m)$ be a *m*-tuple of vector fields, $X_j \in C^1(\mathbb{R}^N, \mathbb{R}^N)$, j = 1, ..., m. Let Ω be an open, bounded or unbounded, subset of \mathbb{R}^N and let $p \in [1, +\infty[$.

We denote by $\overset{\circ}{W}_{X}^{p}(\Omega)$ the subspace of $L^{p}(\Omega)$ obtained by completion of the space $C_{0}^{1}(\Omega)$ with respect to the norm:

$$\|u\|_{W^p_X(\Omega)}^{\circ} = \left(\iint_{\Omega} \left(|u(x)|^p + \sum_{j=1}^m |X_j u(x)|^p \right) dx \right)^{1/p}$$

where we have identified the vector field $X_j = (b_{j1}, \dots, b_{jN})$ with the first order differential operator $\sum_{i=1}^{N} b_{ji} \partial_{x_i}$. We note that for every $u \in \overset{\circ}{W}_X^p(\Omega)$ there exists, in a weak sense, $X_j u \in L^p(\Omega)$ for every $j = 1, \dots, m$.

In this paper we give geometrical conditions on the open set Ω related to the vector fields X_1, \ldots, X_m and integral type inequalities which assure the compact embedding of $\hat{W}_X^p(\Omega)$ in $L^p(\Omega)$.

This Note is organized as follows:

In section 2 we define the control distance associated to the vector fields X_1, \ldots, X_m and we prove some compact embedding theorems.

In section 3 we apply our results when:

(3a) The vector fields are invariant with respect to a group of translation. This example includes the Berger and Schechter's compact embedding theorem, see [2], for the classical Sobolev space, $(X_j = \partial_{x_j}, j = 1, ..., N)$ and a theorem by Garofalo and Lanconelli, in [11], for the Sobolev space on the Heisenberg group.

(*) Nella seduta del 18 giugno 1993.

(3b) The vector fields are of Grushin type.

Moreover, we present an application of our results for a particular case when there are unbounded sets which have finite diameter with respect to the control distance.

2. Definitions and theorems

Let $X = (X_1, \dots, X_m)$ be a *m*-tuple of vector fields, $X_j \in C^1(\mathbb{R}^N, \mathbb{R}^N)$, $j = 1, \dots, m$.

DEFINITION 2.1. Let Ω be an open subset of \mathbb{R}^N and let $p \in [1, +\infty[$. We say that Ω is in $\mathfrak{R}_p(X)$ if $\overset{\circ}{W}^p_X(\Omega)$ is compactly embedded in $L^p(\Omega)$. If Ω_0 is an open subset of Ω we say that $\Omega_0 \in \mathfrak{R}_p(X; \Omega)$ if the restriction $u \mapsto u|_{\Omega_0}$ is a compact operator from $\overset{\circ}{W}^p_X(\Omega_0)$ in $L^p(\Omega_0)$.

In this Note we look for conditions on Ω to assure that Ω is in $\mathcal{R}_p(X)$.

The next notion of subunitary curve, introduced by Fefferman and Phong in the smooth case [4] and subsequently considered by Franchi and Lanconelli in [7], in non regular cases, is essential for our purposes.

DEFINITION 2.2. We say that a continuous curve $\gamma: [0, T] \rightarrow R^N$, with piecewise continuous first derivatives, is subunitary with respect to the vector fields X_1, \ldots, X_m if

$$\dot{\gamma}(t) = \sum_{j=1}^{m} a_j(t) X_j(\gamma(t)) \quad \text{for almost every } t \in [0, T]$$

with $a_j: [0, T] \rightarrow R$, piecewise continuous and such that $|a_j(t)| \leq 1$ for every j = 1, ..., m and for every $t \in [0, T]$.

Let $x, y \in \mathbb{R}^N$. If there exists (at least) a subunitary curve joining x to y, we define

 $d(x, y) = \inf \{T > 0; \text{ there exists } \gamma: [0, T] \rightarrow R^N, \text{ subunitary, } \gamma(0) = x, \gamma(T) = y \}.$ If R^N is X-connected, that is for any $x, y \in R^N$ there exists a subunitary curve connecting x to y, then d is a distance on R^N . It is said *control-distance* or *Carathéodory-distance* associated to the vector fields X_1, \ldots, X_m . We indicate by $B_d(x, r)$ the ball with center x and radius r with respect to the metric d:

$$B_d(x, r) = \{ y \in \mathbb{R}^N / d(x, y) < r \}.$$

Throughout this *Note* we shall suppose, about the distance d, the following covering property holds:

 (C_r) Let r > 0. There exists a positive integer M = M(r) and a finite or countable family of *d-balls* $(B_d(x_i, r))_i$, which is a covering of \mathbb{R}^N such that every point $x \in \mathbb{R}^N$ is contained in at most M balls of the family $(B_d(x_i, 2r))_i$.

All the results of this *Note* are consequences of the following key observation, which we call Main Lemma for reading convenience:

MAIN LEMMA. Let Ω be an open subset of \mathbb{R}^N . Suppose that, for a suitable fixed r > 0the covering property (\mathbb{C}_r) holds and for every $\varepsilon > 0$ there exists $\Omega_0 \in \mathcal{R}_p(X; \Omega), \Omega_0 \subseteq \Omega$, such that for every $u \in \mathbb{C}_0^1(\Omega)$ and for every d-balls $B_d(x, r)$ of the covering (\mathbb{C}_r) :

(E_r)
$$\int_{(\Omega \setminus \Omega_0) \cap B_d(x,r)} |u(y)|^p dy \leq \varepsilon \int_{B_d(x,2r)} \left(|u(y)|^p + \sum_{j=1}^m |X_j u(y)|^p \right) dy.$$

Then $\Omega \in \mathcal{K}_p(X)$.

NOTE. Here and in what follows, we denote by $C_0^1(\Omega)$ the linear space of the continuous differentiable functions on the whole \mathbb{R}^N with compact support contained in Ω .

PROOF OF MAIN LEMMA. We begin by establishing the following statement which is a sufficient condition for precompactness of subsets of $L^{p}(\Omega)$.

CLAIM. Let $T \in L^p(\Omega)$ bounded. We suppose that for every $\varepsilon > 0$ there exist $\Omega_0, \Omega_1 \in \Omega$ such that:

(i)
$$\Omega = \Omega_0 \cup \Omega_1;$$

(ii) the set $\{u|_{\Omega_0}, u \in T\}$ is precompact in $L^p(\Omega_0);$
(iii) $\int_{\Omega_1} |u(y)|^p dy \le \varepsilon$ for every $u \in T.$

Then T is precompact in $L^{p}(\Omega_{0})$.

We assume this claim true for a moment.

Then, if $T \in \widetilde{W}_X^p(\Omega)$ is bounded, it is sufficient to prove that for any $\varepsilon > 0$ there exists a decomposition of Ω which satisfies (i)-(iii). Let ε be a fixed positive number and let $\Omega_0 \in \mathcal{R}_p(X; \Omega)$ be a open subset of Ω satisfying (E_r) . If we prove that for every $u \in T$

(2.1)
$$\int_{\Omega \setminus \Omega_0} |u(y)|^p dy \leq \varepsilon$$

then, since $\Omega_0 \in \mathcal{R}_p(X; \Omega)$, the decomposition $\{\Omega_0, \Omega \setminus \Omega_0\}$ of Ω satisfies (*i*)-(*iii*), so that T is precompact in $L^p(\Omega)$, hence $\Omega \in \mathcal{R}_p(X)$.

We prove (2.1). Let

$$T^* = \left\{ u^* \in C_0^1(\Omega) / \left\| u - u^* \right\|_{W_X^p(\Omega)}^\circ \le \varepsilon, \text{ for some } u \in T \right\}.$$

If we show (2.1) for every $u^* \in T^*$ then (2.1) follows straightforwardly for every $u \in T$.

Let $B = (B_r^{(i)}) = (B_d(x_i, r))$ denote a covering of \mathbb{R}^N with balls of radius r, as in (\mathbb{C}_r) .

We have by hypothesis (E_r) :

$$\int_{\Omega \setminus \Omega_0} |u^*(y)|^p dy = \int_{(\Omega \setminus \Omega_0) \cap \left(\bigcup B_r^{(i)}\right)} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)}} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \setminus \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy \leq \sum_i \int_{(\Omega \cap \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy < \sum_i \int_{(\Omega \cap \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy < \sum_i \int_{(\Omega \cap \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy < \sum_i \int_{(\Omega \cap \Omega_0) \cap B_r^{(i)} |u^*(y)|^p dy <$$

 $\leq \varepsilon \sum_{i, (\Omega \setminus \Omega_0) \cap B_r^{(i)} \neq \emptyset} \int_{B_{2r}^{(i)}} \left(|u^{\star}(y)|^p + \sum_{j=1}^m |X_j u^{\star} y)|^p \right) dy.$

Now since at most *M* of the sets $B_{2r}^{(i)}$ have nonempty intersection, we conclude that for every $u^* \in T^*$:

$$\int_{\Omega_0} |u^*(y)|^p dy \leq \varepsilon M \int_{\Omega} \left(|u^*(y)|^p + \sum_{j=1}^m |X_j u^*(y)|^p \right) dy,$$

which actually yields (2.1).

It remains to prove the claim.

Let $\varepsilon > 0$ fixed and let $\Omega_0, \Omega_1 \subset \Omega$ satisfying (i)-(iii). Now from (ii), there are $u_1, \ldots, u_m \in T$ such that for every $u \in T$ there is $i \in \{1, \ldots, m\}$ such that

$$\int_{\Omega_0} |u(y) - u_i(y)|^p dy \leq \varepsilon.$$

Then, from (i) and (iii)

$$\int_{\Omega} |u(y) - u_i(y)|^p dy \leq \int_{\Omega_0} |u(y) - u_i(y)|^p dy + \int_{\Omega_1} |u(y) - u_i(y)|^p dy \leq \varepsilon + 2^p \left(\int_{\Omega_1} |u(y)|^p dy + \int_{\Omega_1} |u_i(y)|^p dy \right) \leq 2^{p+2} \varepsilon.$$

This proves the claim and completes the proof of our Main Lemma.

To obtain more explicit compact embedding results, we first look for sufficient conditions for the covering property (C_r) holds.

The control distance d will be said verifying hypothesis (H_r) if:

(H_r) The function $(x, y) \mapsto d(x, y)$ is continuous with respect to the Euclidean topology and there exists a constant D = D(r) > 0 such that

$$(2.2) |B_d(x, 2r)| \leq D|B_d(x, r)| for every x \in \mathbb{R}^N.$$

| denotes the Lebesgue measure on \mathbb{R}^N .

COVERING LEMMA. If (H_r) holds then covering hypothesis (C_r) is verified.

PROOF. The first part of the proof is essentially the same as in Lemma 3.2 in [11]. Since the distance *d* is continuous with respect to the Euclidean distance we can cover R^N with a finite or countable family of balls $B = (B_d(x^i, r/3)) = (B_{r/3}^{(i)})$. We select from *B* a collection of disjoint balls $B^* = (B_{r/3}^{(k_j)})$, such that $(B_r^{(k_j)})$ covers R^N , in the following way. We let $B_{r/3}^{(k_1)} = B_{r/3}^{(1)}$. Assume that $B_{r/3}^{(k_j)}$, j = 1, ..., n have been chosen. If $B_{r/3}^{(i)} \cap$

 $\cap B_{r/3}^{(k_j)} \neq \emptyset$ for every $i > k_n$ and for a suitable $j = 1, ..., k_n$ then we have finished and in this case the family is finite. Otherwise we let

$$k_{n+1} = \min\{i; i > k_n, B_{r/3}^{(i)} \cap B_{r/3}^{(k_j)} = \emptyset \text{ for every } j = 1, \dots, k_n\}.$$

To show that the family $(B_r^{(k_j)})$ covers \mathbb{R}^N we prove that each $B_{r/3}^{(i)}$ is contained in some $B_r^{(k_j)}$. We suppose that $B_{r/3}^{(i)}$ does not belong to \mathbf{B}^* . If \mathbf{B}^* is infinite then $k_n \nearrow \infty$ so that there exists $n \in \mathbb{N}$ such that $k_n \leq i < k_{n+1}$. But from definition of k_{n+1} there exists a $j \in \{1, \ldots, n\}$ such that $B_{r/3}^{(i)} \cap B_{r/3}^{(k_j)} \neq \emptyset$, then $B_{r/3}^{(i)} \subseteq B_r^{(k_j)}$. If $\mathbf{B}^* = \{B_{r/3}^{(k_1)}, \ldots, B_{r/3}^{(k_p)}\}$, then $B_{r/3}^{(i)} \cap B_{r/3}^{(k_j)} \neq \emptyset$ for every $i \geq k_n + 1$ and for some $j = 1, \ldots, n$. On the other hand, if $k_j \leq i < k_{j+1}$, we can argue as before, and we reach the desired conclusion, in any case.

To finish we have to show the «M-intersection» property. Let *x* be in $B_{2r}^{(k_j)}$ for every $k_j \in I$, being $I \subseteq N$. Now $\bigcup_{k_j \in I} B_{2r}^{(k_j)} \subseteq B_d(x, 4r) \subseteq B_{6r}^{(k_i)}$ for every $k_i \in I$. Therefore for every $k_i \in I$

$$\sum_{k_j \in I} |B_{r/3}^{(k_j)}| = \left| \bigcup_{k_j \in I} B_{r/3}^{(k_j)} \right| \le |B_d(x, 4r)| \le |B_{6r}^{(k_i)}|.$$

Then (card I) $\min_{k_j \in I} |B_{r/3}^{(k_j)}| \leq |B_{6r}^{(k_i)}|$, for every $k_i \in I$. On the other hand, from (2.2) there is a positive constant D = D(r) such that $|B_{6r}^{(k_j)}| \leq D|B_{r/3}^{(k_j)}|$ for every $k_j \in I$. This prove that card $I \leq D$ and completes the proof.

Some remarks about hypothesis (H_r) are now in order.

REMARK 2.1. If $(\mathbb{R}^N, d, ||)$ is a homogeneous space in the sense of Coifman and Weiss (see [3]), that is there is a positive constant c such that

(2.3) $|B_d(x, 2r)| \leq c |B_d(x, r)|$ for every $x \in \mathbb{R}^N$ and for every r > 0,

then evidently (2.2) holds for every r > 0. On the other hand (2.2) and (2.3) are not equivalent. In fact, let X_1, X_2 be the vector fields on R^2 defined by $X_1 = \partial_{x_1}, X_2 = \alpha(x_1) \partial_{x_2}$, where $\alpha(0) = 0$ and $\alpha(x_1) = \exp(-x_1^{-2})$ for $x_1 \neq 0$. Since the distance *d* is invariant with respect to the translation parallel to the x_2 -axis (because such are X_1, X_2), and *d* is equivalent to Euclidean distance in $\{(x_1, x_2)/|x_1| \ge 1\}$, it is not difficult to shown that (2.2) holds.

Moreover we can prove that there exists c > 0 such that

$$|B_d(0,r)| / |B_d(0,2r)| \le c \exp(-1/2r)$$
 for every $r > 0$.

From this inequality it follows immediately that (2.3) does not hold.

REMARK 2.2. If d is not continuous the compact embedding of $W_X^p(\Omega)$ in $L^p(\Omega)$ may fail, also in the case of bounded Ω . On the other hand, the continuity of the control distance d is not guaranteed in general by the only hypothesis of X-connection of \mathbb{R}^N .

In fact, for example, if $\phi \in C^{\infty}(R^2, R)$, $\phi \ge 0$, supp $\phi \subseteq R^2 \setminus ([-1, 1] \times \times [-1, 1])$, then R^2 is connected with respect to the vector fields

$$X_1 = \partial_{x_1}, \qquad X_2 = \phi(x_1, x_2) \,\partial_{x_2}.$$

But, for all $h \neq 0$, -1 < b < 1, we can easily prove that $d((0, 0), (0, h)) \ge 2$. So d is not continuous.

Moreover, if we consider the sequence

$$u_n(x_1, x_2) = n^{1/p} f(x_1 - 1/n) g(nx_2),$$

where $g \in C_0^{\infty}(R)$, supp $g \subseteq] -2$, 2[, $0 \leq g \leq 1$ and g = 1 near zero. $f \in C_0^{\infty}(R)$, supp $f \subseteq] -1$, 1[, $0 \leq f \leq 1$ and f = 1 near zero. It is easy to see that (u_n) is bounded in $\overset{\circ}{W}_X^p(\Omega)$, $\Omega = (-2, 2) \times (-2, 2)$. On the other hand, there are no subsequences of (u_n) which converge in $L^p(\Omega)$. Thus $\Omega \notin \mathcal{R}_p(X)$, for every $p \in [1, +\infty[$.

From Main Lemma we easily obtain the following:

THEOREM 2.1. Let Ω be an open subset of \mathbb{R}^N . Suppose that, for a suitable fixed r > 0 the covering property (\mathbb{C}_r) holds and the following hypotheses are satisfied:

For every $\delta > 0$ there exists $\Omega_0 \in \mathcal{K}_p(X; \Omega), \ \Omega_0 \subseteq \Omega$, such that

(2.4)
$$if \ (\Omega \setminus \Omega_0) \cap B_d(x, r) \neq \emptyset \quad then \ \frac{|B_d(x, r) \cap \Omega|}{|B_d(x, r)|} \leq \delta;$$

For every $\varepsilon > 0$ there exists $\delta > 0$ such that

(2.5)
$$\int_{B_d(x,r)} |u(y)|^p dy \leq \varepsilon \int_{B_d(x,2r)} \left(|u(y)|^p + \sum_{j=1}^m |X_j u(y)|^p \right) dy;$$

For every $u \in C_0^1(\Omega)$ and $B_d(x, r)$ such that

(2.6)
$$\frac{|B_d(x,r) \cap \operatorname{supp} u|}{|B_d(x,r)|} \leq \delta.$$

Then $\Omega \in \mathcal{K}_p(X)$.

PROOF. We note that (2.4)-(2.6) imply condition (E_r) and, since convering property also holds, the theorem follows from Main Lemma.

The following corollaries as the condition (2.5)-(2.6) can be deduced from Poincaré-Sobolev type inequalities.

We use the notations

$$\int_A f(x) \, dx = f_A = \frac{1}{|A|} \int_A f(x) \, dx \, .$$

COROLLARY 2.2. Let Ω be an open subset of \mathbb{R}^N . Suppose that the following Poincaré-Sobolev type inequality holds: for a suitable r > 0 there are a k > 1 and a constant c = c(r) > 0 such that

(2.7)
$$\left(\oint_{B_d(x, r)} |u(y)|^{kp} dy \right)^{1/kp} \leq c \left(\oint_{B_d(x, 2r)} \sum_{j=1}^m |X_j u(y)|^p dy \right)^{1/p},$$

for every $x \in \mathbb{R}^N$ and for every $u \in C^1(B_d(x, 2r))$ such that $|\{y \in B_d(x, r)/u(y) = 0\}| \ge |B_d(x, r)|/2.$ If (C_r) and (2.4) hold then $\Omega \in \mathfrak{R}_p(X).$

PROOF. We prove that, in this case, (2.5)-(2.6) holds with $\delta = \min \{1/2, \text{ pos. const.} \\ \varepsilon^{k/(k-1)}\}$. Indeed, if *E* is the set of points of $B_d(x, r)$ where u = 0, then from Hölder inequality and (2.7), for every $u \in C_0^1(\Omega)$, we obtain

$$\left(\int_{B_{d}(x,r)} |u(y)|^{p} dy \right)^{1/p} \leq \left(\frac{|B_{d}(x,r) \setminus E|}{|B_{d}(x,r)|} \right)^{(1-1/k)/p} \left(\int_{B_{d}(x,r)} |u(y)|^{kp} dy \right)^{1/kp} \leq \leq \left(\frac{|B_{d}(x,r) \cap \operatorname{supp} u|}{|B_{d}(x,r)|} \right)^{(1-1/k)/p} \left(\int_{B_{d}(x,r)} |u(y)|^{kp} dy \right)^{1/kp} \leq \leq c \delta^{(1-1/k)/p} \left(\int_{B_{d}(x,2r)} \sum_{j=1}^{m} |X_{j}u(y)|^{p} dy \right)^{1/p} .$$

The conclusion of Corollary 2.2 is also true if it is satisfied a more familiar Poincaré-Sobolev inequality, precisely:

COROLLARY 2.3. Let Ω be an open subset of \mathbb{R}^N . Suppose that for a suitable r > 0 there are k > 1 and a constant c = c(r) > 0 such that

(2.8)
$$\left(\oint_{B_d(x,r)} |u(y) - u_{B_d(x,r)}|^{kp} dy \right)^{1/kp} \le c \left(\oint_{B_d(x,2r)} \sum_{j=1}^m |X_j u(y)|^p dy \right)^{1/p}$$

for every $x \in \mathbb{R}^N$ and $u \in C^1(B_d(x, 2r))$. If (\mathbb{C}_r) and (2.4) hold then $\Omega \in \mathfrak{K}_p(X)$.

PROOF. We prove that (2.7) holds. Let $u \in C^1(B_d(x, 2r))$ such that $|E| = |\{y \in B_d(x, r) | u(y) = 0\}| \ge |B_d(x, r)|/2$. Thus by Hölder inequality

$$\begin{aligned} |u_{B_d(x,r)}| &= \frac{1}{|E|} \int_E |u(y) - u_{B_d(x,r)}| \, dy \leq \frac{2}{|B_d(x,r)|} \int_{B_d(x,r)} |u(y) - u_{B_d(x,r)}| \, dy \leq \\ &\leq \frac{2}{|B_d(x,r)|} \|u - u_{B_d(x,r)}\|_{L^{kp}(B_d(x,r))} \|B_d(x,r)\|^{1-1/kp} = 2 \left(\int_{B_d(x,r)} |u(y) - u_{B_d(x,r)}|^{kp} \, dy \right)^{1/kp} \end{aligned}$$

Then by (2.8)

$$\begin{pmatrix} \oint \\ B_d(x,r) & |u(y)|^{kp} \, dy \end{pmatrix}^{1/kp} \leq \left(\int \\ B_d(x,r) & |u(y) - u_{B_d(x,r)}|^{kp} \, dy \end{pmatrix}^{1/kp} + |u_{B_d(x,r)}| \leq \\ \leq 3 \left(\int \\ B_d(x,r) & |u(y) - u_{B_d(x,r)}|^{kp} \, dy \end{pmatrix}^{1/kp} \leq 3c \left(\int \\ B_d(x,2r) & \sum_{j=1}^m |X_j u(y)|^p \, dy \right)^{1/p} ,$$

that is (2.7).

Finally we prove that condition (2.5)-(2.6) is satisfied if a Sobolev inequality holds for $\overset{\circ}{W}_{X}^{p}(B_{d}(x, r))$ and if there exist suitable cut-off functions.

COROLLARY 2.4. Let Ω be an open subset of \mathbb{R}^N . Suppose that for a suitable r > 0 there exist q > p and a constant c = c(r) > 0 such that

(2.9)
$$\left(\int_{B_d(x, 2r)} |u(y)|^q dy \right)^{1/q} \leq c(r) \left(\int_{B_d(x, 2r)} \sum_{j=1}^m |X_j u(y)|^p dy \right)^{1/p}$$

for every $x \in \mathbb{R}^N$ and $u \in C_0^1(B_d(x, 2r))$.

Moreover we assume that for every $x \in \mathbb{R}^N$ there exists $\psi \in C_0^1(B_d(x, 2r))$, such that $\psi = 1$ in $B_d(x, r)$, $0 \leq \psi \leq 1$ and

(2.10)
$$\sum_{j=1}^{m} |X_{j}\psi(y)|^{p} \leq c(r) \quad \text{for every } y \in B_{d}(x, 2r).$$

If (C_r) and (2.4) hold then $\Omega \in \mathcal{R}_p(X)$.

PROOF. We prove that in this case (2.5)-(2.6) holds with $\delta = post. const. \varepsilon^{q/(q-p)}$, so that from Theorem 2.1, our corollary follows.

Let $u \in C_0^1(\Omega)$ and let ψ be as before. If $E = \{y \in B_d(x, r) / u(y) = 0\}$, by Hölder inequality, (2.9) and (2.10) we have:

$$\int_{B_{d}(x,r)} |u(y)|^{p} dy \leq |B_{d}(x,r) \setminus E|^{1-p/q} \left(\int_{B_{d}(x,r)} |u(y)|^{q} dy \right)^{p/q} \leq \\ \leq |B_{d}(x,r) \setminus E|^{1-p/q} \left(\int_{B_{d}(x,2r)} |\psi(y)u(y)|^{q} dy \right)^{p/q} |B_{d}(x,2r)|^{p/q} \leq \\ \leq c |B_{d}(x,r) \setminus E|^{1-p/q} \left(\int_{B_{d}(x,2r)} \sum_{j=1}^{m} |X_{j}(\psi(y)u(y))|^{p} dy \right) |B_{d}(x,2r)|^{p/q} \leq \\ \leq 2^{p} c \left(\frac{|B_{d}(x,r) \cap \operatorname{supp} u|}{|B_{d}(x,r)|} \right)^{1-p/q} \int_{B_{d}(x,2r)} \left(c |u(y)|^{p} + \sum_{j=1}^{m} |X_{j}u(y)|^{p} \right) dy.$$

Then if $\frac{|B_d(x,r) \cap \operatorname{supp} u|}{|B_d(x,r)|} \leq \delta$, we obtain

$$\int_{B_d(x,r)} |u(y)|^p dy \leq c' \delta^{1-p/q} \int_{B_d(x,2r)} \left(|u(y)|^p + \sum_{j=1}^m |X_j u(y)|^p \right) dy,$$

where c' is a positive constant depending only on p and c.

From this inequality, if $c' \delta^{1-p/q} = \varepsilon$, we immediately obtain (2.5)-(2.6).

COMPACT EMBEDDING THEOREMS FOR GENERALIZED SOBOLEV SPACES

3. Some examples

3a. Invariant vector fields.

Let X_1, \ldots, X_m be $C^{\infty}(\mathbb{R}^N, \mathbb{R}^N)$ vector fields satisfying Hörmander's condition that is: rank $Lie[X_1, \ldots, X_m](x) = N$, at every point $x \in \mathbb{R}^N$. Here $\mathcal{L} = Lie[X_1, \ldots, X_m]$ denotes the Lie algebra generated by X_1, \ldots, X_m . We suppose that \mathcal{L} is nilpotent and has dimension N.

Then there exists a group $G = (\mathbb{R}^N, \circ)$ such that the vector fields X_1, \ldots, X_m are invariant with respect to the left translation of G, (see Proposition 8.41 in [10]). Moreover the exponential map is merely the identity, so that the Lebesgue measure on \mathbb{R}^N is a Haar measure on G, see Proposition 1.2 in [6].

In this case \mathbb{R}^N is X-connected (see the Theorem of Chow-Hermann in [12, chapter 18]), and the control distance d is invariant with respect to the left translation of G. On the other hand the distance d is locally Hölder continuous, see [4].

Moreover, as a consequence of $|B_d(x,r)| = |B_d(0,r)|$ for every $x \in \mathbb{R}^N$, we straightforwardly obtain (2.2), in (H_r), choosing $D(r) = |B_d(0, 2r)| / |B_d(0, r)|$, with $r \leq r_0$, r_0 such that $|B_d(0, 2r_0)| < +\infty$.

Then, from Covering lemma, (C_r) holds, for every $r \leq r_0$.

Now, for a fixed r > 0, choose a function $\phi \in C_0^{\infty}(B_d(0, 2r))$ such that $\phi = 1$ on $B_d(0, r), 0 \le \phi \le 1$. Therefore, if we define $\psi(y) = \phi(x^{-1} \circ y), \psi$ is a cut-off function as required by Corollary 2.4.

In addition Sobolev inequality (2.9) is true on the ball $B_d(x, r)$ with center x = 0, see [5], so again by translation, it holds with a constant independing on the center of the ball, as required by (2.9).

Finally, if $\tilde{\Omega}$ is an open bounded set then $\overset{\circ}{W}^{p}_{X}(\tilde{\Omega})$ is continuously embedded in a classical Sobolev space $\overset{\circ}{W}^{p, \varepsilon}(\tilde{\Omega})$, $0 < \varepsilon \leq 1$ suitable (Theorem 4.16 in [5]). Then, since $\overset{\circ}{W}^{p, \varepsilon}(\tilde{\Omega})$ is compactly embedded in $L^{p}(\tilde{\Omega})$, we get that $\overset{\circ}{W}^{p}_{X}(\tilde{\Omega})$ is compactly embedded in $L^{p}(\tilde{\Omega})$. As a consequence we easily obtain that $\Omega_{0} \in \mathcal{R}_{p}(X; \Omega)$ for every bounded open set $\Omega_{0} \subseteq \Omega$.

Then, from Corollary 2.4 we have:

THEOREM 3.1. Let Ω be an open subset of \mathbb{R}^N and let $p \in [1, +\infty[$. If, for a suitable fixed $r, 0 < r \leq r_0$ for every ε , there exists a bounded set K such that

 $\begin{array}{ll} (3.1) & (\Omega \setminus K) \cap B_d(x,r) \neq \emptyset & implies \ \left| B_d(x,r) \cap \Omega \right| \leq \varepsilon \,, \\ then \ \Omega \in \mathcal{R}_p(X). \end{array}$

We note explicitly that, if $X_j = \partial_{x_j}$, j = 1, ..., N (then the space space $\overset{\circ}{W}^p_X(\Omega)$ is the classical Sobolev space and the control distance is the Euclidean distance), (3.1) is the Berger and Schechter's thinness condition for compact embedding theorem, see [2].

Moreover, if we consider the following vector fields on $R^n \times R^n \times R = R^N$:

 $X_j = \partial_{x_i} + 2y_j \partial_t, \qquad Y_j = \partial_{y_j} - 2x_j \partial_t, \qquad j = 1, \dots, n, \qquad (x, y, t) \in \mathbb{R}^N,$

then G is the Heisenberg group H_n and Theorem 3.1 give back a result proved by Garofalo and Lanconelli (Theorem 3.3 in [11]).

3b. Vector fields of Grushin type.

We consider the following vector fields on $R^n \times R^m = R^N$:

$$X_i = \partial_{x_i}, \quad Y_j = |x|^{\alpha} \partial_{y_j}, \quad i = 1, \dots, n, \quad j = 1, \dots, m, \quad \alpha > 0, \quad z = (x, y) \in \mathbb{R}^n \times \mathbb{R}^m.$$

Franchi and Lanconelli in [7] wrote explicitly the control distance d and proved that d is locally Hölder continuous, the d-balls are bounded and verify the doubling property. More precisely, there are $c_1, c_2 > 0$ such that, for every $z = (x, y) \in \mathbb{R}^N$

(3.2)
$$c_1 \leq \frac{|B_d(z,r)|}{r^{n+m} (|x|+r)^{\alpha m}} \leq c_2 ,$$

(Theorem 2.7 in [7]). We remark that the constants c_1 , c_2 are independing on z and r. Then the control distance d verifies hypothesis (H_r) for every r > 0.

Moreover, Theorem 2.6 in [8], assure that every bounded open subset of \mathbb{R}^N is in $\mathfrak{R}_p(X)$ while (2.7) is granted by Theorem 4.1 in [9].

Then, by Corollary 2.2 and (3.2) we have:

THEOREM 3.2. Let Ω be an open subset of \mathbb{R}^N and let $p \in [1, +\infty[$. If, for a suitable fixed r > 0,

$$\frac{\left|\Omega \cap B_d(z,r)\right|}{\left(\left|z\right|+r\right)^{\alpha m}} \to 0 \quad \text{ as } \left|z\right| \to \infty ,$$

then $\Omega \in \mathfrak{K}_{p}(X)$.

3c. We consider in R^2 the following vector fields:

 $X_1 = (1 + x_1^2) \, \partial_{x_1}, \qquad X_2 = \partial_{x_2}, \qquad (x_1, x_2) \in R^2.$

We prove the following

THEOREM 3.3. Let Ω be an open subset of \mathbb{R}^2 and let $p \in [1, +\infty[$. If, for every L > 0, we have:

(3.3)
$$\lim_{|\lambda| \to +\infty} |\Omega \cap (] - L, L[\times]\lambda - \pi, \lambda + \pi[)| = 0$$

then $\Omega \in \mathfrak{K}_p(X)$.

First of all we remark that, in this case we can explicitly compute the control distance d:

 $d((x_1, x_2), (x'_1, x'_2)) \cong \max \{ |\arctan x_1 - \arctan x'_1|, |x_2 - x'_2| \} = d_1((x_1, x_2), (x'_1, x'_2)).$ Then for big x_1 the *d*-balls of center (x_1, x_2) are not bounded and the d_1 -ball with center (x_1, x_2) and radius $r = \pi$ is $S_{x_2} = R \times]x_2 - \pi, x_2 + \pi[$.

So that there are unbounded sets with bounded diameter, with respect to the control metric. Moreover, it easy to see that, with respect to the d_1 -balls, the covering property (C_r) holds for every r > 0.

Now, we prove that the sets $\Omega_b = R \times [-h, h[, h > 0, \text{ are in } \mathcal{K}_p(X), \text{ for every } p \in$

 $\in [1, +\infty[$. We introduce the trasformation

$$T: R^2 \rightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\times R$$
$$(x_1, x_2) \mapsto (\arctan x_1, x_2).$$

If we put $\tilde{\Omega}_b = T(\Omega_b)$ then compact embedding of $\overset{\circ}{W}^p_X(\Omega_b)$ in $L^p(\Omega_b)$ is equivalent to the compact embedding of $\overset{\circ}{W}^p_{\omega}(\tilde{\Omega}_b)$ in $L^p_{\omega}(\tilde{\Omega}_b)$, where $\overset{\circ}{W}^p_{\omega}(\tilde{\Omega}_b)$, $L^p_{\omega}(\tilde{\Omega}_b)$ are the (classical) weighted Sobolev and L^p spaces, respectively, with weight $\omega(\xi, \eta) = 1 + \tan^2 \xi$. Now $\tilde{\Omega}_b$ is a bounded set of $] - \pi/2$, $\pi/2[\times R$, then from Theorem 1.9 in [1], $\overset{\circ}{W}^p_{\omega}(\tilde{\Omega}_b)$ is compactly embedded in $L^p_{\omega}(\tilde{\Omega}_b)$ that is $\Omega_b \in \mathcal{R}_p(X)$.

Now we are in position to prove Theorem 3.3.

PROOF OF THE THEOREM 3.3. Because condition (C_r) is satisfied for every r > 0, it is enough to prove condition (E_r) of Main Lemma for $r = \pi$. Now from the previous remark $S_{\lambda} \in \mathcal{R}_p(X)$, so that (by the translation invariant with respect to x_2) for every $\varepsilon > 0$ there exists L > 0 such that

(3.4)
$$\int_{S_{\lambda} \cap \{|x_{1}| \geq L\}} |u(y)|^{p} dy \leq \frac{\varepsilon}{2} \int_{S_{\lambda}} (|u(y)|^{p} + |D_{X}u(y)|^{p}) dy,$$

for every $u \in C^1(S_{\lambda})$ and for every $\lambda \in R$. Here and in the following we use the notation $|D_X u|^p$ for $\sum_{i=1}^{2} |X_i u|^p$.

We choose a covering (S_{λ_i}) of R^2 by d_1 -balls $S_{\lambda_i} = B_{d_i}((0, \lambda_i), \pi)$.

Let $\varepsilon > 0$ be fixed. We choose L > 0 as in (3.4) and $\delta > 0$ as we will fix later. From (3.3) there is a $\overline{\lambda} > 0$ such that

(3.5)
$$|\Omega \cap (] - L, L[\times]\lambda - \pi, \lambda + \pi[)| \leq \delta \text{ for every } \lambda \in R, |\lambda| \geq \overline{\lambda}.$$

We put $\Omega_0 = R \times] - \overline{\lambda} - \pi$, $\overline{\lambda} + \pi [$. Then $\Omega_0 \cap \Omega \in \mathcal{R}_p(X; \Omega)$, since Ω_0 is of Ω_b type. Therefore, if $(\Omega \setminus \Omega_0) \cap S_{\lambda_i} \neq \emptyset$ then $|\lambda_i| \ge \overline{\lambda}$. Now

$$\int_{\Omega \setminus \Omega_0) \cap S_{\lambda_i}} |u(y)|^p dy =$$

$$= \int_{((\Omega \setminus \Omega_0) \cap S_{\lambda_i}) \cap \{|x_1| \ge L\}} |u(y)|^p dy + \int_{((\Omega \setminus \Omega_0) \cap S_{\lambda_i}) \cap \{|x_1| \le L\}} |u(y)|^p dy = I_1 + I_2.$$

We estimate I_1 and I_2 separately.

From (3.4):

$$I_1 \leq \int_{S_{\lambda_i} \cap \{|x_1| \geq L\}} |u(y)|^p dy \leq \frac{\varepsilon}{2} \int_{S_{\lambda_i}} (|u(y)|^p + |D_X u(y)|^p) dy.$$

Moreover, from the classical Sobolev inequality, if we put $Q_L^i =] - L$, $L[\times]\lambda_i - \pi$, $\lambda_i + \pi[$, there exist k > 1 and a positive constant $c = c(L) = c(\varepsilon) > 0$ independing

on *i*, such that

$$\left(\int_{Q_L^i} |u(y)|^{kp} dy\right)^{1/kp} \leq c \left(\int_{Q_L^i} (|u(y)|^p + |Du(y)|^p) dy\right)^{1/p},$$

where Du is the classical gradient. Then from Hölder inequality:

$$\left(\oint_{Q_L^i} |u(y)|^p dy \right)^{1/p} \leq \left(\frac{|Q_L^i \cap \operatorname{supp} u|}{|Q_L^i|} \right)^{(1-1/k)/p} \left(\oint_{Q_L^i} |u(y)|^{kp} dy \right)^{1/kp} \leq \\ \leq c (|Q_L^i \cap \operatorname{supp} u|)^{(1-1/k)/p} \left(\oint_{Q_L^i} (|u(y)|^p + |Du(y)|^p) dy \right)^{1/p}$$

Since $|Q_L^i \cap \operatorname{supp} u| \leq |Q_L^i \cap \Omega|$, if we choose δ in (3.5) such that $c^p(\varepsilon) \delta^{1-1/k} \leq \varepsilon/2$, we thus obtain

$$I_2 \leq \frac{\varepsilon}{2} \int_{Q_L^i} \left(|u(y)|^p + |Du(y)|^p \right) dy \leq \frac{\varepsilon}{2} \int_{S_{\lambda_i}} \left(|u(y)|^p + |D_X u(y)|^p \right) dy.$$

Therefore we finally get

 $(\Omega \setminus$

$$\int_{(\Omega_0)\cap S_{\lambda_i}} |u(y)|^p dy = I_1 + I_2 \leq \varepsilon \int_{S_{\lambda_i}} (|u(y)|^p + |D_X u(y)|^p) dy.$$

This proves (E_r) with $r = \pi$ and completes the proof of Theorem 3.3.

I wish to thank Professor E. Lanconelli for suggesting the problem and for his helpful conversations during the preparing of this *Note*.

References

- [1] A. AVANTAGGIATI, Spazi di Sobolev con peso e alcune applicazioni. Boll. U.M.I., (5), 13-A, 1976, 1-52.
- [2] M.S. BERGER M. SCHECHTER, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains. Trans. Amer. Math. Soc., 172, 1972, 261-278.
- [3] R.R. COIFMAN G. WEISS, Analyse harmonique non-commutative sur certain espaces homogènes. Lecture Notes in Mathematics, 242, Springer-Verlag, Berlin-New York 1971.
- [4] C. FEFFERMAN D.H. PHONG, Pseudo-differential operators with positive symbols. Seminair Goulaouic-Meyer-Schwartz, 23, 1981.
- [5] G.B. FOLLAND, Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv. for Math., 13, 1975, 161-207.
- [6] G.B. FOLLAND C.R. STEIN, Hardy spaces of homogeneous groups. Math. Notes Princeton Univ. Press, 1982.
- [7] B. FRANCHI E. LANCONELLI, Une métrique associée à une classe d'opérateurs elliptiques dégénérés. Rend. Sem. Mat. Univ. Pol. Torino, 1983, Special Issue, 105-114.
- [8] B. FRANCHI E. LANCONELLI, An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnach inequality. Comm. in Partial Differential Equations, 9, 1984, 1237-1264.
- [9] B. FRANCHI R. SERAPIONI, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm., vol. xiv, 1987, 527-568.

- [10] W. FULTON B. HARRIS, Representation theory: A first course. Graduate Text in Math., 129, Springer-Verlag, 1992.
- [11] N. GAROFALO E. LANCONELLI, Existence and nonexistence results for semilinear equations on the Heisenberg group. Ind. Univ. Math. Journ., 41, No.1, 1992, 71-98.
- [12] R. HERMANN, Differential geometry and the calculus of variations. Academic Press, New York-London 1968.

Dipartimento di Matematica Università degli Studi di Bologna Piazza di Porta S. Donato, 5 - 40127 BOLOGNA