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Anal is i matemat ica . — Some perturbation results for non-linear problems. N o t a di 

C A R L O C A R M I N A T I , p resen ta ta (*) dal Corr isp . A. Ambrose t t i . 

ABSTRACT. — We discuss the existence of closed geodesic on a Riemannian manifold and the existence 

of periodic solution of second order Hamiltonian systems. 

KEY WORDS: Critical point theory; Closed geodesies; Second order Hamiltonian systems. 

RIASSUNTO. — Alcuni risultati di perturbazione per problemi non-lineari. Viene discussa l'esistenza di geo­

detiche chiuse su una varietà Riemanniana compatta e l'esistenza di moti periodici per sistemi Hamiltoniani 

del second'ordine. 

1. INTRODUCTION 

In this paper we prove two multiplicity results for two classical nonlinear problems: 
the existence of closed geodesies on a Riemannian manifold and the existence of perio­
dic solutions of second-order Hamiltonian systems. 

About the former we show: 

THEOREM 1. Let We C2(Rn + x; £s(R
n + *; Rn + *)) and consider the space Rn + 1 

endowed with the scalar product: 

(1) [v\w)x = vw + eW(x)vw . 

Let Sn = {x e Rn + l : \x\ = 1} and Ns = (Sn, (• | •)) unit sphere endowed with the Rie­
mannian structure inherited from the scalar product (1). There exist n + 1 geometrically di­
stinct closed geodesies on the Riemannian manifold NE, provided that s > 0 is small 
enough. 

As far as we know, this theorem is not contained in the classical results about closed 
geodesies, see for example [7]. 

The second theorem deals with brake orbits of prescribed energy for second-order 
systems 

(2) q + V'(q) = Qy q(t) e Rn . 

A brake orbit for (2) is a solution of (2) such that, for some T > 0, 

(3) q(0)=q(T) = 0. 

Let us remark that if q is a brake orbit then q{t) := q{\t\) is a periodic solution 
of (2). 

THEOREM 2. Let V£(x) = (l/2)Ax*x + eR(x), where A is a symmetric n X n matrix 
{that, with no loss of generality, can be supposed diagonal) such that det A ^ 0, and 
ReC2(Rn;R). Let 0 < coj < ... < co2^ be the positive eigenvalues of A and 

(*) Nella seduta del 24 aprile 1993. 
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Xj = ker (A — co2 1), j = 1,... ,m, be the corresponding eigenspaces of dimension 
respectively a l,..., am . 

Moreover let the following non-resonance condition hold: 

(4) (cOi/coJtZ, \fi*j. 

For every E > 0 the equation q + Vt(q) — 0 has at least a = X«y brake orbits of en­
ergy 1/2 \q\2 + Ve(q) = E, provided that £ > 0 is small 

The existence of multiple periodic solutions of Hamiltonian systems (even more ge­
neral than (2)) has been studied in [6, 10], see also [3]. For instance the result of Eke-
land and Lasry[6], in the case of second-order systems like (2), claims the following. 
Let H(p,q) = (1/2) \p\2 + V(q) and SE : = {(p,q)eR2n:H(p,q)=E} and assume: 

/) EE = dQ, and Q is a convex open set containing 0, and H'(x)'X > 0, 
Vx e UE. 

ii)R2<2r2, where r2 := min{ \p\2 + \q\2 : (p, q) G dQ} and R2 : = 
= max{|/>|2+ |^ | 2 : (p,^) G 513}. 

Then (2) has at least n distinct periodic solutions of energy E > 0. 
One the one hand this result is more general than ours because the potential is not 

necessarily of the type V(x) = (l/2)Ax'x + sR(x). 
On the other hand: 

1) If we perturb a quadratic potential Q(x) = (l/2)Ax*x, where A is a matrix 
with some negative eigenvalue, the energy surface ZE of the perturbed problem will 
not, in general, be the boundary of a convex open set (in fact, it will not even be 
bounded). 

2) If V(x) = (l/2)Axmx where A is a positive defined matrix, the condition 
R2 < 2r2 implies that r2 ^ col ̂  co2

n ^ R2 < 2r2. 

This condition is obviously stronger than (4). 
Essentially the same remarks can be made comparing Theorem 2 to the result about 

brake orbits obtained by Szulkin in [10]. 
The common feature of the two problems we will discuss is that they are perturba­

tion problems variational in nature, namely their solution can be found looking for the 
critical points of some suitable functionals. As a matter of fact, they are both obtained 
exploiting an abstract critical point theory theorem contained in [4]. 

2. PRELIMINARIES AND NOTATIONS 

Let X be a topological space. Let us denote by cat(X) the Ljusternik-
Schnirelman category of X with respect to itself, namely the least integer k such that 
X c Q U ... U Q , where every Q is a closed subset of X and is contractible to a point 
in X. (For an exposition of the Ljusternik-Schnirelman theory see for example [9]). We 
recall the following classical result: 
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THEOREM 3. Let Z be a compact manifold and f^Cl(Z\R). Then f has at 

least cat(Z) critical points on Z 
The following definition and theorem are taken from [4]. 

DEFINITION 4. Let M he a Hilbert manifold, Z cM a compact connected submanifold 

of class C2 and let / E C 2 (M, R). 

Z is a non-degenerate critical manifold for f if 

1) All the points of Z are critical points of f 

2) ke r / " (z ) = TZZ. (Where TZZ denotes the tangent space to Z in z). 

3) f"{z) is a Fredholm operator of index zero. 

Let f<EC2(RxM,R) and let f(x) :=f(s,x). Moreover, let f(x)=f(0,x). 

THEOREM 5. Let Z be a non-degenerate critical manifold for f — / ( 0 , •), then there 
exists some 1 > 0 such that for every e: \e\ < I f has cat(Z) critical points near Z. 

REMARKS. 1) Actually [4] deals with the case where M = H is a Hilbert space. It is 

easy to check that the results hold true in the above more general formulation as 

well. 

2) Let be given on M the action of a compact group G and let / ( s , •) be G-inva-
riant. Then Z is invariant as well, and we can define the G-category of Z as the mini­

mum number of closed G-contrac tibie (l) sets covering Z. In this case, using the same 

techniques, we obtain that f has G-cat (Z) critical points which are distinct modulo G. 

Remark that G-cat (Z) ^ cat ( Z / G ) . 

Similarly, if instead of the G-category we consider iG an index for G we obtain that 

f has iG critical points which are distinct modulo G. For the index theory we again re­

fer to [9, p. 91 and ff]. 

3. CLOSED GEODESICS ON A SPHERE WITH A PERTURBED METRIC 

Let S be a Riemannian manifold endowed with the scalar product ( | ). A closed geo­

desic is a critical point of the functional 

j(r\r)2dt on HHs\s). 
o 

Let H:={reH1([0,27i];R" + ly.r(0) = y(27z)}, and M = { r eH: y(t) e S" 

V / e [0 , 2TT]}. Consider f€eC2(H;R) defined by: 

r^ J \y\2dt + e \ (W(r)r-r)dt. 

0) A set C is G-contractible in Z if there exists an homotopy h eC([0, 1] X C; Z) such that h{t, •) is 
G-equivariant and h(l,C) is the G-orbit of one single point. 
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Theorem 1 will be proved by an application of Theorem 5. First we study the critical 
points of the unperturbed functional / . 

LEMMA 6. For all m G Z the sets Zm defined by 

Zm = {z E M\z(t) = xcos mt + y sinmt: x,y G Rn + l : |x| 

are non-degenerate critical manifolds for f 

1, x-y = 0} 

PROOF. It is easy to see that Zm is a smooth compact manifold and / | M M — 0, 
Vz G Zm. 

If z is a geodesic, then 
2x 

f\M(z)[h,k]= Uh-k- \z\2h-k]dt, Vh,keTzM. 
o 

Moreover, the fact that f"(z) is a Fredholm operator of index zero can be easily 
verified. 

Now we claim that: TzZm — ker/['M. 
Let us recall that h G ker/('M(z) if and only if 

2n 2TZ 

(5) ïh-kdt= f \z\2h-kdt, VkeTzM. 
o o 

Let S = (z( 0); z( 0)) be the span of the two vectors z( 0), z( 0) and let {^,..., en} be an 
orthonormal base for S L . For every z G Zm let us take a base {tf/ U)}/ = i,...,» of the tan­
gent space \o Sn in z(t) defined by: 

z(t)/m , / = 1, 

et- , / ^ 1 . 

Then, if A, k G TZM, one has 

/ = 1 j = 1 

where A/(f) = (A(/)-^-(/)) and &,•(*) = (&(/)-éyU)). From (5) it follows that 

2K 

I 
0 

Therefore 
2 

E ( ^ + h lèi) 
i= 1 / = 1 

E kjej 
7 = 1 

>dt = 0. 

J E hiki + w2Mi - /̂ 2 2 hik\dt = J | S M,- - ^2 S A/̂ -U = o. 

By regularity h G C 2 ( [ 0 , 2K]; Rn) and is a solution of 

Ui = o, 
\hj + m2hj = 0, j = 2,...,n. 
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Then, since in addition h(0) = h{2n)i one finds 

hx{t) =Ai , 

hj(t) = Ay cos mt + [Xj sinmt, j = 2,... ,n . 

And thus, 

À * 

£(/) = — iU) + 2 (Ay cos /fttf + //y sin mt) <?y . 

As h(t)9z(t) = 0 V/ G [0, 27r], it is immediate to see that h sTzZm. Since obviously 
TzZm cker/[ 'M , the lemma follows. 

PROOF OF THEOREM 1. Let us point out that the functional / ( s , •) is invariant under 
the 0(2)-action: 

{±1}XS1XH^H, ( ± l , 0 , r ) i - » r ( ± / + 0). 

And hence M and Zm are invariant as well. Lemma 6 allows us to apply Theorem 5 and 
for all m G N there are at least 0(2)-cat (Zm) critical points (which are distinct modulo 
0(2)) near the critical manifold Zm. They correspond to geometrically distinct closed 
geodesies. It is known (see [8]) that 

0(2)-cat(ZJ ^ cat(Zw /0(2)) £ cuplength (Z^/0(2)) + 1. 

Moreover, Zw is diffeomorphic to the unit tangent bundle 

TlS
n:={{x,y)eRn + l X R n + l: \x\2 = \y \2 = 1, (x-y) = 0} , 

and hence, using a result of [1, p. 151], cuplength (Zm/0(2)) = cuplength 
(T1S

n/0(2))^n. Hence 0(2)-cat ( Z J ^ * + 1 . This ends the proof of Theo­
rem 1. 

4. EXISTENCE OF BRAKE ORBITS 

Given E > 0, let H = H 1 ([0, 1]; R") and consider the functional 
/ . e C2(H, JO, 

/ . ( « ) = 1 / l«|2<& M [ Ê - V e ( « ) ] ^ • 

It is well known (see for instance [5]) that, if u G H is a critical point for the functional 
/e and f£(u) > 0 then 

U + r 2 y » = o, 
[A( l ) -« (1) -A(0) -«(1) = 0, 

where 

T2 = U J|^|2^\lh[E-Vt(u)ldt , 

and #(/) = u(t/T) is a brake orbit of (2). 
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The originai problem is again reduced to the study of the critical points of the fun­
ctional / e . Here the unperturbed functional is 

/ (« )= i f \û\2dt M \E- ±Au-u\dt \. 

Let us consider the following critical manifolds 

Zj = {zeH\z = tie1* + r " w ) / 2 : ^ I ; , |? |2 = 2E/co2} . 

We claim that 

LEMMA 7. Zj are non-degenerate critical manifolds if and only if (DJMJ £ Z V? ^j. 

PROOF. There results 

(7) f"(z)[h,k] = jh>kdt\ \ \ \ E - jAz-z\dt\ - jz-hdt\ JAz' kdt\-

-[\i4dt\uAz'hdt\- U\z\2dtÌ^Ak-hdt\. 

If ze.Zj then Az = ojj z, z = — n2z, and therefore 

fz-*<fc][ \Az-hdt\ = n2cujUz-kdt\i \z-hdt\, 

\z-hdt\l JAz-kdt\ = n2oA jz-kdAi jz-bdt\ 

Moreover 

j f a - f H * - ! ' ïJl'12*" 
o "- J 0 

Substituting in (7) we obtain that, if h e ker/"(z), then 

(8) f"(z)[h,k]=^ lh4dt-27z2«>jnz-kdt\Uz-hdt -

n2E 

2<*2 

-TV2- \Ah.-k = 0, V £ e H . 

This implies that h satisfies weakly (and, by regularity, strongly) the equation 

/ l 

(9) jh + 2K2nz-hdt\z+ IL-jM = 0. 

Moreover, integrating by parts (8) and taking in account (9), we find that 



SOME PERTURBATION RESULTS FOR NON-LINEAR PROBLEMS 2 4 9 

h(l)'Hl) -h(0)-k(0) = 0, VkeH, and hence 

(10) h(0)=h(D = 0. 

Let er be a vector of the canonical base of Rn such that er £ Xj. Then the component 

hr : = h - er of h satisfies 

[ hr + 7z2ajj-2Ahr = 0 , 

[hr(0)=hr(l) = 0. 

If er is an eigenvector corresponding to a negative eigenvalue, it is obvious that the 
system will not admit nontrivial solutions. If er is an eigenvector corresponding to a po­
sitive eigenvalue co2, then we find hr(t) —a cos (71 co rt/COJ) + b sin (7zcort/ ojj), and (10) 
implies a = 0 e è = 0<^cor/ojj^X. Therefore tor/ tOj• £ Z \/j^ r is a necessary condi­
tion for Zj to be non-degenerate. Let us prove that this condition is sufficient as well. A 
simple calculation shows that, extending z and h to even functions defined on 
[ - 1 , 1], they still satisfy to equation (9) on the interval [ —1, 1]. 

Let us set: 

h(t) = +£cne*"*, cn = 7_n{2). 
— 00 

Since the support of h is contained in Xj, then cn = a„ + ibn where a„y bn eXj,Vn e Z. 
Therefore, substituting in (9), 

z - °° z Z - °° 

Whence 

# S a - w W ^ + Hd + É i K ^ r — =0, 
Z - 00 Z 

and then c„ = 0 Vn ^ ± 1 , cx= a -V ib, a, b sXj, a •% = 0. 
Moreover (10) implies that b = 0, and finally one has h{t) = a{eint + e~i7Zt)/2, 

a GXJ, a-Ç = 0. 
It is now evident that h eTz Zj. 

PROOF OF THEOREM 2. Let us consider 

«(/) -»«(1 - / ) . 

It is clear that .cr is an isometry and a2 = id. Now, let G = {id, cr} be the group genera­
ted by cr. Let us set: FixG = {u e H: u(t) = u( 1 - /) V / e [ 0 , 1]}; fl={icH; 

A closed, <r(A) =A}; T= {h eC(H;H): bo<j = dob}. 
Define the index iG : <3L-» N U { + 00 } by setting: iG (A) = min{B<£: A —» 

— > J R " \ { 0 } , (̂ ocr = — <p}, and /G = + 0° if such an « does not exist. 

(2) c denotes the complex coniugate of c. 
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It is easy to check that iG is an index (see [10]). Moreover since az = —zVzeZj, 
one has that iG coincides with the Krasnoselskii genus y on Zj (see [9] for a definition). 
Therefore ÌQ{ZJ) — y{Zj). From the fact that Zj is diffeomorphic to the unit sphere in 
Ra\ it follows that y(Zj) = ay (see [2, p. 19]). 

Since fe is G-invariant Vs, applying Theorem 5 we obtain that for all fixed E > 0, 
provided a is small, there exist a = S«y geometrically distinct critical points that give 
rise to a distinct brake orbits for the potential Ve. 

Partially supported by M.U.R.S.T. 
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