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Analisi matematica. — Some perturbation results for non-linear problems. Nota di
CarLo CarminaTi, presentata (*) dal Corrisp. A. Ambrosetti.

AnstracT. — We discuss the existence of closed geodesic on a Riemannian manifold and the existence
of periodic solution of second order Hamiltonian systems.

Key worbps: Critical point theory; Closed geodesics; Second order Hamiltonian systems.

Ruassunto. — Alcuni risultati di perturbazione per problemi non-lineari. Viene discussa I'esistenza di geo-
detiche chiuse su una varietd Riemanniana compatta e I'esistenza di moti periodici per sistemi Hamiltoniani
del second’ordine.

1. INTRODUCTION

In this paper we prove two multiplicity results for two classical nonlinear problems:
the existence of closed geodesics on a Riemannian manifold and the existence of perio-
dic solutions of second-order Hamiltonian systems.

About the former we show:

TreoreM 1. Let We C3(R"™!; &(R" ", R"* 1)) and consider the space R**'
endowed with the scalar product:

(1) w|w)=vw+ Wx)v-w.
Let S"={xeR"*"": |x| =1} and N, = (8", (-] *)) unit sphere endowed with the Rie-
mannian structure inberited from the scalar product (1). There exist n + 1 geometrically di-

stinct closed geodesics on the Riemannian manifold N., provided that ¢ > 0 is small
enough.

As far as we know, this theorem is not contained in the classical results about closed
geodesics, see for example [7].

The second theorem deals with brake orbits of prescribed energy for second-order
systems

(2) g+V'i(g)=0, q(t)eR".
A brake orbit for (2) is a solution of (2) such that, for some T > 0,
(3) g(0)=4q(T)=0.

Let us remark that if ¢ is a brake orbit then ¢(#):=g(|¢|) is a periodic solution
of (2).

TueoreM 2. Let V. (x) = (1/2) Ax-x + eR(x), where A is a symmetric n X n matrix
(that, with no loss of generality, can be supposed diagonal) such that det A # 0, and
ReC?*(R";R). Let 0<wi<..<wl be the positive eigenvalues of A and

(*) Nella seduta del 24 aprile 1993.
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Xi=ker(A—w}ll), j=1,...,m, be the corresponding eigenspaces of dimension
respectively o, ..., a,,.
Moreover let the following non-resonance condition hold:

(4) (w;/w;) ¢ Z, Vi#7.

For every E > 0 the equation § + V/ (q) = 0 bas at least a = 3, o; brake orbzts of en-
ergy 1/2|4|* + V.(q) = E, provided that <> 0 is small.

The existence of multiple periodic solutions of Hamiltonian systems (even more ge-
neral than (2)) has been studied in [6, 10], see also [3]. For instance the result of Eke-
land and Lasty [6], in the case of second-order systems like (2), claims the following,
Let H(p,q) = (1/2) |p|*+ V(g) and Xp :={(p,q)eR*:H(p,q)=E} and assume:

7) Xg=030, and £ is a convex open set containing 0, and H'(x)-x > 0,
Vx e 25 .

i) R*<2r?, where r*:=min{|p|®+ |g]°:(p,q) €02} and R?:=
= max{[p|* + l¢|* (p, 9) 68!2}

Then (2) has at least # distinct periodic solutions of energy E > 0.

One the one hand this result is more general than ours because the potential is not
necessarily of the type V(x) = (1/2)Ax-x + eR(x).

On the other hand:

1) If we perturb a quadratic potential Q(x) = (1/2) Ax-x, where A is a matrix
with some negative eigenvalue, the energy surface Xy of the perturbed problem will
not, in general, be the boundary of a convex open set (in fact, it will not even be

bounded).

2) If V(x) =(1/2)Ax-x where A is a positive defined matrix, the condition
R? < 2¢? implies that 7> < w? < w2 < R? < 2¢2.

This condition is obviously stronger than (4).

Essentially the same remarks can be made comparing Theorem 2 to the result about
brake orbits obtained by Szulkin in[10].

The common feature of the two problems we will discuss is that they are perturba-
tion problems variational in nature, namely their solution can be found looking for the
critical points of some suitable functionals. As a matter of fact, they are both obtained
exploiting an abstract critical point theory theorem contained in[4].

2. PRELIMINARIES AND NOTATIONS

Let X be a topological space. Let us denote by cat(X) the Ljusternik-
Schnirelman category of X with respect to itself, namely the least integer £ such that
XcC,U ...UC,, where every C, is a closed subset of X and is contractible to a point
in X. (For an exposition of the Ljusternik-Schnirelman theory see for example [9]). We
recall the following classical result:
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Tueorem 3. Let Z be a compact manifold and fe C'(Z;R). Then f has at
least cat (Z) critical poinis on Z.

The following definition and theorem are taken from [4].

DEerINtTION 4. Let M be a Hilbert manifold, Z ¢ M a compact connected submanifold
of class C? and let fe C*(M,R).

7 is a non-degenerate critical manifold for f if

1) All the points of Z are critical points of f.
2) ker f"(z) = T,Z. (Where T,Z denotes the tangent space to Z in z).
3) f"(z) is a Fredholm operator of index zero.

Let feC?*(RXM,R) and let f(x):= f(e,x). Moreover, let f(x)=f(0,x).

TaEOREM 5. Let Z be a non-degenerate critical manifold for f=f(0, ), then there
exists some € > 0 such that for every c: |c| <e f. has cat(Z) critical points near Z.

Remarks. 1) Actually [4] deals with the case where M = H is a Hilbert space. It is
easy to check that the results hold true in the above more general formulation as
well.

2) Let be given on M the action of a compact group G and let f(¢, *) be G-inva-
riant. Then Z is invariant as well, and we can define the G-category of Z as the mini-
mum number of closed G-contractible (1) sets covering Z. In this case, using the same
techniques, we obtain that £ has G-cat (Z) critical points which are distinct modulo G.
Remark that G-cat(Z) = cat(Z/G).

Similarly, if instead of the G-category we consider 7 an index for G we obtain that
/ has 7¢ critical points which are distinct modulo G. For the index theory we again re-
fer to[9, p. 91 and ff].

3. CLOSED GEODESICS ON A SPHERE WITH A PERTURBED METRIC

Let S be a Riemannian manifold endowed with the scalar product (| ). A closed geo-
desic is a critical point of the functional

2%
J(ﬂ}'f)zdt on H'(S',9).
0

Let H:={yeH'([0,27]; R"*"): y(0) = y(2n)}, and M = {yeH: y(t)e§”
Vt e [0, 2n1}. Consider f, e C*(H;R) defined by:
27 2z
reo [1ildete [ (W) yei)de.
0

0

(1) A set C is G-contractible in Z if there exists an homotopy » € C([0, 11 X C; Z) such that (¢, *) is
G-equivariant and A(1, C) is the G-orbit of one single point.
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Theorem 1 will be proved by an application of Theorem 5. First we study the critical
points of the unperturbed functional f.

Lemma 6. For all m € Z the sets Z,, defined by
Z,={zeM|z(t) =xcosmt +ysinmt: x,ye R"*': |x| = |y| =1, x*3 =0}

are non-degenerate critical manifolds for f.

Proor. It is easy to see that Z,, is a smooth compact manifold and fy(z) =0,
Ve Z,.

If z is a geodesic, then
2n
fiu@Ub, k1 = [1b-k = |2|°b-k1de, Vb, ke T.M.
0

Moreover, the fact that f"(z) is a Fredholm operator of index zero can be easily
verified.
Now we claim that: T,Z,, = ker f|y
Let us recall that b e ker f{j (z) if and only if
2_
5) Jb’-/e'd:= j 2|%h-kdr, VkeT.M.
0 0

Let S = (z(0); 2(0)) be the span of the two vectors z(0), Z(0) and let {e,, ... ,e,} be an
orthonormal base for §* . For every z € Z,, let us take a base {¢;(¢)};~, ., of the tan-
gent space to S” in z(¢) defined by:

W()m, i=1,
e (t) = .
e, 1#1.
Then, if », ke T,M, one has

b0 = Ehweln) ko= 3 k@0

where b, (¢) = (h(£)-e;(¢)) and k;(¢) = (k(2)-¢;(¢)). From (5) it follows that

s ][5 0

Therefore

[ M=

2z, L ” 27 n .. ”
j [2 bk, + m*h ke, — m? Elbiki|dt = j {Z bk, —m? 2 b,-/«,}dx =0.
P 2 .

i=1 i=2
0 0

By regularity » € C?([0, 2x]; R") and is a solution of

h =0
/'9;-+m2bj=0, J=2,...,n.
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Then, since in addition A(0) = A(2x), one finds

/?1 (t) = )\1 )

bi(t) =X cosmt +y;sinmt, j=2,..,n.
And thus,
Ay
m

h(t) = == i(t) + 2 (2, cos mt + wu; sinmt)e; .
j=2

As b(2)+z(z) = 0 Vr e [0, 2x], it is immediate to see that b € T,Z,,. Since obviously
T,Z, cker f{y, the lemma follows.

Proor oF THEOREM 1. Let us point out that the functional f(e, *) is invariant under
the O(2)-action:
{1} xS'XH—-H, (x1,0,y)~>y(xt+0).

And hence M and Z,, are invariant as well. Lemma 6 allows us to apply Theorem 5 and
for all 7z € N there are at least O(2)-cat (Z,,) critical points (which are distinct modulo
O(2)) near the critical manifold Z,,. They correspond to geometrically distinct closed
geodesics. It is known (see[8]) that

O(2)-cat(Z,,) = cat(Z,,/O(2)) = cuplength (Z,,/O(2)) + 1.
Moreover, Z,, is diffeomorphic to the unit tangent bundle

T,8" :={(x,y) e R* "' X R**1: |[x|?>= |y|*=1, (x-y) =0},
and hence, using a result of [1,p. 1511, cuplength (Z,/O(2)) = cuplength
(T, 87 /0O(2)) = n. Hence O(2)-cat(Z,)=n+ 1. This ends the proof of Theo-

rem 1.

4. EXISTENCE OF BRAKE ORBITS

Given E>0, let H=H!0,1]1;R*) and consider the functional

f.eC*(H,R),
1 1
1 .
flu)== |u|2dt)( [E - Ve(u)]dt).
L (jirs)

It is well known (see for instance [5]) that, if # € H is a critical point for the functional

f. and £, («) > 0 then

©) 4+ T*V.(u) =0,
bh(1)-4(1) —h(0):4(1)=0,

where

1 1
TZZ(% J|”|2dt)/(J[E—V€(u)]dt)’
g 0

and ¢(¢) = u(¢/T) is a brake orbit of (2).
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The original problem is again reduced to the study of the critical points of the fun-
ctional f.. Here the unperturbed functional is

flu) = %(IMP@?) (OJI[E— %Au-u]dt).

Let us consider the following critical manifolds
— {eeHlz= 6™ + ™)/ 2: £ X,, |57 = 2B/ 2}
We claim that

Lemma 7. Z; are non-degenerate critical manifolds if and only if w,/w;¢ L i #.

Proor. There results

@ fr@b k= (f/;-k’dt)(of[E—%Az-z]df)—(fz'-b'dt)(fxxz-kd;)—

0 0 0

_(Ofi.;,‘d,f) (JIAZ.M, - (Of|z'|2dt)(oj1/1/e-bd;).

If ze Z; then Az = w;z, = — n°z, and therefore

o<
e+

1 1
_ 1. _E 1 (24 =°E
J[E 2Az z]dt > > J|z| dt o

0 Wj

Substituting in (7) we obtain that, if 5 € ker /"(z), then
1 1 1
(8) f"(z)[b,k]=% jb’-/e'dz—2n2wf(jz-kd¢)(jz-bdf)—
0 0 0

1
_n2E jAb-k=o, VEeH.
2

Moreover

This implies that b satisfies weakly (and, by regularity, strongly) the equation

2

1
9) g/ﬁ.+2n2(12'bdt)z+ anAb=0.
0

Moreover, integrating by parts (8) and taking in account (9), we find that
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h(1)+k(1) — h(0)-£(0) =0, Yk € H, and hence
(10) h(0)=h(1)=0.

Let ¢, be a vector of the canonical base of R” such that e, ¢ X;. Then the component
b, :=bh-e, of b satisfies

b, + mPw;2Ab, =0,
5, (0)=5,(1)=0.

If ¢, is an eigenvector corresponding to a negative eigenvalue, it is obvious that the
system will not admit nontrivial solutions. If e, is an eigenvector corresponding to a po-
sitive eigenvalue w?, then we find 5, (#) = a cos (nw,?/ w;) + bsin (mw,t/ »;), and (10)
impliesa =0 eb =0 w,/w, ¢ Z. Therefore w, /w; ¢ Z Vj # r is a necessary condi-
tion for Z; to be non-degenerate. Let us prove that this condition is sufficient as well. A
simple calculation shows that, extending z and 5 to even functions defined on
[—1, 1], they still satisfy to equation (9) on the interval [—1, 1].
Let us set:

+ o0
h(t) = 2 ce™ ¢, =c_,.

Since the support of 5 is contained in X;, then ¢, = g, + 76, where a,,b,€ X;, Vn e Z.
Therefore, substituting in (9),

t® . _ int -t 1® .
—g Ec,,ﬂzﬂze”"”+7r2£°(cl+61)E—e—%— +n2% c,e™ =0
Whence
T . _ int —int
g (1—n2)c,,e’””f+s-(c1+c1)59—+2‘3— =0,

and then ¢, =0 Vu = *1, c;=a +ib, a,beX;, a-E=0.

Moreover (10) implies that b = 0, and finally one has A(z) = a(e™ + e ™)/ 2,
aeX;, a'£=0.

It is now evident that he T, Z,.

Proor oF THEOREM 2. Let us consider
ooH —H,
u(t) »u(l —1z).

It is clear that o is an isometry and o2 = id. Now, let G = {id, o} be the group genera-
ted by o. Let us set: FixG={weH: u(s) =u(l —1) Vtel0, 11}; a={AcH,
Aclosed, o(A)=A}; I'={heCH;H): hoa=0aoh}.

Define the index ig: @—>NU{+®} by setting: ig(A)=min{I¢: A >
—R'\{0}, goo= —3}, and ic = + o if such an # does not exist.

(*) ¢ denotes the complex coniugate of c.
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It is easy to check that 75 is an index (see [10]). Moreover since oz = —z Vz € Z;,
one has that 7; coincides with the Krasnoselskii genus y on Z; (see [9] for a definition).
Therefore 75 (Z;) = y(Z;). From the fact that Z; is diffeomorphic to the unit sphere in
R%, it follows that y(Z;) = a; (see[2, p. 19]).

Since £, is G-invariant Ve, applying Theorem 5 we obtain that for all fixed E > 0,
provided ¢ is small, there exist « = X, a; geometrically distinct critical points that give
rise to « distinct brake orbits for the potential V.

Partially supported by M.UR.S.T.
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