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M e c c a n i c a de i fluidi. — Convection with temperature dependent viscosity in a porous 

medium: nonlinear stability and the brinkman effect. N o t a di L O R N A R I C H A R D S O N e BRI 

A N S T R A U G H A N , p r e s e n t a t a ! ' ' ) dal Corr isp . S. Rionero . 

ABSTRACT. — We establish a nonlinear energy stability theory for the problem of convection in a 
porous medium when the viscosity depends on the temperature. This is, in fact, the situation which is true 
in real life and has many applications to geophysics. The nonlinear analysis presented here would appear to 
require the presence of a Brinkman term in the momentum equation, rather than just the normal form of 
Darcy's law. 

KEY WORDS: Convection; Porous medium; Variable viscosity. 

RIASSUNTO. — Convezione in un mezzo poroso con viscosità variabile con la temperatura: stabilità non li
neare nel modello di Brinkman. Si considera il problema della convezione naturale in un mezzo poroso te
nendo conto - com'è nella realtà geofìsica - delle variazioni della viscosità con la temperatura. Si stabili
scono condizioni che assicurano la stabilità non lineare nella norma di L2 (stabilità in energia) nell'ambito 
del modello di Brinkman. 

1. INTRODUCTION 

For many purposes it is adequate to treat viscosity as constant. However, when a 
layer of fluid is subjected to thermal gradients it may be rightly argued that the varia
tion of viscosity with temperature has to be taken into account. Weast [20] includes 
many tables of values of viscosity against temperature and from these one sees that the 
variation over a few degrees may be very large. Interest in studies of convection with 
temperature-dependent viscosity has been intense since the work of Tippelskirch [16], 
who showed that the up flow or down flow at the centre of the convection cell depends 
on the functional form of the viscosity-temperature relationship. A nonlinear energy 
stability analysis of convection in a fluid layer with a linear viscosity-temperature rela
tionship has been presented by Richardson and Straughan [11]. However, convection 
in porous media when the fluid viscosity varies with temperature is also highly impor
tant in geophysical and other contexts, see e.g. Or [7], and the book of Nield and Be-
jan[6], and the references therein. Therefore, we here commence a study of nonlinear 
energy stability of convection in a porous layer when the viscosity depends on the 
temperature. 

If (x(T) denotes the dynamic viscosity, then for a wide variety of situations the linear 
relation (employed in the fluid case in [11]), 

(1) (ji(T) = poil - r(T - T0)), 

where [à0 and y are positive constants and T0 is a reference temperature, is 
adequate. 

(*) Nella seduta del 24 aprile 1993. 
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Many studies of convection in porous media involve Darcy's law, see e.g. Nield and 
Bejan[6]. However, there have recently been several articles which advocate using in
stead the model of Brinkman [1], see e.g. [2, 3,5, 8-10,14, 17, 18, 19]. A lucid discus
sion on the relative merits of the Brinkman and Darcy equations, along with other alter
natives, is given in chapter 1 of [6]. In the present contribution we also employ 
Brinkman's equation although our motivation is mainly a mathematical one in that we 
find this form necessary to implement the nonlinear energy stability analysis which fol
lows: it may be possible that by some suitable selection of a generalized energy (or Lya-
punov functional; such functionals are constructed in other contexts by e.g. [4, 15]) one 
may find a way to proceed without the Brinkman term but at present we have not seen 
such an avenue. 

Hence, we now study the nonlinear stability problem of convection in a porous me
dium when the fluid has a temperature dependent viscosity. 

The equation of motion we employ for flow in porous media is the Brinkman equa
tion (see e.g. [6]), and this assumes the form 

(2) Pj= - ^v; - gp0%3(l - oc(T - T0)) + JJLAV,. 

Here (JL is the viscosity of the fluid, /x is an effective viscosity, and Vj,p09gyp} a are, re
spectively, velocity, density, gravity, pressure, and the coefficient of thermal expansion. 
The reasoning behind the use of this equation is that to understand the onset of convec
tion in a porous medium made up of a sparse distribution of particles the viscous shear 
must be taken into account no matter how small it may be in relation to the Darcy 
resistance. 

As mentioned above, we here find using the Brinkman model makes sense mathe
matically, as it enables us to prove an energy stability theorem. The reason for this is 
that the Av{ term in the momentum equation is necessary in order to control the nonlin
ear term that arises in the energy analysis. Without it we do not see how to proceed in 
order to derive a result. 

Nield [5] deduces that the Brinkman equation could be used successfully for prob
lems where the velocity of the fluid within the porous medium is constant except in re
gions close to the boundary. He also concludes that it is useful for porous media whose 
porosity is close to unity, which is indeed the case that it was designed to deal with. 
However, he also states that the Brinkman equation is not generally applicable to flow 
in porous media. Notwithstanding this statement we feel that mathematically using the 
equation is justified and as there are some physical situations where it is relevant the 
analysis is not entirely without use. 

We shall use an energy argument (cf. [12,13,15]) in order to establish a conditional 
nonlinear stability criterion. It transpires that the linear and nonlinear problems coin
cide and so we have an optimum result. Numerical calculations appear in §3. 

2. BASIC EQUATIONS AND ENERGY STABILITY ANALYSIS 

For our viscosity-temperature relation we use a linear law as in eq. (1). The geome
try studied is a horizontal plane layer, z e [0, d], with gravity taken to be pointing down-
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wards. The layer is filled with a porous medium but we shall assume that the porosity is 
approaching unity, so that our use of Brinkman's equation is justified (according to 
Nield[5]). 

The governing equations of motion are given by putting (1) in (2), noting the fluid is 
incompressible, and an equation for the evolution of temperature, thus 

(3) p,t= - !j(l - y[T - T0])vi + iXâvt -gPoS»(l - x[T - T0]), 

(4) viti = 0, 

(5) Tt + VjTti = KAT. 

We now consider a steady solution, v( = 0, T(z), p. The temperature is assumed as
signed on the horizontal boundaries, as follows, 

T(0) = Ti, and T{d) = T2 , with Tx > T2, 

where TUT2 are constants; the layer is thus heated from below. 
There is no loss in generality in taking T0 = Ti and it simplifies the mathematics; 

hence we adopt this selection. 
Equations (3) and (5) reveal that T(z) = — fiz + Tly where /3 = (T1 - T2)/d, and/? 

is p = — pog(z + (a/2)/3z2) +£o> po being a reference pressure. 
The next step is to introduce perturbations «,-, 6, n via Vj = Vj + ui} T — T + 6, 

p=p + x. 
We substitute these into (3)-(5) and non-dimensionalize according to the 

scales 

t = t*d2/{J.0y 7T = 7fVP, P=U(X0d/k, Pr = [x0/Ky 

ui = u? U, 6 = 6* T # , T # = U^JptxQd2 {Kg(xkpQ)-\R = ^agpd2kp0(K^0)-\ 

Xj = x*d, T—y^d, A = jxk/d2(x0, U = [x0/d 

where Pr is the Prandtl number, R2 is the Rayleigh number, r is a measure of the vis
cosity variation with temperature, and À is a measure of the effective viscosity. If we 
now omit the stars, although dimensionless quantities are to be understood, the pertur
bation equations governing convection become 

(6) nt-= -Uj(l +Tz) + J R " 1 r P r ^ + AZb/ + R^3(9, 

(7) Pr(Ott + u;dti) =AQ + Rw, 

(8) ^ , = 0. 

Throughout we also employ the notation u = (uyv,w), and we have chosen to employ 
[ÂQ, as opposed to jx, in the definition of R to be consistent with other papers dealing 
with convection in porous media according to Darcy's law. 

Boundary conditions. The boundary conditions which are applicable are a matter of 
contention in a porous medium. A clear account is provided in [6, 1.5, 1.6]. 

When there is no slip at the boundary we may take u=v=w = 0 on z = 0,l. 
If, however, the porous medium is free at the boundary the situation is not 
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so clear. Nevertheless, for a porosity close to unity the usual stress free boundary 
conditions should hold, viz. du/ dz = dv/dz = w = 0 on z = 0 ,1 . 

We shall also assume u, v, w, 6 and p are periodic on the x, y boundaries of the con
vection cell V. The temperature perturbation also satisfies 6 = 0 on z = 0,1. 

Energy analysis. We employ an energy analysis in order to study the nonlinear sys
tem (6)-(8). We multiply (6) by uiy (7) by 6 and integrate over the period cell V. The 
notation || • ||, (•) signifies the L2(V) norm and integration over V, respectively. Upon 
adding the resulting equations we may derive 

(9) Ç = - D + W + ^ < 6 M , - > , 

where E, D, I are defined by E = Pr\\d\\2/2, D = \\u\\2 + r(zu^) + A||V«||2 + ||V0||2, 
I = 2(0w). 

Due to the symmetry of the linearized system (3)-(5) we do not need a coupling 
parameter in (9). 

Now set 

(10) — =max —, 
RE x D 

where X is the space of admissible solutions. 
Then, from eq. (9) we may derive the inequality 

(ID tf^-aD+^ieu^), 
where we have set a = (RE — R)/RE. 

The number RE is the critical Rayleigh number of energy stability theory and we de
termine this number below. It is henceforth understood that we shall be working with 
Rayleigh numbers such that a > 0. The existence of a maximizing solution to problems 
like (10) was first established in the fundamental papers of Rionero [12,13]. We here 
concentrate on resolving the Euler-Lagrange equations associated with (10), and these 
are 

(12) \aui- (1 +rz)ui + RE8iòQ = w,-, 

(13) A6 + REw = 0y 

where w is a Lagrange multiplier. 
Note that the eigenvalue problem arising from (12) and (13) is the same as that aris

ing from the linearized version of system (6)-(8), and so, if we can demonstrate decay 
of E from (11) we will have an optimum result. These circumstances arise due to the 
symmetry of the linear operator, cf. Straughan[15], chapter 4. 

Parametric differentiation with respect to À yields 3RE/dX = \\Vu\\2/2(wd). Upon 
substitution for (wd) one may then obtain 3RE/dX = RE\\Vu\\2/(2\\Vd\\2). Thus 
dRE/dX ^ 0, a result which is useful in the numerical calculations. 

To solve (12) and (13) numerically for RE we first take the double curl of (12) and 
then consider the third component of the resulting equation. Normal modes reduces 
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the system to 

(14) X(D2 - a2)2W - (1 + Tz)(D2 - a2)W - WW - REa26 = 0y 

(15) (D2-a2)6 + REW=0. 

In these equations a is the wavenumber and D = d/dz. We solve this system for 

(16) Ra = minRj , 
a2 

subject to the boundary conditions 

(17) W=DW=0 = O, on z = 0,l, 

for two fixed surfaces, and 

(18) w = D2W=e = 0y on z = 0,lv 
on two stress free surfaces. The numerical results, which employ the compound matrix 
method as the eigenvalue solver, appear in §3. 

Before proceeding to the numerical results it is instructive to consider a special 
case, namely, whenr = 0, in the situation when (18) hold. In this case we may solve the 
system exactly by firstly eliminating 6 to find 

(19) X(D2 - a2)3W - (D2 - a2)2W + Ria2W = 0. 

The boundary conditions (18) together with (14) show that 

(20) D{2n)W=0 on z = 0 , l , 

n = 0, 1, 2,..., and so W = sin nz which yields 

(21) Ri = (A(TT2 + a2? + (TT2 + a2)2)/a2 . 

The minimum wavenumber is then found as 

(22) a2 = ( - (1 + Xn2) + V d + ^ 2 ) 2 + 8ATT2(1 + ATT2))/4A. 

It is further instructive to develop the analysis for 0 < A « 1. In the limit A -* 0 we 
should recover the classical result for convection with Darcy's law and constant viscosi
ty. Of course, in the classical case we must recognize that the eq. (19) is fourth order 
and hence the boundary condition D 2 l F = 0 i n ( 1 8 ) i s not required. For A small use of 
the binomial theorem in (22) shows 

(23) a2 - TV2 + 0(A), 

and then putting this in (21) gives 

(24) Ri - 4TT2 + O(A). 

Expressions (23) and (24) are in complete agreement with the classical results obtained 
via Darcy's law, as they should be. 

We now return to (11) and the energy stability analysis. In order to control the cu
bic term in (11) we employ the Sobolev inequality: 

^{utut)
2dv\ ^c\\Vu\\2; 
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for no slip boundary conditions this is the usual embedding inequality of HQ (V) in 
L4 (V), and it may be shown that this inequality holds also for stress free boundary con
ditions. In both cases the embedding constant c depends on the domain V. 

The procedure is as follows, 

(25) <flM/>^[ jo2dv\ I j(u;Ui)2dv\ ^ c\\d\\\\Vu\\2. 

Note that there exists a positive constant k\ > 0 such that 

D = \\u\\2 +r{zuiUl) + A||V«||2 + ||V0||2 >kx\\uf + Alivoli2 + ||V0||2 = (D, say. 
From inequality (11) we then deduce dE/dt ^ —a(D + R~1rPr(6u^u^)) and the cubic 
term may be bounded, using (25), in terms of CD and E. For, c||0||||V/*||2 ^ 
(yf2c/(^JFrX))®El/2 and so 

(26) dE/dt ^ - a® + AQE1/2 , 

where A = rcs/lfr/RX. 
Hence, provided 

(27) (1) R < RE and (2) E1/2(0) < * / 4 

then (26) can be integrated as in Chapter 2 of [15] to give E(t) ^ E(0)exp (—KÇt) 
where K = a — AE^2(0), is a positive constant and Ç is given by the inequality 
Q ^ ÇE. Thus we have established conditional nonlinear stability under condi
tions (27). 

REMARKS. 1) It is important to realise that the above analysis hinges on the presence 
of the Brinkman term as otherwise there is no ||V#||2 term in CD to control the cubic 
term. The equivalent problem without the Brinkman term is unresolved. 

2) We could have allowed the effective viscosity jl to also have a linear depen
dence on temperature, but the analysis then becomes much more complicated and a 
generalized energy such as that employed in [11] is necessary. 

3. NUMERICAL RESULTS 

The analysis so far has been performed with a Rayleigh number which is defined in 
terms of the viscosity at the lower boundary. In practice, it will probably be more useful 
to employ a Rayleigh number which is defined in terms of an average viscosity over the 
layer. If we let /Z(T) be the viscosity associated with the steady solution, then 

(28) ? = Po (1 - r(T ~ T0)) = j M l + 7/fe) • 

Define now an average viscosity, /xav, by 
d 

(29) ^av= jr J ^ = ^o(i + ~r\. 
o 

In our interpretation in this section we, therefore, propose to employ a Rayleigh num
ber, Ra, defined as Ra — aftgd2 k p0 / (K(jLay) and this is easily seen to be related to the 
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Rayieigh number, R2, of §2 by 

(30) Ra=R2/(l+r/2). 

The tables below which present the critical values of Rayieigh and wavenumbers for lin
ear instability and nonlinear energy stability are based on (30). The results presented 
are all for free surface boundary conditions. 

TABLE I. - Critical Rayieigh numbers Ra, with their respective critical wavenumbers a, versus the non-dimension

al viscosity coefficient r, for non-dimensionalized effective viscosities of 0.1 and 0.2, and free surface boundary 

conditions. 

A = 0.1 

Ra 

108.573 

105.389 

102.485 

95.121 

a2 

6.111 

6.153 

6.193 

6.307 

A = 0.2 

Ra 

174.948 

168.647 

162.912 

148.431 

a2 

5.621 

5.649 

5.672 

5.756 

r 

0.0 
0.1 
0.2 
0.5 

TABLE LT. - Critical Rayieigh numbers Ra, with their respective critical wavenumbers a, versus the non-dimen

sional viscosity coefficient T, for non-dimensionalized effective viscosities of 0.3, 0.4 and 0.5, and free surface 

boundary conditions. 

A = 0.3 

Ra 

240.970 

231.547 

222.975 

201.352 

a2 

5.420 

5.441 

5.462 

5522 

A = 0.4 

Ra 

306.873 

294.325 

282.913 

254.137 

a2 

5.310 

5.327 

5.344 

5.393 

A = 0.5 

Ra 

372.722 

357.047 

342.793 

306.857 

a2 

5.241 

5.255 

5.269 

5.310 

r 

0.0 
0.1 
0.2 
0.5 

From the tables it is immediately evident that the effective viscosity plays a large 
role in stabilizing, as one would expect. We also see that as r increases the critical 
Rayieigh number decreases which means it is easier for convection to commence; this is 
physically correct since increasing r means decreasing viscosity and one then expects 
convective motion to be easier. 
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