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Geometria algebrica. — On linearly normal strange curves. Nota di EDOARDO 

BALLICO, presentata!*) dal Corrisp. M. Cornalba. 

ABSTRACT. — Here we prove a numerical bound implying that, except for smooth plane conies in char
acteristic 2, no complete linear system maps birationally a smooth curve into a projective space with a 
strange curve as image. 
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RIASSUNTO. — Sulle curve «strane» linearmente normali. Si dimostra qui una diseguaglianza numerica 
che ha come applicazione il fatto che le coniche piane in caratteristica 2 corrispondono agli unici sistemi li
neari completi su una curva liscia X che determinano un morfismo birazionale h da X in uno spazio proietti
vo con h (X) curva «strana». 

Let C e Pn be an integral curve. Recall that C is called strange if there is a point 
v ePn (called the strange point of C) such that for every smooth point x of C the tangent 
line Tx C contains v. It is known (and easy) that if C is a strange curve which is not a line, 
then the base field K has positive characteristic. The strangeness of C gives very strong 
conditions on C. One of them is a lovely theorem of Lluis (see the original paper [13, p. 
51], or, for instance [12, Prop. 3]) which states that such a curve is not smooth (and 
even must have «cusps») unless C is a conic in characteristic 2. The aim of this Note is 
to give an easy proof of the following results. 

THEOREM 0.1. Let X be a smooth connected complete curve and L e Pic (X) such that 
the associated complete linear system \L\ is base point free; let h|Lj : X —> Pn be the mor-
phism associated to \L\. Assume that h\L\ is birational and that the curve C:=h\i\ (X) is 
strange but not a line. Then we are in characteristic 2 and C is a plane conic. 

THEOREM 0.2. Let X be a smooth connected complete curve defined over an alge
braically closed field K with p : = char (K) > 0. Take L e Pic (X) and a vector space 
V Ç H° (X, L) such that the associated linear system \V\is base point free; leth\y\\X^>Pn 

be the morphism associated to \ V\. Assume that h\v\ is birational and that the curve C : = 
= Â|y| (X) is strange but not a line; let q = pe {with e > 0) be the inseparability degree of the 

projection of C from the strange point. Then 

(1) h°(X,L)&q(n-l) + l. 

Furthermore, if C contains its strange point, then: 

(2) h°(X,L)&q(n- l ) + 2 . 

MOTIVATIONS. The main motivation comes from a result of Castelnuovo's the
ory [11, ch. Ill] and results in [14]. Recall from [4] that an integral non degenerate 
curve C c Pn is called very strange if the generalized trisecant lemma fails for C, i.e. if 

(*) Nella seduta dell'11 novembre 1992. 
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any n — 1 general points of C span a linear space containing at least another point of 
C. In [12, Lemma 4], it was proved that a very strange curve is strange. The usual upper 
bound for^(C) in terms of deg (C) and n (and some of its generalizations contained 
in [11, ch. Ill], [3, ch. 3], [7]) is proven verbatim in any characteristic for curves which 
are not very strange. For very strange curves this bound (and even more) was checked 
in [4] using [13, §2]. Often this bound on the arithmetic genus is far from being sharp 
for (very) strange curves. In recent years many papers on curve theory were motivated 
by arithmetic questions (and used at some points big theorems on the arithmetic of va
rieties). It seems that for the curve theoretic part of the proofs Castelnuovo's theory is 
a key tool, but that it is often applied only to complete linear systems. Hence: 

(a) Theorem 0.1 justifies in positive characteristic all the uses of the uniform po
sition principle in [2] and the second chapter of[l]; 

{b) Theorem 0.1 shows that [8] holds in positive characteristic (although it would 
be easy to justify in positive characteristic [8] without using 0.1). 

Another motivation (and application of Castelnuovo's theory) comes from the compu
tations of possible dimensions of certain Chow families of curves in Pn (in the sense 
of [10]), i.e. of families of integral curves in Pn with the same degree and geometric genus. 
By Theorem 0.1 every strange curve, C, in any such family (and in particular the very 
strange ones) comes as a birational linear projection of a curve, D, in a higher dimensional 
projective space, with D not strange. Since it is easy to check that the general projection of 
D into Pn is not strange, we see that the set of strange curves forms only a proper family in 
every irreducible component of such Chow varieties. 

REMARK 0.3. Theorem 0.2 gives a strong upper bound for the geometric genus of a 
strange curve C (applying Castelnuovo's theory to the corresponding complete linear 
system on the normalization of C) in terms of deg(C), n and p. However, other 
methods gives other bounds (and as far as I know none of them covers completely the 
other ones). 

We feel it is important that the specialists on curve theory check if their proofs work 
cheaply in positive characteristic using the statements of [14] (e.g. [14, 0.1, 1.8, 2.4, 2.5] 
(and 2.2 or equivalently [5]) and 0.1. If this trivial check does not suffice and the mat
ter seems not to be meaningless in positive characteristic, they could try to use 0.2, 0.3 
and [4] (and the proofs in [4]). This job seems to us important (although very easy), be
cause if this type of job will not be done now, perhaps there will be a too huge amount 
of material and references for which the positive characteristic status is not known (and 
this can be very bad for arithmetical applications). 

1. THE PROOFS 

Both theorems stated in the introduction will be proven simultaneously. 

PROOF OF 0.1 AND 0.2. Assume that C is strange with strange point v. Set 
d : = deg (C). Take a hyperplane H of Pn with v g H and let D c H be the image of C 
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under the projection, r, from the point v\ let n: X—>D be the induced morphism. 
Since v is the strange point of C, TZ is not separable; let q = pe be its inseparable degree 
and t its separable degree. Note that if m is the multiplicity of C at v, then d = m + &/. 
Let v: D' —» D be the normalization of D and ri: X —» D' the morphism induced by 7r. 
Let U be the base point free part of the linear system on X corresponding to the linear 
system V induced by the family of hyperplanes of Pn passing through v\ let B be the 
base locus (as divisor) of V. Note that B has degree m and that U induces n. By [9], 
Lemma 1.4, ri factors through the iterated degree q Frobenius Fq: X—>X, say ri = 
= Fqou with u: X~»D'. In particular U is formed by the ^-powers of the divisor of a 
linear system W (in simbols: U = W{q) ) corresponding to the pull-back u * on X of the 
linear system on C induced by H° (H, 0H(1)). Hence dim (W) = n. Note that the com
plete linear system associated to U contains W®q. Iterating q — 1 times Hopf lemma 
(or on a smooth curve [3, p. 108]) we have the bound (1) given in Theorem 0.2 in the 
stronger form claimed by 0.3. Since | V| is base point free, if B ^ 0 we have H° 
(X,L(-B)) < H°(X,L), hence the second part of 0.2 and 0.3. 

At this point we have proved Theorem 0.2. Now it remains only to conclude the 
proof of Theorem 0.1. Hence we may assume h°(X,L) = n + 1. Note that by (2) we 
have q = 2 (hencep = 2), m — 0 and n = 2 (hence d = 2t). The morphism «:X —> D = 
= D' = P* corresponds to dig} . It is sufficient to check that t = 1. Assume t > 1 (hence, 
since d > 0 and h ° (X, L) = 3X not rational). Note that if A and B are divisors in this g}, 
then A + 23 is a divisor of | L | which does not separate the t points of a general fiber of 
u. Since h\y\. is birational, we have h°(X,L) > 3, contradiction. ^ 

I want to thank D. Abramovich for many interesting and stimulating conversations and e-mail messages. 
Psychologically, the papers [5, 6] were very useful. The author was partially supported by MURST and 
GNSAGA of CNR (Italy). 
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