Sundararaja Ramaswamy

Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1993_9_4_3_213_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Abstract. — The aim of this paper is to characterize the u.s.c. (resp. l.s.c.) viscosity sub (resp. super) solutions of the Laplacian which do not take the value $+\infty$ (resp. $-\infty$) as precisely the sub (resp. super) harmonic functions.

Key words: Viscosity solutions; Harmonic functions; Maximum principle.

Nota di SUNDARARAJA RAMASWAMY, presentata dal Socio E. Magenes.

1. Basic Definitions

Let Ω be a nonempty open set in \mathbb{R}^n and let M_n be the space of all symmetric $n \times n$ matrices. Let F be a mapping from $\Omega \times M_n$ to \mathbb{R}^1.

Definition 1. F is said uniformly elliptic if there exists a $\lambda > 0$ such that for all $A, B \in M_n$, B positive definite and for all $x \in \Omega$, one has $F(x, A + B) - F(x, A) \geq \lambda \|B\|$ where $\| \cdot \|$ is any norm on M_n.

Any second order linear elliptic differential operator with second order terms only is an example of F satisfying Definition 1.

Definition 2. An extended real-valued function u defined on Ω is said to be a viscosity sub (resp. super) solution of F if for all $\phi \in C^2(\Omega)$ with $u - \phi$ having a local maximum at a point $x_0 \in \Omega$ implies that $F(x_0, D^2 \phi(x_0)) \geq 0$, where $D^2 \phi(x_0)$ stands for the Hessian of ϕ at x_0, that is the matrix $((\partial^2 \phi/\partial x_i \partial x_j(x_0)))$ (resp. $u - \phi$ having a local minimum at a point $x_0 \in \Omega$ implies that $F(x_0, D^2 \phi(x_0)) \leq 0$).

Definition 3. A real-valued function u is said to be a viscosity solution of $F = 0$ if it is both a viscosity sub and super solution of F.

2. A Maximum Principle

Proposition 1. Let F be uniformly elliptic and let us assume that $F(x, 0) = 0$ for all $x \in \Omega$. Then, we have $F(x, A) < 0$ for all matrix $A = (a_{ij})$ which is negative-definite in the sense that

$$\sum_i \sum_j a_{ij} \alpha_i \alpha_j < 0, \quad \forall \alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \neq 0.$$

Proof. \(0 = F(x, 0) = F(x, A + (-A))\). Therefore,
\[
0 - F(x, A) = F(x, A + (-A)) - F(x, A) \geq \lambda \|(-A)\|
\]
as \(-A\) is positive definite and \(F\) is uniformly elliptic. Therefore,
\[
F(x, A) \leq -\lambda \|(-A)\| < 0.
\]

Theorem 1. Let \(\Omega\) be bounded. Let \(F\) be uniformly elliptic with \(F(x, 0) = 0\), \(\forall x \in \Omega\). Let \(u\) be a viscosity sub solution of \(F\) such that \(u(x) < \infty\), \(\forall x \in \Omega\). If \(u\) is upper semi continuous on \(\overline{\Omega}\), then
\[
\sup_{x \in \partial \Omega} u(x) = \sup_{x \in \overline{\Omega}} u(x).
\]

Proof. It is obvious that
\[
\sup_{x \in \partial \Omega} u(x) \leq \sup_{x \in \overline{\Omega}} u(x).
\]

Suppose that
\[
\sup_{x \in \partial \Omega} u(x) < \sup_{x \in \overline{\Omega}} u(x).
\]
\(u\) being upper semi continuous on \(\overline{\Omega}\) and \(\overline{\Omega}\) being compact, \(\sup_{x \in \overline{\Omega}} u(x)\) is attained at some point \(x_0 \in \overline{\Omega}\). Equation (1) implies that \(x_0 \notin \partial \Omega\). Hence \(x_0 \in \Omega\). Thus \(u\) has a local maximum at \(x_0\).

Claim. The function \(u_\varepsilon = u + \varepsilon |x - x_0|^2\) also has a local maximum in \(\Omega\) for small values of \(\varepsilon > 0\).

Proof of the claim. Suppose for some \(\varepsilon > 0\), \(u_\varepsilon\) attains its maximum only on \(\partial \Omega\). Let \(X \in \partial \Omega\) be such that \(u_\varepsilon(X) \geq u_\varepsilon(x)\), \(\forall x \in \overline{\Omega}\).

In particular, \(u_\varepsilon(X) \geq u_\varepsilon(x_0) = u(x_0)\). That is \(u(X) + \varepsilon |X - x_0|^2 \geq u(x_0)\).

\[
\Rightarrow \varepsilon |X - x_0|^2 \geq u(x_0) - u(X) \geq u(x_0) - \sup_{x \in \partial \Omega} u(x)
\]

\[
\Rightarrow \varepsilon \geq \frac{u(x_0) - \sup_{x \in \partial \Omega} u(x)}{|X - x_0|^2} \geq \frac{u(x_0) - \sup_{x \in \partial \Omega} u(x)}{\sup_{y \in \partial \Omega} |y - x_0|^2}.
\]

Let us observe that \(u(x_0) - \sup_{x \in \partial \Omega} u(x) > 0\). Hence if \(\varepsilon > 0\) is

\[
< \frac{u(x_0) - \sup_{x \in \partial \Omega} u(x)}{\sup_{y \in \partial \Omega} |y - x_0|^2},
\]

\(u_\varepsilon\) has a local maximum in \(\Omega\) and thus the claim is proved.
Fix one such $\varepsilon > 0$. Let u_ε have a local maximum at a point $y \in \Omega$. As u is a viscosity subsolution, applying the definition taking ϕ to be $-\varepsilon |x - x_0|^2$, we see that $F(y, -2\varepsilon I_n) \geq 0$ where I_n is the $n \times n$ identity matrix. As $\varepsilon > 0$, $-2\varepsilon I_n$ is negative-definite and hence, Proposition 1 is contradicted. □

3. Viscosity sub (resp. super) solutions of the Laplacian Δ: A characterization

Theorem 2. Let u be an upper semi continuous (resp. lower semi continuous) function u such that $u < \infty$ (resp. $u > -\infty$). Then u is a viscosity sub (resp. super) solution for Δ, if and only if u is subharmonic (resp. superharmonic).

Proof. Sufficient to prove the characterization in the subharmonic case. Let us recall the definition of a subharmonic function.

Definition 4. An extended real-valued function defined on an open set $\Omega \neq \emptyset$ is said to be **subharmonic** if

i) u is upper semi continuous,

ii) $u(x) < \infty \ \forall x \in \Omega$ and

iii) $\forall x_0 \in \Omega, \ \exists r_0 > 0$ such that

$$u(x_0) \leq \int_{\partial B(x_0; r)} u(x) d\sigma(x), \quad \forall r \leq r_0,$$

where $d\sigma$ is the unit surface measure on $\partial B(x_0; r)$, the boundary of $B(x_0; r)$.

Proof of Theorem 2. (i) *If part:* Let us assume that u is subharmonic. Let $\phi \in C^2(\Omega)$ be such that $u - \phi$ has a local maximum at a point $x_0 \in \Omega$. Let us assume that $u(x_0) - \phi(x_0)$ is a maximum of $u - \phi$ in a ball $B(x_0; \varepsilon)$ for some $\varepsilon > 0$.

If $\Delta \phi(x_0) < 0$, then $\Delta \phi(x) < 0 \ \forall x$ in some neighbourhood of x_0, say for example in $B(x_0; \eta)$ for some $\eta \in (0, \varepsilon)$. Therefore, $u - \phi$ is subharmonic in $B(x_0; \eta)$, as u is subharmonic and ϕ is super harmonic in $B(x_0; \eta)$. Therefore, by the classical maximum principle for subharmonic functions, $u - \phi$ must be equal to $u(x_0) - \phi(x_0)$ in $B(x_0; \eta)$.

That is $\phi = u - u(x_0) + \phi(x_0)$ in $B(x_0; \eta)$. Therefore ϕ is subharmonic in $B(x_0; \eta)$ if and only if $\Delta \phi \geq 0$ in $B(x_0; \eta)$.

In particular, $\Delta \phi(x_0) \geq 0$.

This contradicts that $\Delta \phi(x_0) < 0$ proving that u is a viscosity subsolution.

(ii) *Only if part:* Before we start the proof, let us make the following remark, which is an easy consequence of the definitions.

Remark. If u is a viscosity subsolution for Δ, and if h is any harmonic function, then $u + h$ is also a viscosity subsolution.

Let u be upper semi continuous and let $u(x) < \infty \ \forall x \in \Omega$. Let u be a viscosity subsolution for Δ. Let $x_0 \in \Omega$. Let $R > 0$ be less than $d(x_0, \partial \Omega)$ so that $B(x_0; R) \subset \Omega$. Let $r \leq R$.

Since u is upper semi-continuous, there exists a decreasing sequence \(\{f_m\}_{m=1}^{\infty} \) of real-valued continuous functions on \(\partial B(x_0; r) \) such that \(f_m(x) \downarrow u(x) \), \(\forall x \in \partial B(x_0; r) \).

Consider the Poisson integral,

\[
I_{f_m}^r(x) = r^{n-2} \int_{\partial B(x_0; r)} f_m(X) \frac{r^2 - |x - x_0|^2}{|x - X|^n} \, d\sigma_r(X)
\]

in \(B(x_0; r) \).

Then, it is well known that \(I_{f_m}^r \) is a harmonic function in \(B(x_0; r) \) and that

\[
\forall X \in \partial B(x_0; r), \quad I_{f_m}^r(x) \to f_m(X), \quad \text{as } x \to X, \ x \in B(x_0; r).
\]

Consider \(u - I_{f_m}^r \) in \(B(x_0; r) \). As \(u \) is a viscosity subsolution of \(\Delta \) in \(B(x_0; r) \) and \(I_{f_m}^r \) is harmonic, by the remark above, \(u - I_{f_m}^r \) is also a viscosity subsolution of \(\Delta \) in \(B(x_0; r) \).

Define \(v \) in \(B(x_0; r) \) as

\[
v(x) = \limsup_{y \to x} \{u(y) - I_{f_m}^r(y)\}.
\]

Then \(v \) is upper semi-continuous in \(\overline{\Omega} = \partial B(x_0; r) \) and \(\forall X \in \partial B(x_0; r) \)

\[
v(X) = \limsup_{y \to X} \{u(y) - f_m(X)\}.
\]

\[
\leq u(X) - f_m(X) \quad \text{as} \quad u \text{ is upper semicontinuous}.
\]

\[
\forall X \in \partial B(x_0; r), \quad u(X) - f_m(X) \leq 0.
\]

Therefore, \(v(X) \leq 0, \forall X \in \partial B(x_0; r) \). By the maximum principle proved in Theorem 2,

\[
\sup_{X \in \partial B(x_0; r)} v(X) = \sup_{X \in \partial B(x_0; r)} v(x).
\]

The L.H.S. is \(\leq 0 \). Hence \(v(x) \leq 0 \ \forall x \in B(x_0; r) \). In particular, \(v(x_0) \leq 0 \).

\[
v(x_0) = u(x_0) - \int_{\partial B(x_0; r)} f_m(X) \, d\sigma_r(X).
\]

Therefore,

\[
\forall m \in \mathbb{N}, \quad u(x_0) \leq \int_{\partial B(x_0; r)} f_m(X) \, d\sigma_r(X).
\]

Hence

\[
\forall m \in \mathbb{N}, \quad u(x_0) \leq \int_{\partial B(x_0; r)} u(X) \, d\sigma_r(X),
\]

proving that \(u \) is subharmonic.

Corollary. A real-valued continuous function on \(\Omega \) is a viscosity solution for \(\Delta \) if and only if it is a harmonic function.
4. Concluding Remarks

The definition of uniformly elliptic second order non-linear differential operators given here is taken from L. A. Caffarelli [1] and the definitions of viscosity sub and super solutions are taken from Ishii and Lions [2]. The definitions of viscosity sub and super solutions given in [1] are apparently not the same as given in [2]. The equivalence of the definitions in [1] and [2] are proved in [3], for some class of uniformly elliptic operators.

Acknowledgements

The Author wishes to thank Prof. P. L. Lions for the critical review of the manuscript.

References

Tata Institute of Fundamental Research Centre
P.O. Box No. 1234
Indian Institute of Science Campus
Bangalore 560012 (India)