ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Sundararaja Ramaswamy

Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 4 (1993), n.3, p. 213–217.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1993_9_4_3_213_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni a derivate parziali. — Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian. Nota di Sundararaja Ramaswamy, presentata (*) dal Socio E. Magenes.

Abstract. — The aim of this paper is to characterize the u.s.c. (resp. l.s.c.) viscosity sub (resp. super) solutions of the Laplacian which do not take the value $+\infty$ (resp. $-\infty$) as precisely the sub (resp. super) harmonic functions.

KEY WORDS: Viscosity solutions; Harmonic functions; Maximum principle.

RIASSUNTO. — Principio di massimo per sotto soluzioni viscose e sotto soluzioni viscose del Laplaciano. Lo scopo del lavoro è quello di caratterizzare le sopra (risp. sotto) soluzioni semicontinue inferiormente (risp. superiormente) di tipo «viscoso» del Laplaciano, le quali non prendano il valore $+\infty$ (risp. $-\infty$), come funzione sub (risp. super) armoniche.

1. Basic definitions

Let Ω be a nonempty open set in \mathbb{R}^n and let M_n be the space of all symmetric $n \times n$ matrices. Let F be a mapping from $\Omega \times M_n$ to \mathbb{R}^1 .

DEFINITION 1. F is said *uniformly elliptic* if there exists a $\lambda > 0$ such that for all A, $B \in M_n$, B positive definite and for all $x \in \Omega$, one has $F(x, A + B) - F(x, A) \ge \lambda \|B\|$ where $\|\cdot\|$ is any norm on M_n .

Any second order linear elliptic differential operator with second order terms only is an example of F satisfying Definition 1.

Definition 2. An extended real-valued function u defined on Ω is said to be a viscosity sub (resp. super) solution of F if for all $\phi \in C^2(\Omega)$ with $u - \phi$ having a local maximum at a point $x_0 \in \Omega$ implies that $F(x_0, D^2 \phi(x_0)) \ge 0$, where $D^2 \phi(x_0)$ stands for the Hessian of ϕ at x_0 , that is the matrix $((\partial^2 \phi / \partial x_i \partial x_j (x_0)))$ (resp. $u - \phi$ having a local minimum at a point $x_0 \in \Omega$ implies that $F(x_0, D^2 \phi(x_0)) \le 0$).

DEFINITION 3. A real-valued function u is said to be a viscosity solution of F = 0 if it is both a viscosity sub and super solution of F.

2. A MAXIMUM PRINCIPLE

PROPOSITION 1. Let F be uniformly elliptic and let us assume that F(x,0) = 0 for all $x \in \Omega$. Then, we have F(x,A) < 0 for all matrix $A = ((a_{ij}))$ which is negative-definite in the sense that

$$\sum_{i} \sum_{j} a_{ij} \alpha_{i} \alpha_{j} < 0, \quad \forall \alpha = (\alpha_{1}, \alpha_{2}, ..., \alpha_{n}) \neq 0.$$

PROOF. 0 = F(x, 0) = F(x, A + (-A)). Therefore,

$$0 - F(x, A) = F(x, A + (-A)) - F(x, A) \ge \lambda \|(-A)\|$$

as -A is positive definite and F is uniformly elliptic. Therefore,

$$F(x,A) \leq -\lambda \|(-A)\| < 0.$$

THEOREM 1. Let Ω be bounded. Let F be uniformly elliptic with F(x,0) = 0, $\forall x \in \Omega$. Let u be a viscosity sub solution of F such that $u(x) < \infty$, $\forall x \in \Omega$. If u is upper semi continuous on $\overline{\Omega}$, then

$$\sup_{x \in \partial \Omega} u(x) = \sup_{x \in \overline{\Omega}} u(x).$$

PROOF. It is obvious that

$$\sup_{x \in \partial \Omega} u(x) \leq \sup_{x \in \overline{\Omega}} u(x).$$

Suppose that

(1)
$$\sup_{x \in \partial \Omega} u(x) < \sup_{x \in \overline{\Omega}} u(x).$$

u being upper semi continuous on $\overline{\Omega}$ and $\overline{\Omega}$ being compact, $\sup_{x \in \overline{\Omega}} u(x)$ is attained at some point $x_0 \in \overline{\Omega}$. Equation (1) implies that $x_0 \notin \partial \Omega$. Hence $x_0 \in \Omega$. Thus u has a local maximum at x_0 .

Claim. The function $u_{\varepsilon} = u + \varepsilon |x - x_0|^2$ also has a local maximum in Ω for small values of $\varepsilon > 0$.

PROOF OF THE CLAIM. Suppose for some $\varepsilon > 0$, u_{ε} attains its maximum only on $\partial \Omega$. Let $X \in \partial \Omega$ be such that $u_{\varepsilon}(X) \ge u_{\varepsilon}(x)$, $(\forall x \in \overline{\Omega})$.

In particular,
$$u_{\varepsilon}(X) \ge u_{\varepsilon}(x_0) = u(x_0)$$
. That is $u(X) + \varepsilon |X - x_0|^2 \ge u(x_0)$.

$$\Rightarrow \varepsilon |X - x_0|^2 \ge u(x_0) - u(X) \ge u(x_0) - \sup_{x \in \partial \Omega} u(x)$$

$$\Rightarrow \varepsilon \geqslant \frac{u(x_0) - \sup_{x \in \partial \Omega} u(x)}{|X - x_0|^2} \geqslant \frac{u(x_0) - \sup_{x \in \partial \Omega} u(x)}{\sup_{y \in \partial \Omega} |y - x_0|^2}.$$

Let us observe that $u(x_0) - \sup_{x \in \partial \Omega} u(x) > 0$. Hence if $\varepsilon > 0$ is

$$< \frac{u(x_0) - \sup_{x \in \partial \Omega} u(x)}{\sup_{y \in \partial \Omega} |y - x_0|^2},$$

 u_{ε} has a local maximum in Ω and thus the claim is proved.

Fix one such $\varepsilon > 0$. Let u_{ε} have a local maximum at a point $y \in \Omega$. As u is a viscosity subsolution, applying the definition taking ϕ to be $-\varepsilon |x - x_0|^2$, we see that $F(y, -2\varepsilon I_n) \ge 0$ where I_n is the $n \times n$ identity matrix. As $\varepsilon > 0$, $-2\varepsilon I_n$ is negative-definite and hence, Proposition 1 is contradicted. \square

3. Viscosity sub (resp. super) solutions of the Laplacian Δ : a characterization

THEOREM 2. Let u be an upper semi continuous (resp. lower semi continuous) function u such that $u < \infty$ (resp. $u > -\infty$). Then u is a viscosity sub (resp. super) solution for Δ , if and only if u is subharmonic (resp. superharmonic).

PROOF. Sufficient to prove the characterization in the subharmonic case. Let us recall the definition of a subharmonic function.

Definition 4. An extended real-valued function defined on an open set $\Omega \neq \emptyset$ is said to be *subharmonic* if

- i) u is upper semi continuous,
- ii) $u(x) < \infty \quad \forall x \in \Omega$ and
- *iii*) $\forall x_0 \in \Omega$, $\exists r_0 > 0$ such that

$$u(x_0) \leq \int_{\partial B(x_0;r)} u(x) d\sigma_r(x), \quad \forall r \leq r_0,$$

where $d\sigma_r$ is the unit surface measure on $\partial B(x_0;r)$, the boundary of $B(x_0;r)$.

PROOF OF THEOREM 2. (i) If part: Let us assume that u is subharmonic. Let $\phi \in C^2(\Omega)$ be such that $u - \phi$ has a local maximum at a point $x_0 \in \Omega$. Let us assume that $u(x_0) - \phi(x_0)$ is a maximum of $u - \phi$ in a ball $B(x_0; \delta)$ for some $\delta > 0$.

If $\Delta\phi(x_0) < 0$, then $\Delta\phi(x) < 0$ $\forall x$ in some neighbourhood of x_0 , say for example in $B(x_0; \eta)$ for some $\eta \in (0, \delta)$. Therefore, $u - \phi$ is subharmonic in $B(x_0; \eta)$, as u is subharmonic and ϕ is super harmonic in $B(x_0; \eta)$. Therefore, by the classical maximum principle for subharmonic functions, $u - \phi$ must be equal to $u(x_0) - \phi(x_0)$ in $B(x_0; \eta)$.

That is $\phi = u - u(x_0) + \phi(x_0)$ in $B(x_0; \eta)$. Therefore ϕ is subharmonic in $B(x_0; \eta) \Rightarrow \Delta \phi \geq 0$ in $B(x_0; \eta)$.

In particular, $\Delta \phi(x_0) \ge 0$.

This contradicts that $\Delta \phi(x_0) < 0$ proving that u is a viscosity subsolution.

(ii) Only if part: Before we start the proof, let us make the following remark, which is an easy consequence of the definitions.

Remark. If u is a viscosity subsolution for Δ , and if h is any harmonic function, then u + h is also a viscosity subsolution.

Let u be upper semi continuous and let $u(x) < \infty \ \forall x \in \Omega$. Let u be a viscosity subsolution for Δ . Let $x_0 \in \Omega$. Let R > 0 be less than $d(x_0, \partial \Omega)$ so that $\overline{B(x_0; R)} \subset \Omega$. Let $r \leq R$.

216 s. ramaswamy

Since u is upper semi continuous, \exists a decreasing of sequence $\{f_m\}_{m=1}^{\infty}$ of real-valued continuous functions on $\partial B(x_0;r)$ such that $f_m(x) \downarrow u(x)$, $\forall x \in \partial B(x_0;r)$.

Consider the Poisson integral,

$$I_{r}^{f_{m}}(x) = r^{n-2} \int_{\partial B(x_{0};r)} f_{m}(X) \frac{r^{2} - |x - x_{0}|^{2}}{|x - X|^{n}} d\sigma_{r}(X)$$

in $B(x_0; r)$.

Then, it is well known that $I_r^{f_m}$ is a harmonic function in $B(x_0;r)$ and that

$$\forall X \in \partial B(x_0; r), \quad I_r^{f_m}(x) \to f_m(X), \quad \text{as } x \to X, \ x \in B(x_0; r).$$

Consider $u - I_r^{f_m}$ in $B(x_0; r)$. As u is a viscosity subsolution of Δ in $B(x_0; r)$ and $I_r^{f_m}$ is harmonic, by the remark above, $u - I_r^{f_m}$ is also a viscosity subsolution of Δ in $B(x_0; r)$.

Define v in $\overline{B(x_0;r)}$ as

$$v(x) = \limsup_{\substack{y \to x \\ y \in \Omega}} \left\{ u(y) - I_r^{f_m}(y) \right\}.$$

Then v is upper semi-continuous in $\overline{\Omega}_{+} = u - I_r^{f_m}$ in $B(x_0; r)$ and $\forall X \in \partial B(x_0; r)$

$$v(X) = \lim_{\substack{y \to X \\ y \in \Omega}} \sup_{x \in \Omega} \left\{ u(y) - f_m(X) \right\}.$$

 $\leq u(X) - f_m(X)$ as u is upper semicontinuous.

$$u(X) - f_m(X) \le 0$$
, $\forall X \in \partial B(x_0; r)$.

Therefore, $v(X) \le 0$, $\forall X \in \partial B(x_0; r)$. By the maximum principle proved in Theorem 2,

$$\sup_{X \in \partial B(x_0;r)} v(X) = \sup_{x \in \overline{B(x_0;r)}} v(x).$$

The L.H.S. is ≤ 0 . Hence $v(x) \leq 0 \ \forall x \in B(x_0; r)$. In particular, $v(x_0) \leq 0$.

$$v(x_0) = u(x_0) - \int_{\partial B(x_0;r)} f_m(X) d\sigma_r(X).$$

Therefore,

$$u(x_0) \leq \int_{\partial B(x_0;r)} f_m(X) d\sigma_r(X), \quad \forall m \in \mathbb{N}.$$

Hence

$$u(x_0) \leq \int_{\partial B(x_0;r)} u(X) d\sigma_r(X),$$

proving that u is subharmonic.

COROLLARY. A real-valued continuous function on Ω is a viscosity solution for Δ if and only if it is a harmonic function.

4. Concluding remarks

The definition of uniformly elliptic second order non-linear differential operators given here is taken from L. A. Caffarelli [1] and the definitions of viscosity sub and super solutions are taken from Ishii and Lions [2]. The definitions of viscosity sub and super solutions given in [1] are apparently not the same as given in [2]. The equivalence of the definitions in [1] and [2] are proved in [3], for some class of uniformly elliptic operators.

Acknowledgements

The Author wishes to thank Prof. P. L. Lions for the critical review of the manuscript.

References

- [1] L. A. CAFFARELLI, Interior a priori estimates for solutions of fully non-linear equations. Annals of Math., 130, 1989, 189-213.
- [2] H. Ishii P. L. Lions, Viscosity solutions of fully non-linear second order elliptic partial differential equations. J. Diff. Eqns., 83, 1990, 26-78.
- [3] MYTHILY RAMASWAMY S. RAMASWAMY, Local property of viscosity solutions of fully non-linear second order elliptic partial differential Equations. Preprint.

Tata Institute of Fundamental Research Centre
P.O. Box No. 1234
Indian Institute of Science Campus
BANGALORE 560 012 (India)