Rendiconti Lincei Matematica e Applicazioni

Giovanna Citti

A comparison theorem for the Levi equation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 4 (1993), n.3, p. 207-212.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1993_9_4_3_207_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1993.

Equazioni a derivate parziali. - A comparison theorem for the Levi equation. Nota di Giovanna Citti, presentata (*) dal Corrisp. B. Pini.

Abstract. - We prove a strong comparison principle for the solution of the Levi equation

$$
\begin{aligned}
L(u)=\sum_{i=1}^{n}\left(\left(1+u_{t}^{2}\right)\left(u_{x_{i} x_{i}}+u_{y y_{i} y_{i}}\right)+\left(u_{x_{i}}^{2}\right.\right. & \left.+u_{y_{i}}^{2}\right) u_{t}+ \\
& \left.+2\left(u_{y_{i}}-u_{x_{i}} u_{t}\right) u_{x_{i} t}-2\left(u_{x_{i}}+u_{y_{i}} u_{t}\right) u_{y_{i} t}\right)+k(x, y, t)\left(1+|D u|^{2}\right)^{3 / 2}=0
\end{aligned}
$$

applying Bony Propagation Principle.
Key words: Maximum propagation principle; Comparison principle; Levi equation.
Rassunto. - Un teorema di confronto per l'equazione di Levi. Utilizzando il principio di propagazione dei massimi di Bony proviamo un principio di confronto forte per le soluzioni dell'equazione di Levi
$L(u)=\sum_{i=1}^{n}\left(\left(1+u_{t}^{2}\right)\left(u_{x i x_{i}}+u_{y i y_{i}}\right)+\left(u_{x i}^{2}+u_{y_{i}}^{2}\right) u_{t t}+\right.$ $\left.+2\left(u_{y_{i}}-u_{x i} u_{t}\right) u_{x i t}-2\left(u_{x i}+u_{y_{i}} u_{t}\right) u_{y_{i} t}\right)+k(x, y, t)\left(1+|D u|^{2}\right)^{3 / 2}=0$.

1. Introduction

Let $M \subset R^{2 n+1}$ be a hypersurface of class C^{2}, graph of a function u. The Lervi curvature of M at a point $(x, y, t, u(x, y, t))$ with $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}, y=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}, t \in$ $\in R$ is the real number

$$
\begin{align*}
k=-\left(1+|D u|^{2}\right)^{-3 / 2} \sum_{i=1}^{n}\left((1 + u _ { t } ^ { 2 }) \left(u_{x_{i} x_{i}}\right.\right. & \left.+u_{y_{i} y_{i}}\right)+\left(u_{x_{i}}^{2}+u_{y_{i}}^{2}\right) u_{t t}+ \tag{1}\\
& \left.+2\left(u_{y_{i}}-u_{x_{i}} u_{t}\right) u_{x_{i} t}-2\left(u_{x_{i}}+u_{y_{i}} u_{t}\right) u_{y_{i} t}\right)
\end{align*}
$$

where $|D u|^{2}=\sum_{i=1}^{n}\left(u_{x_{i}}^{2}+u_{y_{i}}^{2}\right)+u_{t}^{2}$.
Viceversa, if $\Omega \subset R^{2 n+1}$ is a fixed, bounded and connected open set, $k: \Omega \rightarrow R$ is a continuous function, we can look for a function $u: \Omega \rightarrow R$ of class C^{2} whose graph has Levi curvature k at every point $(x, y, t, u(x, y, t))$. In other words we study the solutions of the following equation, called the Levi equation

$$
\begin{align*}
& L(u)=\sum_{i=1}^{n}\left(\left(1+u_{t}^{2}\right)\left(u_{x_{i} x_{i}}+u_{y_{i} y_{i}}\right)+\left(u_{x_{i}}^{2}+u_{y_{i}}^{2}\right) u_{t t}+\right. \tag{2}\\
& \left.\quad+2\left(u_{y_{i}}-u_{x_{i}} u_{t}\right) u_{x_{i} t}-2\left(u_{x_{i}}+u_{y_{i}} u_{t}\right) u_{y_{i} t}\right)+k(x, y, t)\left(1+|D u|^{2}\right)^{3 / 2}=0 .
\end{align*}
$$

This is a quasilinear equation, whose characteristic form is positively semidefinite, but has the least eigenvalue identically 0 . In particular the equation (2) is not elliptic at any point. However, suitably adapting the classical elliptic techniques, Bedford and Gaveau in [2], Debiard and Gaveau in [3], and Tomassini in [4] were able to establish some geometric properties of the solutions. In particular Debiard and Gaveau proved
(*) Nella seduta del 24 aprile 1993.
the following weak maximum principle: if k is continuous and nonpositive, and u is a solution of $L u=0$ of class C^{2} which satisfies $\underset{\xi \rightarrow \eta}{\limsup } u(\xi) \leqslant 0$ for every $\eta=(x, y, t) \in \partial \Omega$, then $u \leqslant 0$ in Ω.

The strong maximum principle in general does not hold, since the set $S_{u}(\Omega)=$ $=\left\{(x, y, t) \in \Omega: u(x, y, t)=\sup _{\Omega} u\right\}$ can be different from \emptyset and strictly included in Ω. In [4] Tomassini proved the following version of maximum principle: if Ω is open and connected, $k: \Omega \rightarrow R$ is continuous and nonpositive, u is a function of class C^{2} solution of the equation (2) in Ω and $\xi_{0}=\left(x_{0}, y_{0}, t_{0}\right) \in S_{u}(\Omega)$, then $\left\{(x, y, t) \in \Omega: t=t_{0}\right\} \subset S_{u}(\Omega)$ and $k(x, y, t)=0$ for all $(x, y, t) \in S_{u}(\Omega)$.

In particular: if k never vanishes in Ω, a regular solution of (1) bas no local maximum in Ω.

In this Note we study equation (2) with a completely different approach, using the maximum propagation principle of Bony, (see [1]) which we will now recall.

Let $\Omega \subset R^{2 n+1}$ be open bounded and connected, and let L_{0} be an operator of the form

$$
\begin{equation*}
L_{0}(u)=\sum_{i, j=1}^{2 n+1} a_{i, j} \partial_{i, j}^{2} u+\sum_{i=1}^{2 n+1} b_{i} \partial_{i} u \quad \text { in } \Omega, \tag{3}
\end{equation*}
$$

where $a_{i, j}$ and b_{i} are continuous functions in Ω.
Let u be a solution of $L_{0}(u) \geqslant 0$ in Ω and let $S_{u}(\Omega)$ be not empty. A vector $\nu \in R^{2 n+1}$ is called outer normal to $S_{u}(\Omega)$ at a point $\xi \in S_{u}(\Omega)$ if $B(\xi+\nu,|\nu|) \cap S_{u}(\Omega)=\emptyset$. If $S_{u}(\Omega) \neq \emptyset$ and $S_{u}(\Omega) \neq \Omega$, the set $S_{u}^{*}(\Omega)=\left\{\xi \in S_{u}(\Omega)\right.$: there exists the outer normal at $\xi\}$ is not empty. With these notations the following properties hold:
i) (Hopf Lemma, see [1, Proposition 3.1]) If v is the outer normal to $S_{u}(\Omega)$ at a point $\xi \in S_{u}^{*}(\Omega)$, then

$$
\sum_{i, j=1}^{2 n+1} a_{i, j}(\xi) v_{i} v_{j}=0 .
$$

A vector field X of class $C^{1}(\Omega)$ i.e. a function $X \in C^{1}\left(\Omega, R^{2 n+1}\right)$, is called admissible for L_{0} if $\forall \nu \in R^{2 n+1}$

$$
\sum_{i, j=1}^{2 n+1} a_{i, j}(\xi) \nu_{i} \nu_{j}=0 \quad \text { implies }\langle X(\xi), \nu\rangle=0
$$

Hence, from the previous proposition it immediately follows that, if X is an ammissible vector field, X is tangent to $S_{u}(\Omega)$, in the sense that $\langle X(\xi), \nu\rangle=0 \forall v$ outer normal to $S_{u}(\Omega)$ at ξ.

Now Bony propagation theorem can be stated as follows:
ii) ([1], Theorem 2.1) Let X be a vector field of class C^{1} tangent to $S_{u}(\Omega)$. Then for every $\xi \in S_{u}(\Omega)$, any integral curve of X passing through ξ is completely contained in $S_{u}(\Omega)$.

Consequently, if X and Y are ammissible vector fields, any integral curve of them intersecting $S_{u}(\Omega)$ is completely contained in $S_{u}(\Omega)$. Hence, if we denote with the same symbol a vector field and the differential operator with the same coefficients, we can define $[X, Y]$, and it is tangent to $S_{u}(\Omega)$. Thus
iii) If $X_{1}, \ldots, X_{2 n}$ are $2 n$ admissible vector fields which together with their commutators of order one, span all of $R^{2 n+1}$, then $S_{u}(\Omega)=\Omega$.

Using these theorems we give a new, very simple proof of the Tomassini maximum principle. However the most important result is Proposition 2.1, where we show that if $k(\xi) \neq 0 \forall \xi \in \Omega$, and $u \in C^{2}$, then there exist vector fields $X_{1}, \ldots, X_{2 n}$ which satisfy condition $i i i)$ in the preceding principle. As a consequence we prove the comparison principle for regular solutions of (2) (see Theorem 2.1).

2. Maximum and comparison principle

In the following we will always assume that $\Omega \subset R^{2 n+1}$ is bounded and connected, $k: \Omega \rightarrow R$ is a continuous function and $u: \Omega \rightarrow R$ a function of class $C^{2}(\Omega)$. We will denote L_{0} the principal part of the operator L in (2).
$L_{0}(u)=\sum_{i=1}^{n}\left(\left(1+u_{t}^{2}\right)\left(u_{x_{i} x_{i}}+u_{y i_{i}}\right)+\left(u_{x_{i}}^{2}+u_{y_{i}}^{2}\right) u_{t t}+2\left(u_{y_{i}}-u_{x_{i}} u_{t}\right) u_{x_{i} t}-2\left(u_{x_{i}}+u_{y_{i}} u_{t}\right) u_{y_{i} t}\right)$,
so that the Levi operator is simply $L(u)=L_{0}(u)+k(x, y, t)\left(1+|D u|^{2}\right)^{3 / 2}$ and we will work on L_{0} to begin with.

Remark 2.1. Applying Bony propagation principle, we can give a new proof of Tomassini maximum principle.

Indeed we can write L_{0} in the form

$$
\begin{equation*}
L_{0}(u)=\sum_{i=1}^{n}\left(\partial_{x_{i}}^{2} u+\partial_{y_{i}}^{2} u\right)+Z u, \tag{4}
\end{equation*}
$$

where

$$
Z=\sum_{i=1}^{n}\left(\left(u_{x_{i}} u_{t t}-2 u_{y_{i} t}\right) \partial_{x_{i}}+\left(u_{y_{i}} u_{t t}+2 u_{x_{i} t}\right) \partial_{y_{i}}+\left(u_{x_{x i x}} u_{t}+u_{y_{i j} y_{i}} u_{t}-2 u_{x_{i}} u_{x_{i} t}-2 u_{y_{i}} u_{y_{i t} t}\right) \partial_{t}\right) .
$$

If $k: \Omega \rightarrow R$ is nonpositive, u is a solution of class C^{2} of $L u=0$ in Ω, then $L_{0} u=-k(x, y, t)\left(1+|D u|^{2}\right)^{3 / 2} \geqslant 0$. The vector fields $\partial_{x_{i}}$ and $\partial_{y_{i}}$ are admissible for L_{0}, for all $i=1, \ldots, n$. Hence, by the Bony propagation Theorem (see $i i$) in the Introduction), for all $\left(x_{0}, y_{0}, t_{0}\right) \in S_{u}(\Omega)$ we get $\left\{(x, y, t) \in \Omega: t=t_{0}\right\} \subset S_{u}(\Omega)$. In particular $u_{x_{i}}(\xi)=u_{v_{i}}(\xi)=0$ for all $i=1, \ldots, p, \xi \in S_{u}(\Omega)$, and, since $L(u)=0$, we deduce that $k(\xi)=0$ for all $\xi \in S_{u}(\Omega)$.

Using these vector fields, we can not prove in a simple way the comparison principle for two different solutions of the equation. Thus we will look for a more appropriate choice of admissible vector fields.

In order to do this, we first note that the characteristic form of $L_{0} u$ can be written

$$
\sum_{i, j=1}^{2 n+1} a_{i, j}(D u) \xi_{i} \xi_{j}=\sum_{i=1}^{n}\left(\left\langle X_{i}, \xi\right\rangle^{2}+\left\langle Y_{i}, \xi\right\rangle^{2}\right)
$$

where \langle,$\rangle denote the scalar product in R^{2 n+1}, X_{i}$ and Y_{i} are the following vectors:

$$
X_{i}=\left(\begin{array}{c}
u_{t} e_{i} \tag{5}\\
e_{i} \\
-u_{x_{i}}
\end{array}\right), \quad Y_{i}=\left[\begin{array}{c}
e_{i} \\
-u_{t} e_{i} \\
u_{y_{i}}
\end{array}\right]
$$

and e_{i} is the column vector, i-th element of the canonical basis in R^{n}. In order words, with the identification we have introduced, $X_{i}=u_{t} \partial_{x_{i}}+\partial_{y_{i}}-u_{x_{i}} \partial_{t}, Y_{i}=\partial_{x_{i}}-u_{t} \partial_{y_{i}}+$ $+u_{y_{i}} \partial_{t}$. Obviously X_{i} and Y_{i} are admissible vector fields.

The following one is our most important Proposition:
Proposition 2.1. We will denote with

$$
\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, \sum_{i=1}^{n}\left[X_{i}, Y_{i}\right]\right)
$$

the matrix whose columns are the components of the vector fields $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$, $\sum_{i=1}^{n}\left[X_{i}, Y_{i}\right]$ respectively. Then

$$
\operatorname{det}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, \sum_{i=1}^{n}\left[X_{i}, Y_{i}\right]\right)=(-1)^{n(n+1) / 2}\left(1+u_{t}^{2}\right)^{n-1} L_{0}(u) .
$$

Proof. The proof is a simple computation, which can be made as follows: $\left[X_{i}, Y_{i}\right]=\left(u_{t} u_{y_{i} t}-u_{x_{i} t}-u_{y_{i}} u_{t t}\right) \partial_{x_{i}}+\left(u_{x_{i}} u_{t t}-u_{x_{i} t} u_{t}-u_{y_{i} t}\right) \partial_{y_{i}}+\left(u_{x_{i} x_{i}}+u_{y_{i} y_{i}}+u_{y_{i}} u_{x_{i} t}-\right.$ $\left.-u_{x_{i}} u_{y_{i} t}\right) \partial_{t}$.

Hence

$$
\begin{aligned}
& \operatorname{det}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, \sum_{i=1}^{n}\left[X_{i}, Y_{i}\right]\right)=\sum_{i=1}^{n} \operatorname{det}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n},\left[X_{i}, Y_{i}\right]\right)= \\
& =\sum_{i=1}^{n}(-1)^{n(n-1) / 2} \operatorname{det}\left(X_{1}, Y_{1}, \ldots, \hat{X}_{i}, \hat{Y}_{i}, \ldots, X_{n}, Y_{n}, X_{i}, Y_{i},\left[X_{i}, Y_{i}\right]\right)
\end{aligned}
$$

The cap on X_{i} means that this index has been suppressed. This matrix is the sum of n block lower triangular matrices, and its determinant can be evaluated as follows:

$$
\begin{aligned}
& \sum_{i=1}^{n}(-1)^{n(n-1) / 2} \operatorname{det}\left(X_{1}, Y_{1}, \ldots, \hat{X}_{i}, \hat{Y}_{i}, \ldots, X_{n}, Y_{n}, X_{i}, Y_{i},\left[X_{i}, Y_{i}\right]\right)= \\
& =\left(\operatorname{det}\left(\begin{array}{cc}
u_{t} & 1 \\
1 & -u_{t}
\end{array}\right)\right)^{n-1} \sum_{i=1}^{n}(-1)^{n(n-1) / 2} \operatorname{det}\left(\begin{array}{ccc}
u_{t} & 1 & u_{t} u_{y_{i} t}-u_{x_{i} t}-u_{y_{i}} u_{t t} \\
1 & -u_{t} & u_{x_{i}} u_{t t}-u_{x_{i} t} u_{t}-u_{y_{i} t} \\
-u_{x_{i}} & u_{y_{i}} & u_{x_{i} x_{i}}+u_{y_{i} y_{i}}+u_{y_{i}} u_{x_{i} t}-u_{x_{i}} u_{y_{i} t}
\end{array}\right)= \\
& =(-1)^{n(n+1) / 2}\left(1+u_{t}^{2}\right)^{n-1} L_{0}(u) .
\end{aligned}
$$

From this Proposition we can deduce the following Lemma:

Lemma 2.1. Let $\Omega \subset R^{2 n+1}$ be bounded and connected and let $u: \Omega \rightarrow R$ a C^{2} function. Let Λ be an operator of the form

$$
\Lambda v=2 \sum_{i, j=1}^{2 n+1} a_{i j}(D u) \partial_{i j} v+\sum_{i=1}^{2 n+1} b_{i} \partial_{i} v
$$

where $a_{i j}(D u)$ is the matrix of the characteristic form of L_{0}, and b_{i} is a continuous function for all $i=1, \ldots, 2 n+1$. Assume that $v: \Omega \rightarrow R$ satisfies $\Lambda v \geqslant 0$ in Ω and there exists $\xi_{0} \in \Omega$ such that $v\left(\xi_{0}\right)=\max _{\bar{\Omega}} v$.

If the Levi curvature k of u is always different from 0 (see (1) for the definition of k), $v \equiv \max _{\bar{\Omega}} v$ in Ω.

Proof. Let $X_{i}=X_{i}(D u)$ and $Y_{i}=Y_{i}(D u)$ be the vector fields defined in (5). Since by the preceding proposition we have

$$
\begin{aligned}
\operatorname{det}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, \sum_{i=1}^{n}\left[X_{i}, Y_{i}\right]\right) & =(-1)^{n(n+1) / 2}\left(1+u_{t}^{2}\right)^{n-1} L_{0}(u)= \\
= & -(-1)^{n(n+1) / 2}\left(1+u_{t}^{2}\right)^{n-1} k(x, y, t)\left(1+|D u|^{2}\right)^{3 / 2}
\end{aligned}
$$

then the vector space spanned by $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ and their brackets has dimension $2 n+1$. Hence, by iiii) in the Introduction $\left\{(x, y, t) \in \Omega: v(x, y, t)=\max _{\bar{\Omega}} v\right\} \equiv \Omega$.

Theorem 2.1 (strong comparison principle). Let $u, v \in C^{2}(\Omega)$ be such that $L(u) \geqslant L(v)$ in $\Omega, u \leqslant v$ in Ω and there exists $\xi_{0} \in \Omega$ such that $u\left(\xi_{0}\right)=v\left(\xi_{0}\right)$. If the Levi curvature of u is always different from 0 , then $u \equiv v$ in Ω.

Proof. The function $w=u-v$ satisfies $w \leqslant 0$ in Ω and is a solution of

$$
\begin{aligned}
& \sum_{i, j=1}^{2 n+1} a_{i, j}(D u) \partial_{i, j}^{2} w+\sum_{i, j=1}^{2 n+1}\left(a_{i, j}(D u)-a_{i, j}(D v)\right) \partial_{i, j}^{2} v+ \\
&+k(\xi)\left(1+|D u|^{2}\right)^{3 / 2}-k(\xi)\left(1+|D v|^{2}\right)^{3 / 2}=L(u)-L(v) \geqslant 0 .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& a_{i, j}(D u)-a_{i, j}(D v)=\int_{0}^{1} \frac{d}{d \theta} a_{i, j}(\theta D u+(1-\theta) D v) d \theta= \\
&=\sum_{k=1}^{2 n+1}\left(\int_{0}^{1} \partial_{s_{k}} a_{i, j}(\theta D u+(1-\theta) D v) d \theta\right) \partial_{k} w
\end{aligned}
$$

and

$$
\begin{aligned}
\left(1+|D u|^{2}\right)^{3 / 2} & -\left(1+|D v|^{2}\right)^{3 / 2}=\int_{0}^{1} \frac{d}{d \theta}\left(1+|\theta D u+(1-\theta) D u|^{2}\right)^{3 / 2} d \theta= \\
& =3 \sum_{k=1}^{2 n+1}\left(\int_{0}^{1}\left(1+|\theta D u+(1-\theta) D v|^{2}\right)^{1 / 2}\left(\theta \partial_{k} u+(1-\theta) \partial_{k} v\right) d \theta\right) \partial_{k} w .
\end{aligned}
$$

If we set

$$
\begin{aligned}
& b_{k}=\sum_{i, j=1}^{2 n+1} \int_{0}^{1} \partial_{s_{k}} a_{i, j}(\theta D u+(1-\theta) D v) \partial_{i, j}^{2} v d \theta+ \\
& \\
& \quad+3 k(\xi) \int_{0}^{1}\left(1+|\theta D u+(1-\theta) D v|^{2}\right)^{1 / 2}\left(\theta \partial_{k} u+(1-\theta) \partial_{k} v\right) d \theta
\end{aligned}
$$

w is a solution of

$$
\begin{cases}\Lambda w=\sum_{i, j=1}^{2 n+1} a_{i, j}(D u) \partial_{i, j}^{2} w+\sum_{i=1}^{2 n+1} b_{i} \partial_{i} w \geqslant 0 & \text { in } \Omega \\ w \leqslant 0 & \text { in } \Omega\end{cases}
$$

with b_{i} continuous. By Lemma 2.1 we immediately conclude that $w \equiv 0$ and $u \equiv v$.

References

[1] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble), 19, 1969, 277-304.
[2] E. Bedford - B. Gaveau, Hypersufaces with bounded Levi form. Ind. Univ. Mat. J., 27, no. 5, 1978, 867-873.
[3] A. Debiard - B. Gaveau, Problème de Dirichlet pour l'équation de Levi. Bull. Sc. Math., II, 102, no. 4, 1978, 369-386.
[4] G. Tomassini, Geometric properties of solutions of the Levi equation. Ann. di Mat. Pura e Appl., 152, 1988, 331-344.
[5] G. Tomassini, Nonlinear equations related to the Levi form. Rend. Circ. Mat. Palermo, Ser. II, T. XL, 1991, 281-297.

Dipartimento di Matematica Università degli Studi di Catania Viale A. Doria, 6-95100 Catania

