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Equazioni a derivate parziali. — A comparison theorem for the Levi equation. Nota
di Grovanna Crrr, presentata (*) dal Corrisp. B. Pini.

Asstract. — We prove a strong comparison principle for the solution of the Levi equation

o) T @2+ ul)u, +

L) = 2 (1 + )y + 2
i=1
+2(u,, — uyu,) ty, — 20, + uyu)u,,) + kee,9,0(1 + |Du|?)? =0,

applying Bony Propagation Principle.
Key worps: Maximum propagation principle; Comparison principle; Levi equation.

Russsunto. — Un teorema di confronto per l'equazione di Levi. Utilizzando il principio di propagazione
dei massimi di Bony proviamo un principio di confronto forte per le soluzioni dell’equazione di
Levi

L) = 2 (1 + 2ty + 1) + (2 + ), +

1

H‘M:

i

+ 20w, — wgt, )ty — 20, + w1 uy,) + klx,y,0(1 + |Du|?y? = 0.

1. INTRODUCTION

 Let McR** ! be a hypersurface of class C?, graph of a function #. The Lervi cur-
vature of M at a point (x,7, ¢, #(x,y,£)) withx = (x;,...,x,) € R”, y=(y1,...,9,)€R" ¢t €
€ R is the real number

n

(1) k= -1+ |Du|?>)? 2 (1 + 2y, + 14,) + @2+ u}) 1, +

7=

+2(uy,, — w,u) 4, — 20, + uyiu,)uy’,t)
3

where |Du|*= X (2 +u?) +u’.
=1

=

Viceversa, if Q c R**!is a fixed, bounded and connected open set, &: Q — R is a
continuous function, we can look for a function #: Q2 — R of class C* whose graph has
Levi curvature £ at every point (x,y,2,%(x,y,£)). In other words we study the solutions
of the following equation, called the Levi equation

@) Lw) = 3 (1 + 42y +1,,) + @2 +52) 1, +

i=1
+2(u, — u,u) u,, — 2(u, + uyiu,)uy,_,) + k(x,y,8)(1 + |Du lz)s/z =0.
This is a quasilinear equation, whose characteristic form is positively semidefinite,
but has the least eigenvalue identically 0. In particular the equation (2) is not elliptic at
any point. However, suitably adapting the classical elliptic techniques, Bedford and
Gaveau in [2], Debiard and Gaveau in[3], and Tomassini in [4] were able to establish
some geometric properties of the solutions. In particular Debiard and Gaveau proved

(*) Nella seduta del 24 aprile 1993.
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the following weak maximum principle: £ & Zs continuous and nonpositive, and u is a sol-
ution of Lu=0 of cass C? which satisfies limsupu(d) <0 for every
n=(x,7,¢) € 0Q, then u <0 in Q. P

The strong maximum principle in general does not hold, since the set §,(Q) =
= {(x,9,2) € Q: u(x,y,t) = supu} can be different from @ and strictly included in Q. In [4]

Tomassini proved the follow?.ng version of maximum principle: i Q is open and connect-
ed, k: Q — R is continuous and nonpositive, u is a function of class C? solution of the equa-
tion (2) in Q and & = (xy,90,t) €S,(Q), then {(x,9,t)eQ:t=1t}cS,(Q) and
k(x,y,t) =0 for all (x,y,t) €S, (Q).

In particular: f & never vanishes in Q, a regular solution of (1) has no local maximum

in Q.

In this Note we study equation (2) with a completely different approach, using the
maximum propagation principle of Bony, (see[1]) which we will now recall.

Let Q cR**! be open bounded and connected, and let L, be an operator of the
form

21 2+ 1
(3) Lo(w) = '214,-,,-3,%,” + ‘21 b,0u in Q,

ij = i=
where 4;; and b; are continuous functions in €.

Let # be a solution of Ly (#) = 01in Q and let S, (Q) be not empty. A vector v e
is called outer normal to S, (Q) at a point £€ S, (Q) if BE+ v, |v]) NS, Q) =0. If
S, (Q) # @ and S, (Q2) # Q, the set S (Q) = {£ € S, (Q): there exists the outer normal at
£} is not empty. With these notations the following properties hold:

R2ﬂ+1

7) (Hopf Lemma, see[1, Proposition 3.11) If v is the outer normal to S, (Q) at a
point £€ S (Q), then

1
) 2 a; ; (6 v;v; = 0.
=1
A vector field X of class C* (Q) i.e. a function X € C'(Q,R? 1), is called admissible for
L, if Wy e R+

2n +1

E 1a,v,j(é') v;v; =0  implies X(&),v) = 0.

1,] =

Hence, from the previous proposition it immediately follows that, if X is an ammissible
vector field, X is tangent to S,(Q), in the sense that (X(£),v) = 0 Vv outer normal to
S, (Q) at &

Now Bony propagation theorem can be stated as follows:

i) ([1], Theotem 2.1) Let X be a vector field of class C* tangent to S, (Q). Then for
every £e€S,(Q), any integral curve of X passing through £ is completely contained in
S, (Q).
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Consequently, if X and Y are ammissible vector fields, any integral curve of them
intersecting S, (Q) is completely contained in S, (2). Hence, if we denote with the same
symbol a vector field and the differential operator with the same coefficients, we can

define [X,Y], and it is tangent to S, (Q). Thus

i) If X4,...,X,, are 2n admissible vector fields which together with their commuta-
tors of order one, span all of R** 1, then §,(Q) = Q.

Using these theorems we give a new, very simple proof of the Tomassini maximum
principle. However the most important result is Proposition 2.1, where we show that if
k(%) # 0VEe Q, and # € C?, then there exist vector fields X;,...,X,, which satisfy con-
dition 7%) in the preceding principle. As a consequence we prove the comparison prin-
ciple for regular solutions of (2) (see Theorem 2.1).

2. MAXIMUM AND COMPARISON PRINCIPLE

In the following we will always assume that £ ¢ R* *! is bounded and connected,
k: Q — R is a continuous function and #: Q — R a function of class C?(Q2). We will de-
note L, the principal part of the operator L in (2).

Liw) = 2 (1 + aP) g, +u,,) + @2+ u))u, + 20, —u ), — 20, +u,u)u,,),

i=1
so that the Levi operator is simply L(z) = Lo (#) + k(x,y,£)(1 + |Du|?)*? and we will
work on L, to begin with.

Remarxk 2.1. Applying Bony propagation principle, we can give a new proof of Tomassi-
ni maximum principle.

Indeed we can write L, in the form

14

(4) Ly(w) = 2 (B2u + 2u) + Zu,

i=1

where

Z= '21 (14 — 2,,) O, + (tt 4y + 20, O, + (14, + 14y 0, — 20,10, — 26, 14,,) ) .

If £:Q—R is nonpositive, # is a solution of class C? of Lu =0 in Q, then
Lou = — k(x,y,£)(1 + |Du|?)** = 0. The vector fields 3, and 8, are admissible for L,,
for all 7 = 1,...,n. Hence, by the Bony propagation Theorem (see 7) in the Introduc-
tion), for all (xo,y9,%) €5,(Q2) we get {(x,y,£) e Q:¢ =1} cS,(Q). In particular
%, (5) =u, (5) =0 for all i =1,...,p, £&5,(Q), and, since L(x) = 0, we deduce that
k(&) =0 for all €S, (Q).

Using these vector fields, we can not prove in a simple way the comparison principle
for two different solutions of the equation. Thus we will look for a more appropriate
choice of admissible vector fields.
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In order to do this, we first note that the characteristic form of Lyu can be
written

w41 "
”2 4o (D) 55 = [21 (X, 8% + (Y, £7)
where (,) denote the scalar product in R#”*! X, and Y; are the following
vectors:
ue; &
5) X=| e |, Y= | ~ue
_uxi Uy,

and ¢; is the column vector, /-th element of the canonical basis in R”. In order words,
with the identification we have introduced, X; = #,0, + 9, — #,9,, Y; = 9, — ,0, +
+ u,,9,. Obviously X; and Y; are admissible vector fields.

The following one is our most important Proposition:

Prorosrrion 2.1. We will denote with

(Xl)"‘a}(n> Yl)"'>Yna 'Zl[}(i’ le])
the matrix whose columns are the components of the vector fields Xy,...,X,, Y1,...,Y,,

2 [X:, Y] respectively. Then
i=1

det(Xl"'-;){qul) L) naz[ )Z(— 1)”(”+1)/2(1+ut2)n_lL0(”)-

Proor. The proof is a simple computation, which can be made as follows:
(X, Y] = (wu,, — the, — w,04,) Oy, + (th 28y, — i yrt, — 00,,) O, + (e + 14y + 20,08, —
=, 4,,) 0.

Hence

det(Xl,...,)(n,Yl,.--,Y,,,‘21[&,}6]) = Z det(le"')Xn)Yl7 1] ﬂ7[)(t Y])—

= 2(_ 1)”(11#1)/2 det Xl)Yla )<1 Yn n) n’ ' K)[)(I)Y])

i=1
The cap on X; means that this index has been suppressed. This matrix is the sum of
n block lower triangular matrices, and its determinant can be evaluated as fol-
lows:

2 A

2 (=1 det (X, Yy, X, Y0 X, Y, X YL UK, YD) =
i=1

L\ u, 1 Uplhyy — Uy — Uy Uy

U —ln
= (det ( 11 )) Z ( - 1)’[(”_1)/2 det 1 —U; ux'_ut,, - uxi,ut - uy,vt
—u i=1
T Uy, uy, U, + Uy + Uy Uhyr = Uty ¢

= (= 1" 24wy Lo ().
From this Proposition we can deduce the following Lemma:
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Lemma 2.1. Let Q ¢ R% * 1 be bounded and connected and let u: Q — R a C? function.
Let A be an operator of the form

2+1 2+ 1
=22 a ;i (Du) v + > bidw
i=1

i,7=1

where a;(Du) is the matrix of the characteristic form of Ly, and b; is a continuous function
for all i =1,....2n + 1. Assume that v: Q — R satisfies Av =0 in Q and there exists
& € Q such that v(%)) = maxv.

Q

If the Levi curvature k of u is always different from 0 (see (1) for the definition of k),
v = maxv in Q.

Proor. Let X; = X;(Du) and Y; = Y;(Du) be the vector fields defined in (5). Since
by the preceding proposition we have

det(X;,...%X,,Y,,....Y,, DX, Y1) = (= 1y"*2(1 + 427 "Ly (u) =
i=1

— _(_1)n(n+1)/2(1+u12)n—lk(x,y, 1+ |Du| 3/2’
then the vector space spanned by X ,...,X,,Y7,...,Y, and their brackets has dimension
2n+1. Hence, by i) in the Introduction {(x,y,#) € Q: v(x,y,#) = maxv} = Q.

0

TueoreM 2.1 (strong comparison principle). Let u,v € C*(Q) be such that L(u) = L(v)
n Q,u < vinQ and there exists & € Q such that u(&y) = v(&,). If the Levi curvature of u is
always different from 0, then u =v in Q.

Proor. The function w = u — v satisfies w < 0 in Q and is a solution of
2+ 1 41

Z Dw)Rw+ X (a ~a;;(Dv)) 30 +

= ij=1

E(E)(1 + |Du|?)*? — k(1 + |Dv|?)? =L) — L) 2 0.
On the other hand

1
a;,;(Du) — a; ;(Dv) = Jdea,/(oDqu—o)Dv)

w1 2
=2 [ 8.4,(6Du + (1~ 0) Dv)do | S
=1
0
and

1+ |Du|?**— (1 + |Dv|? )”—j “-(1+ |6Du + (1 — 6) Du|*)?do =

2+ 1 1
=3 kE J(l + |6Du + (1 — ) Dv|*)"? (68,4 + (1 — 6) 3, v)dO)akw.
=1
0



212 G. CITTI

If we set
27 +1 1
b= > Jajkai,]-(ODu + (1 - 6) Do) Z,0db +
ij=1
0

1
+3/<<5)J'(1 + [0Du + (1 — 0) Do |?)Y2 (08,4 + (1 — 0) 8, v) db,
0

w is a solution of

w4t 41
Aw = a;;(Du) & w + > bow=0 inQ
ij=1 i=1
w=<0 in Q

with b; continuous. By Lemma 2.1 we immediately conclude that w =0 and
u=v.
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