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Calcolo delle variazioni. — Boundaries of prescribed mean curvature. Nota di
Epuarpo H. A. GonzaLes, UMBERTO Massart e Itaco Tamaning, presentata (*) dal
Corrisp. M. Miranda.

AsstracT. — The existence of a singular curve in R? is proven, whose curvature can be extended to an
L? function. The curve is the boundary of a two dimensional set, minimizing the length plus the integral
over the set of the extension of the curvature. The existence of such a curve was conjectured by E. De
Giorgi, during a conference held in Trento in July 1992.

Key worps: Calculus of variations; Geometric measure theory; Mean curvature; Singular boundaries
of finite measure.

RuassUNTO. — Supetfici di curvatura media assegnata. E dimostrata Iesistenza di una curva singolare
nello spazio euclideo a due dimensioni, la cui curvatura pud essere estesa ad una funzione di quadrato inte-
grabile. La curva & la frontiera di un insieme a due dimensioni, ed & minimizzante un funzionale ottenuto
sommando alla lunghezza della curva, l'integrale sull’insieme di cui essa & frontiera della funzione curvatu-
ra. L'esistenza di una tale curva era stata congetturata da E. De Giorgi, durante un Convegno a Trento nel

luglio del 1992.

0. InTrRODUCTION

The study of the functional
(0.1) Fir (X) = 18X (@) + [ ¢x () Hx) de
d

began in 1974 with the work of U. Massari (see[6]). Here Q is an open subset of
R"(n = 2), He L' (Q), ¢x is the characteristic function of the measurable set X c R”
and |8X|(Q) is the perimeter of X in O, Ze.

(0.2) |0X|(Q) = Sup“ ¢x (%) divG(x)dx: G € C¢ (Q;R"), |G|l < 1}.

If E is a local minimizer of Fy; (ze. if Ty (E) < Fy (X) for all X such that (E — X) U
U (X — E) cc ), then we will say that « E has (generalized) mean curvature H », or sim-
ply that « H is a curvature for E». The reason is that in this case, assuming moreover the
continuity of function H at the point x € Q N JE together with the regularity of OE itself
in a neighbourhood of x, the (classical) mean curvature of OE at x is given by
—H(x)/(n = 1), as one readily verifies.

In[6,7] U. Massari proved that if E minimizes J; with H € L? (Q), p > #, then one
can find an open subset 2, of Q such that Q; N 3E is a hypersurface of class C**, a =
=(p—n)/d4p and Hs((Q—0Q;)NIE)=0 VYs>#n—8 where H; denotes the
s-dimensional Hausdorff measure in R”.

In 1987 E. Barozzi, E. H. A. Gonzales and 1. Tamanini [2] proved that any set of fi-

(*) Nella seduta del 13 marzo 1993.
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nite perimeter has generalized mean curvature in L' (Q). Indeed, a suitable H (with
countable rank), which is the L '-limit of approximating curvatures of finite rank, can be
constructed (see also[1,3,11]). It is then apparent that if E has curvature H e L? (Q2)
with 1 < p < #, then JE can contain many singular points, e.g. cusps, points of density 1
(or 0), and so on (see eg. [3,4]).

In this paper we consider the case p = #, i.e. sets of curvature H € L” (Q). In the
first section we recall some general properties (density, blow-up) that are more or less
present in the existing literature. The main result of the paper is contained in the sec-
ond section where we study a 2-dimensional set with singular boundary. The definition
of this set was given by E. De Giorgi during a Conference held in Trento last July 1992.
The singular boundary is the union of two spiral curves converging to the same point.
De Giorgi conjectured that the curvature of this line could be seen as the restriction of
an L? function. Here we present the proof of De Giorgi’s conjecture.

1. GENERAL RESULTS

Let Q c R” be open, let E c Q2 be a set of curvature H(x) € L” (Q), n = 2, and let us
assume that 0 € Q N 9E. Denote by B, = B, (0) the open ball centered at 0 with radius 7,
by B, = B, (0) the corresponding closed ball, by ||H||,, and, respectively, by || H ll.».c the
L”-norm of H in B, (respectively in B, N E), Ze.

||H||,,,,=\n/j|H<x>|"dx, ann,,,E:{/ [ 1He | dx.
B, B,

NE

For X c R” denote by |X| its #-dimensional Lebesgue measure and set w, = |B;|. It is
well known (see e.g.[5, Prop. 3.1]) that, by possibly redefining E on a set of measure
zero, we can assume that

0edE<0< |ENB,| <w,r” Vr>0.

Throughout the paper, the boundary of any set of (locally) finite perimeter has to be in-
tended in this stronger sense.

Lemma 1.1, If E cQ has mean curvature H e L”(Q2) and 0 € Q N OE then
ENB
(1.1) tim inf LB 5 L
=0 w,r” 2

Proor (see also [4]). By assumption, E is a local minimizer of J, hence by com-
paring E with E — B, we get
(1.2) |3E|(B,) + J H(x)dx < j ¢r dH,

B,NE 3B,
and Hélder’s inequality then gives
(13) |6E|B,) = |Hll,..x |B.NE[' " < [ ¢ dH, .
3B,
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The isoperimetric inequality states that
(1.4) c¢(n) |B,NE|'~" < |3(EN B,)|(R"),
where ¢(#) = n{/w,. Since
|8(E N B,)|(R") = |3E|(B,) + j spdH, |,
oB,
from (1.3) and (1.4) we get
(15) [e(r) = |Edll, ) |B,NE|' "% <2 [ ¢y dH, ;.
3B,

Now, for every ¢ e (0,1) we can find 7. > 0 such that

(1.6) |Hl,, .z S eln) Vr0o<r<r

so that

(1.7) (1 - ) cn) |B,nE|1—1/"szj¢EdH,,_l.
' 8B

Set g(r) = |B, N E|; function g(r) is non-descreasing and for almost all » we have
g'()= [ ¢edH, .
. 9B,

We can than rewrite (1.7) as follows
(1.8) (1—e)cln)glr) " < 2¢'(r)

ie. (1 —¢)c(n)/2n < [g(r)*1" which holds for almost all e (0,r,); by integrating
between 0 and ¢ we get o(1—¢)c(n)/2n<g(p)" ie. &' (1—e) w,/2"<g(p)= |B,NE|
Vo e [0,7.] and (1.1) follows at once. ¢

Lemma 1.2, If EcQ has mean curvature H e L” (Q) and if B, cQ, then

(1.9) |3E|(B,) < ¢, (n)(1 + |H], ) r" " .
Proor. By comparison of E with E — B, we get
(1.10) |6E|(B,) + j Hix)dx < quE dH,_, .
BNE 3B,
Similarly, by comparison of E with E U B, we get
(1.11) |3E|(B,) + j Hix)dx < j(1—¢5)dH,,_l+jH(x)dx.
BAE 3B, 5,

By addition, (1.10) and (1.11) yield

B,NE

z(|aE|(B,)+ j H(x)dx)Snw,,r”"+JH(x)dx
B,
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and from that, using Hélder’s inequality, we obtain
nw,r" ! (w, ")t~ 1 naw, w) .
<2 T I |t
0B 1B < 22 g, L) O i, 2 e
For A > 0 we now consider the sets AE = {Jx:x € E}, AQ = {Jx: x € Q}.
With a change of variable x =y/A we get

F(E) = |3E|(Q) + quE(x)H(x)dx =177 |3AE)| 0Q) +
Q

+37 [ 40V Hly/ 1 dy = Al‘”(lauml(zm | %E(y)H()’/)\)dy)
pxo} 202

which shows that if E has mean curvature H in , then AE has mean curvature H, (y) =
=)A"'H(y/2) in Q.

Tueorem 1.1. If E has mean curvature H e L” (Q2), 0 € Q N 3E, and A(k) is a se-
quence of positive numbers with A(%) -t then there exist a subsequence u(£) of

A(k) and a set E,, with zero mean curvature (Z.¢., a local minimizer of J; in R”, with
H = 0) such that

pt(k)E—/—:Ew

in L. (R”). When # < 7, we have specifically that E,, is a half-space; in this case
moreover

ENB  |GE|(B
i EOBL 1 19EIG)
r—0 (,()nr” 2 r—0 w, 17
ProoF (see also[9]). Lemma 1.2 gives, for all R > 0 and A > 0:
|0(AE) | (Br) = 2" ' |OE|(Bgy) < ¢; (n)(1 + |H]l, gi) R” 1

whence the family {A(k) E: £ € N} is relatively compact in L (R”). Let then (k) (sub-
sequence of A(k)) and E, c R" be such that

w(k)E —E. in L. (R").
We have 0 € OE,, : indeed, from (1.1) it follows that

n—1

w,R”
>
Similarly, |Bg — Eo | = w,R” /2" (notice that E has mean curvature H if and only if
Q — E has mean curvature —H).
To check the minimality of E, , choose p € (0,R) so that

(1.12) lim [ |¢0r ~ g5, | dH, -, = 0.
3B

|E= N Bg| = lim [4(k) E N Bg | = limu(k)" |E N Brye) | =

For F such that (F— E,) U (E, —F) ccB,, set
F.=(FNB,) U (uk)E—B,).
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Since (k) E has mean curvature H, (x) = u(k) ™' H(x/u(k)), we have
|((RE) | (Br) + [ iz o) Hy (e) e < [8E, | (Be) + [ g, ) H () e =
By

By

= [8F|B,) + [ I¢r = duwe| dH, -y + |9(wk)E)| (Br = B,) + [ r, () Hy () d
9B, By

hence
(1.13)  |8(uk)E)|(B,) < |oF|(B,) + “Ew — by | dH,_, + j |H; | dx.
3B, B

Now

(1.14) JlHk|dx= Jp.(k)_l |H(x/u(®)) | dx = (k)™ j |H)| wlky dy <
By By Br/uw)
< k) | Hl rpsey 1Briswy |~ = |1 H b ry s =" R” 71 2 0.
From (1.13), thanks to (1.12), (1.14) and the semicontinuity of the perimeter, we

get |OE., | (Bg) < |9F]|(Bg) which holds for all R > 0, thus showing that E,, has zero
mean curvature in R”. Moreover

(1.15) lim | 8( (k) E) | (Br) = |3E.. | (Br) .

It is well known that when » < 7 the set E, is a half-space with 0 € E,, so
that

. R” ¥ .
|E. NBg| = = =h£n|y(k)EﬂBR|=h£1#(k)” |E N Bryuy | =
ENB
= o, "lim | R/y(/e)l
£ w,(R/uk))
e
ENB

(1.16) lim | R/;t(/e)l _ l

Eow,(R/uk)y 2
Similarly, by (1.15)
|8E.. |(Bp) = w, -1 R”~* = lim | 3(u(k) E) | (Bx) =

| OE | (Bryue))
= lim (k)" =" |OE| (Bryuw)) = @, - 1 R~ 'lim #
m |OE | (Brpu) = @, — 1 Eow, 1 (R/uk) 1

ie.

OE| By
¢ w1 R/pll)
The proof is easily concluded. ¢

(1.17)
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We now show that any set E with mean curvature H € L” ((2) can be redefined on a
set of Lebesgue measure zero, so as to produce a new set E* which has the same
curvature H and some kind of «topological regularity». For simplicity in the exposi-
tion, we only consider the case when Q = R”. In the following proof, we denote by
E(a), 0 < a < 1, the set of points where E has density «, ‘Ze.

. |ENB,,|
E(x) ={xeR": lim ———— =ay.
r—0 w, "

Tueorem 1.2. Let ECR” be a set of mean curvature H e L”(R"), and
set E* = E(1) UQGE. Then E* differs from E by a set of Lebesgue measure zero,
H is a curvature for E*, E* coincides with the closure of its interior, and
|OE*|(A) = H,_{(ANJE*) for all open ACR".

\

Proor. If x ¢ OF, then (recall the convention at the beginning of this section) we
can find 7 > 0 such that either [ENB,,| =0 or |ENB,,| = w,”. Moreover, if x €
€ E(0), then (by Lemma 1.1) x ¢ 3E so that |E N B, ,| = 0 for a suitable » > 0. This
shows that E(0), E(1) and 9E form a partition of R”, and that E(0) is open. Similarly,
E(1) is open, and JE is closed. Clearly, OE c dE(1) N JE(0), since E(1) is equivalent to E
and E(0) is equivalent to R” — E. On the other hand, the closure of E(0) is a subset of
R” — E(1), since E(1) is open, so that JE(0) c R* — [E(0) U E(1)] = 9E.

By similar considerations, we get JE(0) = OE(1) = OE = R” — [E(0) U E(1)].

Now, it is well known that any set F c R” of locally finite perimeter satisfies:

F(1/2) c &F,

|9F|(A) = H, -, (F(1/2) N A) < 4+  for all open AccR”,
H,_,(R*—[F(0) UF(1) UF(1/2)1) =0,

so that H, _ (8E — E(1/2)) = 0, hence H, (3E) = 0. In conclusion E* = E(1) U 9E =
= R” — E(0) differs from E by a set of Lebesgue measure zero (hence H is a curvature for
E* too), coincides with the closure of its interior E(1), and since OE * = OE we have in
addition |0E* [(A) = H, _,(A N JE*) for all open A c R", as was to be proven. ¢

Remark 1.1. Define ¥(r) = |9E|(B,) — inf{|3F|(B,): F — B, = E — B,}.
If E has mean curvature H € L? (Q) and B, cQ, then clearly

¥(r) < j |Hx) | dx
B,

and by Hélder’s inequality we obtain
(1.18) V() < b~ ||H]|,, "

When p > # we thus get V() < const-r” "1*¢ ¢ =1—#n/p > 0. As shown by Massari
in[7], this is enough to start the procedure leading to the (partial) regularity of OE
quoted in the introduction. Actually, it was shown in [10] that the following estimate is
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sufficient for the regularity result to hold:

Val(r)
r

s
(1.19) v <o)t with | dr<+o, >0,
0

This condition may fail when p < 7. Indeed, examples of singular sets having mean cur-
vature in L? | with p < #, are well known (see e.g [3]). In the next section we settle the
question of what happens when p = # — an open problem since 1975 — by the explicit
construction of a set EcCR? which is singular at 0 e OE and mean curvature
HeL?(R?.

A general method yielding a mean curvature of an arbitrary set E CR” with
|OE|(R") < + % has been presented in [2]. However, when E has a simple geometry,
it may be convenient to apply, the following.

Lemma 1.3. Suppose E c Q is a set with a smooth boundary in 2, and assume that
the exterior normal unit vector v(x) at x € 2 N JE can be extended to a vector field
V:Q R with Ve WLl (@) N CQ), |V]. < 1; then
(1.20) H(x) = —divVi(x)
is a curvature for E.

The proof is a straightforward application of the divergence theorem, see
e.g. [3,11]. We remark explicitly that the method works also when isolated singularities
are present: e.g., if 0 € 2 N OE is the only singular point of E, then we can apply Lemma
1.3 to  — B, and pass to the limit as » — 0.

2. A SINGULAR SET IN R? WITH CURVATURE IN L?
Let us consider the following «antipodal spirals» in the (x,y)-plane:
(2.1) X)) =x@) +iy() = t[cos 6() + isin 6(2)],
(2.2) X¥(t) =x*(¢) +iy* (t) = tcos (6(t) + =) + 7sin (6(2) + 7)],

where ¢ € (0,1) and the «angular function» 6: (0,1) — (0, + ) is required to be convex,
strictly decreasing and of class C? on the interval (0, 1), with

(2.3) tli_t)l%) 0(2) = + o, ;li—1>n1 6(z) = 0.

We have clearly

(2.4) @) =-2*@), |20l=¢ Vee(o1),
(2.5) t'_)llmlz(f) = (1,0), ’11'_13)2(2) =(0,0).
Call

(2.6) E = {tlcos(0(z) + &) + 7sin (6() + 2)]: 0 < < 1, n < a < 27}

the subset of the unit ball B; ¢ R? lying «between» the two spirals X, * . Clearly B; N

NJE =X UX* U {(0,0)}, the origin being the only singular point of B; N JE.
Now, for every ¢ € (0, 1), the circle x* + y? = ¢ has exactly two points in common

with OE, namely X(p) and I* (p) = — X(p). Moreover, the exterior unit normals to E at
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these two points coincide; we can then extend the exterior normals v: ¥ U X* — §'to a
vector field V: B, — {(0,0)} — S* by the obvious requirement
2.7 Vix,y) = vlx(e),3(e)), x2+y2=¢".

On the account of Lemma 1.3 and the remark following it, we try to find conditions on
0(¢) assuring that

(2.8) divVeL?(B,).
Now, on X we have
29)  vx@),y@®) = (=9"@),x" @) @) +57 @) =
= ( — sin 6(z) — 6’ (¢) cos 6(2), cos 6(¢) — #6' (#) sin 6(¢)) (1 + £267 (¢)) /2
hence by (2.7)

(2.10) Vix,y) = (91 (), 92())

where for p e (0,1)

(2.11) o1 () = —sin 0(p) — 0’ (o) cos 6(p) (1 + 262 (p)) 12,
(2.12) 0 (p) = cos B(p) — ' (o) sin 6(p) (1 + 267 (p)) ™Y .
If follows that

(2.13) divV = ¢ (p)*cos « + @5 (p)*sin «

where of course x = pcosa, y = psin «.
We check immediately that

(2.14) 1 (p) = (20" + £26” + p0")(—cos 6 + pff sin 6) (1 + ¢267) %2
(2.15)  @3(p) = (20" + %0” + 00")(—sin 6 — off cos 6) (1 + 267) 772 .
Therefore, from (2.13), (2.14) and (2.15) we obtain

(2.16) [div Vix,y) < |20' + 6267 + 00" | /(1 + 0?67).
Thus, condition (2.8) is certainly satisfied if

(2.17)

1 ' 23 "2
20" + 067 + 0
Jp( d e )dp<+oo.

0

(1+202)
By expanding the numerator in the preceding integral we find
407 + o0 + 020" + 470" + 400" 6" + 25767 6" < 407 (1 + 267) + p*0° + 70"
since by assumption 6’ < 0 and 6" = 0.
The integrability condition (2.17) then holds, provided both functions

(2.18) e0?(e) and 26" (p)

are integrable in (0,1).
Among the simplest choices of functions 6(¢), satisfying the convexity and mono-
tonicity conditions stated above, (2.3) and (2.18), we have the following one:

(2.19) 6(2) =log(1 —logs), 0<z<l1.
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We have thus proved

TueoreM 2.1. The set E ¢ R? defined by (2.6), with 6(¢) given by (2.19), has mean
curvature in L?(B;). The origin is a singular point of OE.

Additional properties of E are given in the following remarks.

Remark 2.1, Thanks to the symmetry of the construction, the set E given in Theo-
rem 2.1 satisfies |[E N B,| = |B,|/2 Vre (0,1) (compare with Theorem 1.1).

Remark 2.2. Let r, be the half-line issuing from 0 with direction (cos «, sen «), let
# () be the value of the parameter ¢ corresponding to the &-th intersection of X(#) with
7. One has # (a) = exp (1 — exp (a + 2kn)).

By choosing A(k) = (. («)) ™!, we see that A(k) E converges in L. (R?) to the half-
space through 0 with exterior normal vector (— sen «, cos «) (compare with Theorem
1.1). Therefore in this case every half-space through 0 is the limit of a suitable sequence
of dilations of E.

Remark 2.3. We find easily that
‘I’(r)=|8E|(B,)—2r=2f 1+ —Lr gy
G (1 — log #)?

Y(r)(1 — log r)? _
r

so that
___r
(1—logr?

Compare with Remark 1.1: this shows in a sense that (1.19) is an «optimal condition»
for regularity.

lim

r—0*

1, ie. V() =

RemARk 2.4. One verifies easily that the mapping f: B; c R2, — B, ¢ RZ,, given (in
polar coordinates # = #cos 8, v = ¢sin 8 and, respectively, x = pcos a, y = psin a) by
F@&,B) = (4,60 +8) for 0<t<1,0<p<2r £0,0)=(0,0) with 6(z) as in (2.19),
is a bilipschitzian trasformation of B, in itself, which maps the lower hemidisk
B, N {v <0} onto E and the diameter B; N {v = 0} onto B; N E.
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