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Matematica. — The exceptional sets for functions of the Bergman space in the unit
ball. Nota di Piotr JaxdBczak, presentata (*) dal Socio E. Vesentini.

AsstracT. — Let D be a domain in C?. Given w € C, set D, = {z € C|(z, w) € D}. If f is a holomor-
phic and square-integrable function in D, then the set E(D, f) of all w such that f(+, w) is not square-in-
tegrable in D, has measure zero. We call this set the exceptional set for £ In this Note we prove that
whenever 0 < 7 < 1, there exists a holomorphic square-integrable function f in the unit ball B in C? such
that E(B, f) is the circle C(0,7) = {ze C||z| =r}.

Key worps: Bergman space; Hartogs domain; Exceptional sets.

Ruassunto. — Gli insiemi eccezionali per funzioni dello spazio di Bergman nel disco unitario. Sia D un
dominio in C?. Per ogni w e C sia D, = {re C|(z, w) e D}. Se fe L? & olomotfa in D, allora I'insieme
E(D, f) dei w per cui f(+, w) non & in L?(D, ) ha misura nulla. E(D,f) denota ['insieme eccezionale per f.
In questa Nota si dimostra che per ogni 7, essendo 0 < r < 1, esiste una funzione f e L?, olomorfa nel di-
sco B di C?, per cui EBB,f) ={zeC]| |z| =r}.

1. INTRODUCTION

In[1] we investigated the following problem: Let D be an open set in C**”. De-
note by L2H(D) the space of all functions in L?(D) (with respect to the Lebesgue
measure) which are holomorphic in D. Given w € C”, let D, = D N (C” X {w}), and
let p(D,) be the projection of D, onto the first coordinate space, p(D,) = {z e
€ C"|(z, w) e D}. Then given f e L*H(D), the function f|p, can be considered as the
function holomorphic on the (possibly empty) open set p(D,,) in C”. Let E(D, f) de-
note the set of all w e C” such that p(D,,) is not empty and f|p, is not L*integrable
with respect to the Lebesgue measure on p(D,,). By Fubini’s theorem, E(D, f) is a set
of Lebesgue measure zero in C”. What further properties has the set E(D, f)?

We have showed in[1] that if D is a Hartogs domain in C? (we assume here that
" n=m=1), then E(D, f) is a Gyset, and for every Gyset E ¢ C of Lebesgue measure
zero there exists a Hartogs domain D ¢ C? (possibly with strange boundary) and
a function fe L?H(D) such that E = E(D, f). If we assume that a Hartogs domain
DcC? is also a convex domain with smooth boundary, we have constructed an
example for which E(D, f) is a boundary of a rectangle, or a set dense in a rectangle,
containing its boundary.

In this Note we consider the case of the unit ball B in' C?. We show the following
theorem:

TrroreM 1. Given r with O <r < 1, there exists a function fe L2H(B) such that

E(B,f) is the gircle C(0,7) ={zeC| |z| =1}

(The question of the existence of such function was stated in[1].)

(*) Nella seduta del 12 dicembre 1992.
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2. THE EXCEPTIONAL SETS FOR L?H-FUNCTIONS IN THE UNIT BALL IN C2
In this section we prove Theorem 1. Call the variables in C? by (z, w). Denote by U
the unit disc in C. Let g(z 2 a,z" be holomorphic in U. Set G(z, w) = g(z), (z, w) €

eUxC:=T. Then Gis holomorp}nc in T. Let ¢ be any unitary mapping of C? onto it-
self. Then G o ¢~ ! is holomorphic in the set ¢(T), containing the unit ball B. Fix » with
0<r<1, and precise ¢(z, w) = (1 — r?)?z — rw, rz + (1 — #*)"?w). Then

(1) ¢ 1z w) = (1 =)z +rw, —rz + (1 — r2)2w).

Suppose that G is so chosen that G € L?H(B). Then Go¢™ ' € L?H(B). Let w € U. Re-
call that

(2) p(B,) = {z|(z,w) e B} = {|z] < (1 — |w|?*)"?}.

Note that for any w € U which is not of the form rp for some p e 3U, the set B,, is con-
tained in ¢(T), and so Gog~! is holomorphic in a neighborhood of B,; hence w ¢
¢ E(B, Gog¢™!). On the other hand, if w = rp for some p € U, we have, taking into ac-
count (2), (1), and the definition of G,

|Gog™ ' (z,mp) | dm(z) =
pB,,)
= f |G((1 =) 22+ pr?, —rz+rp(1 — r?)V?) |2 dm(z) =

{lz] <@ -r*)"}

= [ =) Pan@ = [ Je@)]2dnt),
{lz] <@ —-r)2} D(?p,1-1?)
where D(z, ) denotes the disc with center at z and radius ¢ in C. D(r?p, 1 — r?) is con-
tained in U and is innerly tangential to QU at the point p.
We see from this the following:
Let g be holomorphic in U, and let G, 7, and ¢ be as above. Suppose that G e
ELZ(B) LetE(g) = {p € dU|g ¢ L*(D(r*p, 1 — * )} Then E(Go¢™',B) = {rp|pe
(g)}. In particular, 1fE( ) = 38U, then E(Go¢~!, B) = C(0, 7).

Note that if gz) = Z a,7" is holomorphic in U, and G(z, w) = g(z), then
G e L?H(B) is and only 1f

©

2 n+1)72a,]?< +w
n=0

(this is well-known and can be proved by direct computation; see e.g. [1, 2]). There-
fore it follows from the above that Theorem 1 will be proved provided that we con-
struct the function g(z) = > 4,z”, holomorphic in U, such that

n=0

©

@) 2n+1)2]a,|*< +®, and

n=

(¢) for every p € QU and every p with 0 <p <1,

lg@)|? dm(z) = + .
D(ep, 1 —¢)
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(It is well-known that g ¢ L?(U) if and only if
(3) 2(n+1)‘1|a,,|2=+00;

n=1

in (¢7) we require that g satisfies stronger condition than (3).)
We begin now with the construction of the function g satisfying (/) and (77). The
function g will be defined as the lacunary power series

glx) = Z 4,25
n=0
where 0 < ky < £, <k, < ... (and hence £, =  for every positive integer 7). Suppose
that the numbers &y, %4;, ..., are chosen. Then set
4) a,=2"Pk,+1).
If we write g as gz 2 bz', then

ZZ(Z+1 2|5 )%= §]k+1)2|a|2 22 &, + 12k, +1)72< +,

which proves (7). Therefore it remains to choose ko, k1, ... so that (i) is satis-
fied.

Fix ¢ with 0 < p < 1. Consider an arbitrary point p € U, p = e”*, where 4 € R. Let
¥, (r, ) = (rcos (¢ + &), rsin (p+ ), 0<r< + 0, d — 7w < ¢ <+ x Then there
exists s with 0 <s < 1, and 4 > 0, both independent of p € U, such that

5 L={rdls<r<1,-1-n"b""<¢<1-n"b""}¢

7, (D(ep, 1 =) N {z] |z] >s})

(the set in the left-hand side of (5) is a part of the interior of the parabola given by
the equation » = —b¢~% + 1, which is tangent to the line » = 1 at the point (0, 0) =
=¥, (p)). Therefore, for every p e dU and every positive integer %4, we have
by (5)

6) | |2* |2dm (2) = j |2* |2 dm () =
Diep, 1 =) N {z] |z] >s} 7,(L,)

1 (1 —nW2p-12

=2frdr J r%dg =2b" VZI P21 — )2 gy,

s 0 s

We claim that there exists a positive constant ¢ =c(s) such that for each £=1, 2,...,
1
@) jr%“u —2dr = k2
5
In fact the above integral is equal to

fa— e aa
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By a straightforward calculation we obtain that the function £, (#) = (1 — u)%* 1,12
attains its maximum on the interval [0, 1] at the point # = (4k + 3)~'. Therefore, for
k so great that (4k + 3)7! <5, we have £ (4) = g (), where

(1—(4k+3) )% 1,12 0sus<(4k+3)7"
&(u)={(4k+3)_1/2(1_u)%+1’ (4 +3)"'<u<s.
Hence
s (4 +3)7!
(8) I(l_u)zle+1ul/2du> j (1= (4 +3)" 1)+ 1,20y +
0 0

+ [ (4k +3)"V2(1 — )%+ 1dy = (2/3)(1 — (4k + 3)"1 )%+ L(4k + 3)73/2 +
(46 +3)7!

+(2+2)7 4k +3) (- (1—-9* 24+ (1 - (4 +3)71)*2) =
= ((2/3)(4k + 3)72/2 + (1/2)(k + 1) 7" (4k + 3) 2 (1 — (4 +3)7")) X
X ((1 = (4k + 3)71)%+3)@7 @O — (1/2)(k + 1)1 (4k + 3)712(1 — 52+,
Since
((1— (4k +3)"1)%*3)@ ~ @407, =172

and (1 —5)**!— 0 quickly as #— + ®, we see that the right-hand side of (8) be-
haves like £ ~%?2. Therefore the constant ¢ > 0 in (7) exists.
Moreover, for every 0 < ¢ < 1 we have

27 t
) (/e+1)2j |z’€|2dm(z)=(/e+1)2j jr%+ldr=(/e+1)2n(k+1)‘1t2‘k+1’—>0
D(0,) 00

as k— .
We will show inductively that there exist a sequence {s, }'- ; of real numbers and a
sequence {k, },~; of positive integers such that

(10) 0<s<s<.. lms =1 1-5<p 1-s5<27,

n=12 ..., 1<k <k<..
and such that for each p € D, and for each » =1, 2,...,
(11) 27" (k, + 1) f |5 |2dm (2) = (n + 1),

D(ep, 1 —p) N {s, < |z| <sp41}

(12) 277 (k, + 1) f |z’<m|2dm(z)sz-M(k,,,+1)2j 2% |2 dm (z) < 47"
D(0,s,+1) D(o,s,)
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for m > n, and

13) 27/ (k + 1) [ |24 |2 dm (z) <
D(ep, 1 =p) N {s, 41 < |2|}

<27 (b + 172 | |2 |2 dm (z) < 47!
D(ep, 1= p) N {sp1 < |z|}
for [ < n.
Take any s; with 0 <s; < 1, 1 — 5; < p, and such that 1 —5; < 27!, It follows from
(6), (7), and (9) that there exists ¢; > 0 and a positive integer £, such that for every
pedU,

(14) 27" (ky + 1)? j |24 |2 dm (z) =
D(pp, 1 —¢) N {s; < |z|}
=271k + 1) (b + 1) = (1 + 20,
and

271 (kg + 1) J |25 |2 dm () < 471,
D(0, 5;)
Then, by (14), there exists s, with s, < s, < 1, so near 1, that 1 — 5, < 272 and for every
pedD,

271 (b + 1) f |24 |2 dm (z) < 47!
D(pp, 1 —p) N {s, < || < 1}
and

27V (ky + 1) J |28 |2 dm () = (1 + 1)°.
D(pp, 1 —p) N {s; < |z]| <52}
Assume that we have constructed the numbers 5; <s, < ... <s,,; < 1 and positive
integers &y <k, < ...<k, such that 1 —5,>27", r=1,...,2+ 1, and for every
pedD

277 (b + 1) j 2% |2 dm () = (r + 1)2,
D(pp, 1 =) N {5, < |z| <541}
27 (b, + 1)2 j |2 |2 dm () <47,

Dipp, 1 =) N {541 < 2]}
and

277 (b, + 1)2 j |2 |2 dm (z) < 477,
D(O,s,)

r = 1,...n. Then, by (6), (7), and (9), there exists ¢, >0 and a positive integer
k, 1>k, such that for every pe dD

270Dk 4 1) J |z5+1 |2 dm (2) =
D(pp, 1=p) N {5, +1 < |z]}
22700 41V, b DT+ 1) + 2),
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and

270 g+ 1P [ R Pdm @) <47,
D(0, 5, +1)

Hence there exists s, ; , with s, 41 <5, 4+, < 1, so near to 1, that 1 —s, ., > 2" " +2)

and for every p € dD,

270V, + 1) |25+ 1|2 dm () = (0 + 1) + 1),
D(pp, 1 =) N {sy+1< |z] <sy42}

and

27D (4 1)? | |20 |2 dm () < 470+ D,
D(ep, 1=p) N s, 42 < |z|}
The sequences {s,} and {£,}, constructed above, satisfy the conditions (10), (11),
(12), and (13).
Having constructed {4, }, denote now, according to (4),

a, =272k, +1), n=12 ..,

and let

g(z) = glanzkn
Then 4% = 277/%: (B, + 1)'/% . Since b, — + ©, we have (b, + 1)/% — 1, and by
construction, &, = #, n =1, 2, .... Therefore, by Hadamard’s test, the function g is

holomorphic in the whole disc U. Set g, = a,z% =272k, + 1)z, n=1,2,.... It
follows from (11), (12) and (13) that for every »=1, 2,.., and for every
pedU,

(15) | | lg, P dm @) = + 1),
D(pp, 1= p) N {s, < |z] <s,41}
(16) J lgn |Pdmz) <47, m>n,
D(0,5,+1)
and
(17) j lw|2dn) <4, 1<n.

D(gp, 1 =) N {s;+1 < |z[}

Suppose, contrary to (i), that for some p € 9U,

lg@)|? dm (z) < + .
D(ep, 1 ~¢)

Then there exists M > 0 such that for every » =1,2,...,

(18) j lg@) |2 dm () S M.
D(ep,1=p) N {s, < |z] <5541}

Set L, :=D(pp, 1 — ) N {s, < |z| <s,+1}. Since g = 2 g,,, then in virtue of (15),
m=1
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(16) and (17) for every n = 1,2,...,

n—1 ©
lell, = lleall, = 2 lenle, = lglle, = 2 lewle, = = llgall, =
m#En m=1 m=n+1
n—1 L
2n+1)-227"- X 27"z
m=1 m=n+1

This contradicts (18).
This ends the proof of ().
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