ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

PIOTR JAKÓBCZAK

The exceptional sets for functions of the Bergman space in the unit ball

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 4 (1993), n.2, p. 79–85.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1993_9_4_2_79_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica. — The exceptional sets for functions of the Bergman space in the unit ball. Nota di Piotr Jakóbczak, presentata(*) dal Socio E. Vesentini.

ABSTRACT. — Let D be a domain in C^2 . Given $w \in C$, set $D_w = \{z \in C \mid (z, w) \in D\}$. If f is a holomorphic and square-integrable function in D, then the set E(D, f) of all w such that $f(\cdot, w)$ is not square-integrable in D_w has measure zero. We call this set the exceptional set for f. In this *Note* we prove that whenever 0 < r < 1, there exists a holomorphic square-integrable function f in the unit ball B in C^2 such that E(B, f) is the circle $C(0, r) = \{z \in C \mid |z| = r\}$.

KEY WORDS: Bergman space; Hartogs domain; Exceptional sets.

RIASSUNTO. — Gli insiemi eccezionali per funzioni dello spazio di Bergman nel disco unitario. Sia D un dominio in C^2 . Per ogni $w \in C$ sia $D_w = \{z \in C \mid (z, w) \in D\}$. Se $f \in L^2$ è olomorfa in D, allora l'insieme E(D,f) dei w per cui $f(\cdot,w)$ non è in $L^2(D_w)$ ha misura nulla. E(D,f) denota l'insieme eccezionale per f. In questa Nota si dimostra che per ogni r, essendo 0 < r < 1, esiste una funzione $f \in L^2$, olomorfa nel disco B di C^2 , per cui $E(B,f) = \{z \in C \mid |z| = r\}$.

1. Introduction

In [1] we investigated the following problem: Let D be an open set in C^{n+m} . Denote by $L^2H(D)$ the space of all functions in $L^2(D)$ (with respect to the Lebesgue measure) which are holomorphic in D. Given $w \in C^m$, let $D_w = D \cap (C^n \times \{w\})$, and let $p(D_w)$ be the projection of D_w onto the first coordinate space, $p(D_w) = \{z \in C^n \mid (z,w) \in D\}$. Then given $f \in L^2H(D)$, the function $f|_{D_w}$ can be considered as the function holomorphic on the (possibly empty) open set $p(D_w)$ in C^n . Let E(D,f) denote the set of all $w \in C^m$ such that $p(D_w)$ is not empty and $f|_{D_w}$ is not L^2 -integrable with respect to the Lebesgue measure on $p(D_w)$. By Fubini's theorem, E(D,f) is a set of Lebesgue measure zero in C^m . What further properties has the set E(D,f)?

We have showed in [1] that if D is a Hartogs domain in C^2 (we assume here that n = m = 1), then E(D, f) is a G_δ -set, and for every G_δ -set $E \subseteq C$ of Lebesgue measure zero there exists a Hartogs domain $D \subseteq C^2$ (possibly with strange boundary) and a function $f \in L^2H(D)$ such that E = E(D, f). If we assume that a Hartogs domain $D \subseteq C^2$ is also a convex domain with smooth boundary, we have constructed an example for which E(D, f) is a boundary of a rectangle, or a set dense in a rectangle, containing its boundary.

In this *Note* we consider the case of the unit ball B in C^2 . We show the following theorem:

THEOREM 1. Given r with 0 < r < 1, there exists a function $f \in L^2H(B)$ such that E(B, f) is the circle $C(0, r) = \{z \in C \mid |z| = r\}$.

(The question of the existence of such function was stated in [1].)

(*) Nella seduta del 12 dicembre 1992.

80 P. IAKÓBCZAK

2. The exceptional sets for L^2H -functions in the unit ball in C^2

In this section we prove Theorem 1. Call the variables in C^2 by (z, w). Denote by Uthe unit disc in C. Let $g(z) = \sum_{n=1}^{\infty} a_n z^n$ be holomorphic in U. Set G(z, w) = g(z), $(z, w) \in$ $\in U \times C := T$. Then G is holomorphic in T. Let ϕ be any unitary mapping of C^2 onto itself. Then $G \circ \phi^{-1}$ is holomorphic in the set $\phi(T)$, containing the unit ball B. Fix r with 0 < r < 1, and precise $\phi(z, w) = ((1 - r^2)^{1/2}z - rw, rz + (1 - r^2)^{1/2}w)$. Then

(1)
$$\phi^{-1}(z,w) = ((1-r^2)^{1/2}z + rw, -rz + (1-r^2)^{1/2}w).$$

Suppose that G is so chosen that $G \in L^2H(B)$. Then $G \circ \phi^{-1} \in L^2H(B)$. Let $w \in U$. Recall that

(2)
$$p(B_w) = \{z \mid (z, w) \in B\} = \{|z| < (1 - |w|^2)^{1/2}\}.$$

Note that for any $w \in U$ which is not of the form p for some $p \in \partial U$, the set $\overline{B_m}$ is contained in $\phi(T)$, and so $G \circ \phi^{-1}$ is holomorphic in a neighborhood of $\overline{B_w}$; hence $w \notin$ $\notin E(B, G \circ \phi^{-1})$. On the other hand, if w = rp for some $p \in \partial U$, we have, taking into account (2), (1), and the definition of G,

$$\int_{p(B_{rp})} |G \circ \phi^{-1}(z, rp)|^2 dm(z) =$$

$$= \int_{\{|z| < (1-r^2)^{1/2}\}} |G((1-r^2)^{1/2}z + pr^2, -rz + rp(1-r^2)^{1/2})|^2 dm(z) =$$

$$= \int_{\{|z| < (1-r^2)^{1/2}\}} |g((1-r^2)^{1/2}z + pr^2)|^2 dm(z) = \int_{D(r^2p, 1-r^2)} |g(z)|^2 dm(z),$$

where $D(z, \varepsilon)$ denotes the disc with center at z and radius ε in C. $D(r^2p, 1 - r^2)$ is contained in U and is innerly tangential to ∂U at the point p.

We see from this the following:

Let g be holomorphic in U, and let G, r, and ϕ be as above. Suppose that $G \in$ $\in L^2(B)$. Let $E(g) = \{ p \in \partial U | g \notin L^2(D(r^2p, 1 - r^2)) \}$. Then $E(G \circ \phi^{-1}, B) = \{ rp | p \in A \}$ $\in E(g)$. In particular, if $E(g) = \partial U$, then $E(G \circ \phi^{-1}, B) = C(0, r)$.

Note that if $g(z) = \sum_{n=0}^{\infty} a_n z^n$ is holomorphic in U, and G(z, w) = g(z), then $G \in L^2H(B)$ is and only if

$$\sum_{n=0}^{\infty} (n+1)^{-2} |a_n|^2 < +\infty$$

(this is well-known and can be proved by direct computation; see e.g. [1, 2]). Therefore it follows from the above that Theorem 1 will be proved provided that we construct the function $g(z) = \sum_{n=0}^{\infty} a_n z^n$, holomorphic in U, such that $(i) \sum_{n=0}^{\infty} (n+1)^{-2} |a_n|^2 < +\infty, \text{ and}$

(i)
$$\sum_{n=0}^{\infty} (n+1)^{-2} |a_n|^2 < +\infty$$
, and

(ii) for every $p \in \partial U$ and every ρ with $0 < \rho < 1$,

$$\int_{D(\rho p, 1-\rho)} |g(z)|^2 dm(z) = +\infty.$$

(It is well-known that $g \notin L^2(U)$ if and only if

(3)
$$\sum_{n=1}^{\infty} (n+1)^{-1} |a_n|^2 = +\infty;$$

in (ii) we require that g satisfies stronger condition than (3).)

We begin now with the construction of the function g satisfying (i) and (ii). The function g will be defined as the lacunary power series

$$g(z) = \sum_{n=0}^{\infty} a_n z^{k_n},$$

where $0 \le k_0 < k_1 < k_2 < \dots$ (and hence $k_n \ge n$ for every positive integer n). Suppose that the numbers k_0, k_1, \dots , are chosen. Then set

(4)
$$a_n = 2^{-n/2} (k_n + 1).$$

If we write g as $g(z) = \sum_{l=0}^{\infty} b_l z^l$, then

$$\sum_{l=0}^{\infty} (l+1)^{-2} |b_l|^2 = \sum_{n=0}^{\infty} (k_n+1)^{-2} |a_n|^2 = \sum_{n=0}^{\infty} 2^{-n} (k_n+1)^2 (k_n+1)^{-2} < +\infty ,$$

which proves (i). Therefore it remains to choose k_0, k_1, \ldots so that (ii) is satisfied

Fix ρ with $0 < \rho < 1$. Consider an arbitrary point $p \in \partial U$, $p = e^{i\vartheta}$, where $\vartheta \in \mathbb{R}$. Let $\Psi_p(r, \phi) = (r\cos(\phi + \vartheta), r\sin(\phi + \vartheta))$, $0 < r < +\infty$, $\vartheta - \pi < \phi < \vartheta + \pi$. Then there exists s with 0 < s < 1, and b > 0, both independent of $p \in \partial U$, such that

(5)
$$L_{p} = \{(r, \phi) | s < r < 1, -(1-r)^{1/2} b^{-1/2} < \phi < (1-r)^{1/2} b^{-1/2} \} \subseteq$$

$$\subseteq \Psi_{p}^{-1} (D(\rho p, 1-\rho) \cap \{z | |z| > s\})$$

(the set in the left-hand side of (5) is a part of the interior of the parabola given by the equation $r = -b\phi^{-2} + 1$, which is tangent to the line r = 1 at the point $(0, 0) = \Psi_p^{-1}(p)$). Therefore, for every $p \in \partial U$ and every positive integer k, we have by (5)

(6)
$$\int_{D(\rho p, 1-\rho) \cap \{z \mid |z| > s\}} |z^{k}|^{2} dm(z) \ge \int_{\Psi_{p}(L_{p})} |z^{k}|^{2} dm(z) =$$

$$= 2 \int_{s}^{1} r dr \int_{0}^{(1-r)^{1/2} b^{-1/2}} r^{2k} d\phi = 2b^{-1/2} \int_{s}^{1} r^{2k+1} (1-r)^{1/2} dr.$$

We claim that there exists a positive constant c = c(s) such that for each k = 1, 2, ...,

(7)
$$\int_{1}^{1} r^{2k+1} (1-r)^{1/2} dr \ge c k^{-3/2}.$$

In fact the above integral is equal to

$$\int_{0}^{s} (1-u)^{2k+1} u^{1/2} du.$$

82 p. jakóbczak

By a straightforward calculation we obtain that the function $f_k(u) = (1-u)^{2k+1}u^{1/2}$ attains its maximum on the interval [0, 1] at the point $u = (4k+3)^{-1}$. Therefore, for k so great that $(4k+3)^{-1} \le s$, we have $f_k(u) \ge g_k(u)$, where

$$g_k(u) = \begin{cases} (1 - (4k+3)^{-1})^{2k+1} u^{1/2}, & 0 \le u \le (4k+3)^{-1} \\ (4k+3)^{-1/2} (1-u)^{2k+1}, & (4k+3)^{-1} \le u \le s. \end{cases}$$

Hence

$$(8) \int_{0}^{s} (1-u)^{2k+1} u^{1/2} du \ge \int_{0}^{(4k+3)^{-1}} (1-(4k+3)^{-1})^{2k+1} u^{1/2} du +$$

$$+ \int_{(4k+3)^{-1}}^{s} (4k+3)^{-1/2} (1-u)^{2k+1} du = (2/3)(1-(4k+3)^{-1})^{2k+1} (4k+3)^{-3/2} +$$

$$+ (2k+2)^{-1} (4k+3)^{-1/2} (-(1-s)^{2k+2} + (1-(4k+3)^{-1})^{2k+2}) =$$

$$= ((2/3)(4k+3)^{-3/2} + (1/2)(k+1)^{-1} (4k+3)^{-1/2} (1-(4k+3)^{-1})) \times$$

$$\times ((1-(4k+3)^{-1})^{4k+3})^{(2^{-1}-(8k+6)^{-1})} - (1/2)(k+1)^{-1} (4k+3)^{-1/2} (1-s)^{2(k+1)}.$$

Since

$$((1-(4k+3)^{-1})^{4k+3})^{(2^{-1}-(8k+6)^{-1})} \rightarrow e^{-1/2}$$

and $(1-s)^{2k+1} \to 0$ quickly as $k \to +\infty$, we see that the right-hand side of (8) behaves like $k^{-3/2}$. Therefore the constant c > 0 in (7) exists.

Moreover, for every 0 < t < 1 we have

(9)
$$(k+1)^2 \int_{D(0,t)} |z^k|^2 dm(z) = (k+1)^2 \int_0^{2\pi} \int_0^t r^{2k+1} dr = (k+1)^2 \pi (k+1)^{-1} t^{2(k+1)} \to 0$$

as $k \to \infty$.

We will show inductively that there exist a sequence $\{s_n\}_{n=1}^{\infty}$ of real numbers and a sequence $\{k_n\}_{n=1}^{\infty}$ of positive integers such that

(10)
$$0 < s_1 < s_2 < \dots, \lim_{n \to \infty} s_n = 1, \quad 1 - s_1 < \rho, \quad 1 - s_n < 2^{-n},$$

 $n = 1, 2, \dots, \quad 1 \le k_1 < k_2 < \dots,$

and such that for each $p \in \partial D$, and for each n = 1, 2, ...,

(11)
$$2^{-n} (k_n + 1)^2 \int_{D(\rho p, 1 - \rho) \cap \{s_n < |z| < s_{n+1}\}} |z^{k_n}|^2 dm(z) \ge (n+1)^2 ,$$

$$(12) 2^{-m} (k_m + 1)^2 \int\limits_{D(0, s_{m+1})} |z^{k_m}|^2 dm(z) \le 2^{-m} (k_m + 1)^2 \int\limits_{D(0, s_m)} |z^{k_m}|^2 dm(z) \le 4^{-m}$$

for m > n, and

$$(13) 2^{-l}(k_l+1)^2 \int\limits_{D(\rho p, 1-\rho) \cap \{s_{n+1} < |z|\}} |z^{k_l}|^2 dm(z) \le$$

$$\le 2^{-l}(k_l+1)^2 \int\limits_{D(\rho p, 1-\rho) \cap \{s_{n+1} < |z|\}} |z^{k_l}|^2 dm(z) \le 4^{-l}$$

for $l \leq n$.

Take any s_1 with $0 < s_1 < 1$, $1 - s_1 < \rho$, and such that $1 - s_1 < 2^{-1}$. It follows from (6), (7), and (9) that there exists $c_1 > 0$ and a positive integer k_1 such that for every $p \in \partial U$,

(14)
$$2^{-1}(k_1+1)^2 \int_{D(\rho p, 1-\rho) \cap \{s_1 < |z|\}} |z^{k_1}|^2 dm(z) \ge 2^{-1}(k_1+1)^2 \cdot c_1(k_1+1)^{-3/2} \ge (1+2)^2,$$

and

$$2^{-1}(k_1+1)^2 \int\limits_{D(0,s_1)} |z^{k_1}|^2 dm(z) \le 4^{-1}.$$

Then, by (14), there exists s_2 with $s_1 < s_2 < 1$, so near 1, that $1 - s_2 < 2^{-2}$ and for every $p \in \partial D$,

$$2^{-1}(k_1+1)^2 \int_{D(\rho\rho, 1-\rho) \cap \{s_2 < |z| < 1\}} |z^{k_1}|^2 dm(z) \le 4^{-1}$$

and

$$2^{-1}(k_1+1)^2 \int_{D(\rho p, 1-\rho) \cap \{s_1 < |z| < s_2\}} |z^{k_1}|^2 dm(z) \ge (1+1)^2.$$

Assume that we have constructed the numbers $s_1 < s_2 < ... < s_{n+1} < 1$ and positive integers $k_1 < k_2 < ... < k_n$ such that $1 - s_r > 2^{-r}$, r = 1, ..., n + 1, and for every $p \in \partial D$

$$2^{-r}(k_r+1)^2 \int_{D(\rho\rho, 1-\rho) \cap \{s_r < |z| < s_{r+1}\}} |z^{k_r}|^2 dm(z) \ge (r+1)^2,$$

$$2^{-r}(k_r+1)^2 \int_{D(\rho\rho, 1-\rho) \cap \{s_{r+1} < |z|\}} |z^{k_r}|^2 dm(z) \le 4^{-r},$$

and

$$2^{-r}(k_r+1)^2 \int_{D(0,s_r)} |z^{k_r}|^2 dm(z) \le 4^{-r},$$

r=1,...,n. Then, by (6), (7), and (9), there exists $c_{n+1}>0$ and a positive integer $k_{n+1}>k_n$ such that for every $p\in\partial D$

$$2^{-(n+1)}(k_{n+1}+1)^{2} \int_{D(\rho p, 1-\rho) \cap \{s_{n+1} < |z|\}} |z^{k_{n+1}}|^{2} dm(z) \ge$$

$$\ge 2^{-(n+1)}(k_{n+1}+1)^{2} \cdot c_{n+1}(k_{n+1}+1)^{-3/2} \ge ((n+1)+2)^{2},$$

84 P. JAKÓBCZAK

and

$$2^{-(n+1)}(k_{n+1}+1)^2 \int_{D(0,s_{n+1})} |z^{k_{n+1}}|^2 dm(z) \le 4^{-(n+1)}.$$

Hence there exists s_{n+2} with $s_{n+1} < s_{n+2} < 1$, so near to 1, that $1 - s_{n+2} > 2^{-(n+2)}$, and for every $p \in \partial D$,

$$2^{-(n+1)}(k_{n+1}+1)^{2} \int_{D(\rho\rho, 1-\rho) \cap \{s_{n+1} < |z| < s_{n+2}\}} |z^{k_{n+1}}|^{2} dm(z) \ge ((n+1)+1)^{2},$$

and

$$2^{-(n+1)}(k_{n+1}+1)^2 \int_{D(\rho p, 1-\rho) \cap \{s_{n+2} < |z|\}} |z^{k_{n+1}}|^2 dm(z) \le 4^{-(n+1)}.$$

The sequences $\{s_n\}$ and $\{k_n\}$, constructed above, satisfy the conditions (10), (11), (12), and (13).

Having constructed $\{k_n\}$, denote now, according to (4),

$$a_n = 2^{-n/2}(k_n + 1), \quad n = 1, 2, ...,$$

and let

$$g(z) = \sum_{n=1}^{\infty} a_n z^{k_n}.$$

Then $a_n^{1/k_n} = 2^{-n/2k_n}(k_n + 1)^{1/k_n}$. Since $k_n \to +\infty$, we have $(k_n + 1)^{1/k_n} \to 1$, and by construction, $k_n \ge n$, n = 1, 2, ... Therefore, by Hadamard's test, the function g is holomorphic in the whole disc U. Set $g_n = a_n z^{k_n} = 2^{-n/2} (k_n + 1) z^{k_n}$, $n = 1, 2, \ldots$ It follows from (11), (12) and (13) that for every n = 1, 2, ..., and for every $p \in \partial U$,

(15)
$$\int_{D(\rho p, 1-\rho) \cap \{s_{n} < |z| < s_{n+1}\}} |g_{n}|^{2} dm(z) \ge (n+1)^{2},$$

$$\int_{D(0, s_{n+1})} |g_{m}|^{2} dm(z) \le 4^{-m}, \quad m > n,$$

(16)
$$\int_{D(0,\,s_{m+1})} |g_m|^2 \, dm \, (z) \leq 4^{-m} \,, \qquad m > n \,,$$

and

(17)
$$\int_{D(\rho p, 1-\rho) \cap \{s_{l+1} < |z|\}} |g_l|^2 dm(z) \le 4^{-l}, \quad 1 \le n.$$

Suppose, contrary to (ii), that for some $p \in \partial U$,

$$\int\limits_{D(\rho p,\,1-\rho)} |g(z)|^2\,dm\,(z)<+\infty.$$

Then there exists M > 0 such that for every n = 1, 2, ...

(18)
$$\int_{D(\rho p, 1-\rho) \cap \{s_n < |z| < s_{n+1}\}} |g(z)|^2 dm(z) \leq M.$$

Set $L_n := D(\rho p, 1 - \rho) \cap \{s_n < |z| < s_{n+1}\}$. Since $g = \sum_{m=1}^{\infty} g_m$, then in virtue of (15),

(16) and (17) for every n = 1, 2, ...,

$$||g||_{L_{n}} \ge ||g_{n}||_{L_{n}} - \sum_{m \neq n} ||g_{m}||_{L_{n}} = ||g_{n}||_{L_{n}} - \sum_{m=1}^{n-1} ||g_{m}||_{L_{n}} - \sum_{m=n+1}^{\infty} ||g_{m}||_{L_{n}} \ge$$

$$\ge (n+1) - \sum_{m=1}^{n-1} 2^{-m} - \sum_{m=n+1}^{\infty} 2^{-m} \ge n.$$

This contradicts (18).

This ends the proof of (ii).

REFERENCES

- [1] P. Jakóbczak, The exceptional sets for functions from the Bergman space. Portugaliae Mathematica, 50, No 1, 1993, 115-128.
- [2] B. W. Šabat, Introduction to Complex Analysis. Nauka, Moskva 1969 (in Russian).

Uniwersytet Jagielloński Instytut Matematyki ul. Reymonta 4 30-059 Kraków (Polonia)