
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Dmitri V. Alekseevsky, Stefano Marchiafava

Quaternionic-like structures on a manifold: Note
I. 1-integrability and integrability conditions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni,
Serie 9, Vol. 4 (1993), n.1, p. 43–52.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1993_9_4_1_43_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi
di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_1993_9_4_1_43_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1993.



Rend. Mat. Ace. Lincei 

s. 9, v. 4:43-52 (1993) 

G e o m e t r i a differenziale . — Quaternionic-like structures on a manifold: Note L 

1-integrability and integrability conditions. N o t a ( * ) di DMITRI V. ALEKSEEVSKY e STE­

F A N O M A R C H I A F A V A , p resen ta ta dal Socio E . Martinell i . 

ABSTRACT. — This Note will be followed by a Note II in these Rendiconti and successively by a wider 
and more detailed memoir to appear next. Here six quaternionic-like structures on a manifold M (almost 
quaternionic, hypercomplex, unimodular quaternionic, unimodular hypercomplex, Hermitian quater­
nionic, Hermitian hypercomplex) are defined and interrelations between them are studied in the frame­
work of general theory of G-structures. Special connections are associated to these structures. 1-integra­
bility and integrability conditions are derived. Decompositions of appropriate spaces of curvature tensors 
are given. In Note II the automorphism groups of these quaternionic-like structures will be 
considered. 

KEY WORDS: G-structures; Quaternionic structures; Special connections; Integrability conditions; 
Curvature tensors. 

RIASSUNTO. — Strutture di tipo quaternionale su una varietà: Nota I. Condizioni di 1-integrabilità e di in­
tegrabilità. A questa Nota farà seguito una Nota II negli stessi Rendiconti e una successiva memoria più 
ampia e più dettagliata che apparirà prossimamente. Qui si definiscono su una varietà M sei strutture di 
tipo quaternionale (quasi quaternionale, ipercomplessa, unimodulare quaternionale, unimodulare iper-
complessa, Hermitiana quaternionale, Hermitiana ipercomplessa) e si studiano le loro interrelazioni nel­
l'ambito della teoria generale delle G-strutture. Si associano a tali strutture connessioni speciali. Si deter­
minano le condizioni di 1-integrabilità e di integrabilità. Si danno opportune decomposizioni degli spazi 
dei rispettivi tensori di curvatura. Nella Nota II si considereranno i gruppi degli automorfismi di tali 
strutture di tipo quaternionale. 

1. D E F I N I T I O N O F # - L I K E S T R U C T U R E S O N A V E C T O R S P A C E 

Let V be a real vector space of dimension 4n. Now we define some quaternionic-
like structures (shortly, q-like structures) on V. 

DEFINITIONS. 1) A triple H = (J\,J2,J}) of anticommuting complex structures on 
V with J3 = ]i J2 is called a hypercomplex structure on V. 

2) The 3-dimensional subalgebra Q = (H) = RJx + RJ2 + R/3 ~ spi of the Lie 
algebra of endomorphisms End V is called a quaternionic structure on V. 

Note that two hypercomplex structures H = (Ja), H' = (Ja' ) generate the same 
quaternionic structure Q = (H) = (Hf) iff they are related by a rotation, that is 

U=2AlJp (a = 1,2, 3) 

with A = (A?)eS03. 

DEFINITION. An Euclidean metric g in V is called Hermitian with respect to a hy­
percomplex structure H = (/a ) (respectively, the quaternionic structure Q = (H)) iff 

(*) Pervenuta all'Accademia il 3 agosto 1992. 
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for any x,y eV 

g(J*x, hy) = g(x, y) (a = 1, 2, 3) 

(respectively, g(Jx,Jy)=g(x,y) for any complex structure J e Q ) . 

REMARK. Note that if a metric g is Hermitian with respect to a hypercomplex 
structure H then it is Hermitian with respect to the quaternionic structure 

Q = m 
We recall that the group of automorphisms of V that preserve a given hypercom­

plex structure H (resp., quaternionic structure Q = (H)) is isomorphic to GLn (H) 
(resp., Spi-GLniH)). 

Let g be a metric which is Hermitian with respect to H (resp., Q): the group of 
automorphisms of V that preserve H and g (resp., Q and g) is isomorphic to Sp„ (resp., 
Spi'Spn). 

Let vol be a given volume form on V: the group of automorphisms of V that 
preserve H and vol (resp., Q and vol) is isomorphic to SLn(H) (resp., Spi' 
•SLn(H)). 

2. DEFINITIONS OF SIX (ALMOST) q-uKE STRUCTURES ON A MANIFOLD 

Let M be a 4n -manifold, n > 1. 

DEFINITIONS. 1) An almost hypercomplex (resp., almost quaternionic) structure on 
M is a field H (resp., Q) of hypercomplex (resp., quaternionic) structures on the tan­
gent bundle. 

2) An almost hypercomplex structure H together with a volume form vol (re­
sp., an Hermitian metric g) is called a almost unimodular hypercomplex (resp., almost 
Hermitian hypercomplex) structure. Analogous definitions are given for almost uni­
modular quaternionic and almost Hermitian quaternionic structures. If there exists a 
torsionless connection V that preserves a given structure of above type we say that the 
structure is 1-integrable and to mean this we will omit the attribute «almost» in the 
definition. As an example, a quaternionic structure on M is an almost quaternionic 
structure Q which is preserved by a torsionless connection V. 

Note that a manifold M with a quaternionic (resp., hypercomplex) Hermitian 
structure (Q g) (resp., (H, g)) in our sense is usually called quaternionic Kahler (resp., 
hyperKahler). 

3. G-STRUCTURE ASSOCIATED WITH AN (ALMOST) q-LIKE STRUCTURE 

Let 7iM: CF(M) - > M b e the principal GLn(R)-bundle of coframes on a manifold 
M. Let G c GLn (R) be a matrix group. 

DEFINITIONS. 1) A G-structure on M is a principal G-subbundle n\ P —>M of the 
bundle of coframes nM. 
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2) Let 7T: P - > M and ri: Pf-*M be a G-structure and a G'-structure 
respectively. We say that n is subordinated to ri if G C G ' and P c P '. 

Let 7T: P —> M be a G-structure. For any x e M we shall denote by Gx c GLn (TXM) 
the group of linear transformations of TXM that preserve the set of coframes Px = 
= TZ~1{X) and by gx its Lie algebra. 

3) A G-structure is called 1-integrable if it admits a torsionless connection. 

This notion of 1-integrability agrees with 1-integrability condition of #-like struc­
tures (see n. 2). 

We defined the six #-like structures on a manifold M. The generic one will be ref-
ered as S: it may be considered as G-structure with appropriated group G. The corre­
sponding groups G and the inclusion relations between them are indicated in diagram 
below. 

SPl-GLn(H) GLn(H) 
Q: quaternionic H=(/ a ) : hypercom. 

î Î 
SPl-SL„(H) SLK(H) 
(Q, vol): unimodular quat. (H, vol): unimodular hypercom. 

Î Î 

(Q,g): Hermitian quat. (H,g): Hermitian hypercom. 

REMARK. Here we intend that each inclusion refers to the appropriate choice of the 
structures. For example, the inclusion GLn{H)<-*Spi*GLn(H) refers to the quater­
nionic structure Q = (H) generated by a hypercomplex structure H. Also, for inclu­
sion Spn <^> SLn (H) the volume form vol is the volume form voP defined by the 
metric g. 

4. CD-CONNECTIONS OF A G-STRUCTURE 

Let G c GL(V) be a linear reductive Lie group with Lie algebra g Cgl(V) = V® 
® V*. We fix a G-invariant complement 0) = <2)(g) to the subspace £(g ® V* ) into V ® 
® A2 V*, where 8: g ® V* —» V ® A2 V* is the Spencer operator of alternation. We recall 
that g(1) = Ker<? = (g ® V*) fl (V® S2 V*) is called the jforf prolongation of g. 

DEFINITION. Let n: P —> M be a G-structure and V be a connection in JT. Denote 
by ^v : P -» 7 ® A2 V* = £(g ® V*) © Œ(g) the torsion function of V , that associates 
to p G P the coordinates of the torsion tensor Tor (V) with respect to the coframe p. 
The connection V is called Gè-connection if its torsion function takes values in CD. 

THEOREM 1([1]). 1) Any G-structure n: P->M admits a G>-connection V. 

2) Any two (^-connections V, V are related by V = V + S where S is a tensor field 
such that for any X E M , SX belongs to the first prolongation g ^ of the Lie algebra §x c 
Cgl(TxM) (see n. 3). 
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COROLLARY 1. Assume that the first prolongation g(1) = 0. Then O^-connection is 
unique. 

Denote by K: V® A2V*.= £(g ® V*) © (D(g) -> (©(g) the natural projection. For 
any connection V in G-structure x: P-+M the Q(g)-component Kot^: P—> 03(g) of 
the torsion function tw is called the structure function of G-structure n\ it is 
G-equivariant and does not depend on the choice of connection V. The associated 
tensor field on M is called the structure tensor of n. 

5. CANONICAL CONNECTION OF A q-UKE STRUCTURE DIFFERENT 

FROM ALMOST QUATERNIONIC ONE: 1-INTEGRABILITY CONDITION 

To apply Theorem 1 for a #-like structure we need the following result (see 
[12,9,10]): 

LEMMA. The first prolongation of Lie algebra spi + gl„(H) Cgl(V) is given by (spi + 
+ gln(H))(1) = {S*,Se V*} where 

(5.D ^ = ç®ia + ia®ç-S[(w«)®/ a + /Œ®(w«)] 
a 

and (/a ), a = 1, 2, 3, is a hypercomplex structure that generates spx. 

COROLLARY 2. The first prolongations of Lie algebras gln{H), sl„(H), spm spi + 
+ sln (H), spi + spn associated to all q-like structures different from a quaternionic one are 

zero. 

Applying Theorem 1 to the G-structure re: P —» M associated with a #-like struc­
ture S different from almost quaternionic one we obtain the existence of a unique (D-
connection Vs. It preserves S. We shall call it the canonical connection of #-like struc­
ture S. The torsion tensor Ts of the canonical connection Vs is the structure tensor 
of S. We have immediately 

THEOREM 2. Let S be a q-like structure different from almost quaternionic one. S is 1-
integrable iff the canonical connection Vs has no torsion. 

6. ALMOST QUATERNIONIC CONNECTIONS 

AND 1-INTEGRABILITY CONDITION FOR AN ALMOST QUATERNIONIC STRUCTURE 

Let Q be an almost quaternionic structure on a manifold M and let TZ\ P —» M be 
the associated Spi • GLn (H)-structure. 

DEFINITION. A linear connection V on M is called an almost quaternionic connec­
tion (with respect to Q) if it preserves Q, that is the parallel transport along a curve 
y: [0, 1 ] ^ M transforms Qr(0) into Qr(i). 

REMARK. Similarly as before, we will identify an almost quaternionic connection V 
(with respect to an almost quaternionic structure Q) with a connection in Spi' 
• GLn(H)-structure TV: P^M associated with Q. 
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PROPOSITION 1. Let Q be an almost quaternionic structure on a manifold M and let V 
be an almost quaternionic connection. Then any other almost quaternionic connection 
{with respect to Q) is given by 

(6.1) V' = V + F 

where F is a section of the vector bundle 

UN{QX)®T?M-*M 

and N(QX) =spi+ gl„ (H) is the nortnalizer of Qx into Lie algebra of endomorphisms 
End (TXM). 

In particular, the connections V, V = V -f F have the same torsion tensor iff F = S*, 
for some 1-form % e AlMy where S^ is given by (5.1) and H = (Ja ) is any local almost hy-
percomplex structure that generates Q. (See also [8]). 

LEMMA (Salamon[13]). Let G = Sp1'GL„(H) and §=spi+ gl„(H). Then there 
exist the following decompositions of G-modules: g ® V*= g(1) © W, V®A2V* = 
= £(g ® V*) (B@ = $W(B(& where g(1) is the first prolongation of§, Wis an G-invariant 
complement of g(1) into g ® V* and <D = <D(g) is unique irreducible G-submodule com­
plement to SW = W. 

REMARK. Salamon proves that G-module of = Q® C = (E*® A2E)0® S}H, 
where Ve = E ®CH, E = C2", H = C2 and (E*® A2E)0 denotes the subspace of all 
traceless tensors belonging to the GLn (H)-module in the bracket. He proves that 
SW s W doesn't contain such submodule. 

Due to this Lemma the submodule,Q is uniquely defined and we may speak about 
almost quaternionic (©-connections without misleading. 

Applying Theorem 1, we obtain 

THEOREM 3. An almost quaternionic structure Q on a manifold M is 1-integrable iff 
an almost quaternionic Gè-connection has no torsion. 

7. EXPLICIT FORMULAS FOR ALMOST QUATERNIONIC CONNECTIONS 

OF AN ALMOST QUATERNIONIC AND AN ALMOST HYPERCOMPLEX STRUCTURE 

For simplicity, in this Section we use the following notation: G = Spi'GLn(H), 
G' = GLn(H), $ = spi+gl„{H)9 $'=gln(H). We have the following decomposi­
tions: 

V®A2V*=8(§®V*) 0 ®($) = 

= #(g' ® v*) e a(#i ® v*) e ûxg) = £(g' ® v*) e oxg' ) 
and, obviously (by last Remark), 

<B(S' ) = a(#i ® V*) © ^(S) = *(£v) © Hspi ® V*)0 © 0D(g) 
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where 

Ly* Lç = S / « ® ( W « ) , ^ V * 

and (sp1®V'% = {Lesp1®V*Tr(L) = 0} where Tr(/®Ç) = Ço/, Jespu ÇG V*. 
Note that the space Ker Tr | Q{g) = 8(spi ® V*)0 © fl)(g)is the space of all traceless 

tensors from 6D(g'). 
We denote by Ts the structure tensor of an (almost) #-like structure S considered 

as G-structure (see n. 4). We recall that the associated function on the appropriate G-
structure P takes values in CD(§). 

THEOREM 4 (See also[5,11,12,14]). a) Let H = (Ja) be an almost hypercomplex 
structure on M. Then 

a.\) Its structure tensor TH is given by 

(7.1) TH = J3H := - ( 2 / 3 ) 2 [/«,/«] 
a 

where [Ja, J J (X, Y) = (1/4) {[X, Y] + / . U . X , Y] +L[X,JaY] - [JXX,JXY]} is the 
Nijenhuis bracket o / / a (a = 1, 2, 3), #W it belongs to the space Ker Tr|^(g'). 

a.2) The unique canonical connection (<2)(g')-connection) associated with H is 
given by 

(7.2) V£y=(l/12) 2 /a([/^j ry]+[/^,/ rx])+2E/a(t/ax,y]+[/ay,x]) 
(a,j8,r) 

+ 

+ (1/2)EH(X,Y) + (1/2)[X,7] 

w^re (a, /3, y) indicates sum over cyclic permutations of (1, 2, 3). 

£) L^ Q ^ <z/z almost quatemionic structure on M. Then 

b.l) the structure tensor T® is given by 

(7.3) r 2 = TH + 5>(Ta<g>JJ 
a 

where H = (/a) locally generates Q and ra(a = 1, 2, 3) tfre /oaz/ 1-forms given by 

(7.4) T . (X) = (1/4» - 2 ) T r ( / a B # ) X E T M . 

Moreover 2 Ta o/a = 0. 
a 

£.2) To tf»;y almost quatemionic connection V w;tó torsion T one can associate a 
globally defined Gà-connection opV, that is almost quatemionic connection with torsion 
tensor T^, locally given by 

0pVx = Vx+(l/6) 2 [2 ? 6 [ -^o / r + P ro^](X)L-p 
(a, A y) 

TX+(l/3)2T;.X/a 
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where 
p: V®V*^§'=gl„(H), 

A ->p(A) = (1/4) A-2hAJa 

is the natural projection and cpa{a = 1, 2, 3) are the following local 1-forms <pa{X) = 
= (l/2/z — l)Tr <JaTx) VX e TM. Any two ^-connections are related by formula V = 
= V + 5 f, Ce A1 M (see (5.1)). 

REMARKS. 1) The first part of statement a.\) was proved by E. Bonan[5]. 

2) The connection VH was defined by M. Obata: it has torsion tensor TH and is 
called Obata connection. 

3) The connection °PV was defined by V. Oproiu[ll], and is called Oproiu 
connection associated with V. 

We indicate here the idea of other proof of a A) based on the following 

LEMMA [2]. Let J be an almost complex structure on M and V be a linear connection 
such that V/ = 0, with torsion tensor T Then [/, / ] = 7 $ = (1/4) [T(-, •) + /T(/-, •) + 
+ JT{% /•) — T(/% /•)] where T®f) is (0, 2) component of the vector valued 2-form T with 
respect to J that is T$(J-, •) = T $ (•,/•) = -JT^(-, •). 

Now we consider the following G'-equivariant surjective map 

x = so(p<g> i): v®A2V*^v<g>y*<g>y* ^lg®v*^£(g'<g>v*) 
with Ker % - ®(g')- To prove that BH given by formula (7.1) belongs to O(g') it is 
sufficient to show that (p (g> 1)(BH) = 0. By Lemma 

BH:= - (2 /3) S [ / . , / . ] = - (2/3)2) Tfo 
a a 

where T is the torsion tensor of a connection that preserves H = (Ja). Since for any 
X E TM the operator [Tffj]x anticommutes with Ja its projection p([Tffa)]x) on the 
space g' of operators which commute with Jp(p = 1, 2, 3) vanishes. Hence 

/>(£#) = - ( 2 / 3 ) S p ( [ r ( ^ ) ] x ) = 0. 
a 

A straightforward calculation shows that the connection VH defined by (7.2) is a con­
nection which preserves H and has torsion tensor BH. This proves the first part of a.I) 
and a.2). The last statement of a.l) follows from 

LEMMA. Nijenhuis tensor Nj= [J J] of an almost complex structure J is traceless. 

Statement b) was essentially proved by V. Oproiu [11]. Actually it is a straight­
forward verification that the torsion of the Oproiu connection °PV is given by 

T°PV = Tor(°pV) = TH + 2 6(ra®Ja). 
a 

The equality T^ = Tor (°PV) now follows from the 

LEMMA. Denote by U = S (spi ® V*)Q © (D(g) the G-module which is sum of two ir-
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reducible G-modules. Then G>(§) = { T e U|Tr(J aTx) = 0, a = 1, 2, 3, X e V} and the 
projection q{T) of a tensor T eU onto <B(g) is given by 

a. 

where rJX) = (1/4* - 2 )Tr ( / a e T x ) , (a = 1, 2, 3). 

Indeed ^ is a projector on the space D = {q{T), T e 17} and G-module D ^ 0, 
£(#1 ® V*)0, U; hence D = 6D(g). 

8. EXPLICIT FORMULAS FOR CANONICAL CONNECTIONS OF UNIMODULAR 

AND H E R M I T I A N q-UIKE STRUCTURES 

Using Theorem 4 we derive explicit expressions for the canonical connection Vs 

and the corresponding structure tensor Ts for #-like structures S = (H, vol), (Q, vol), 
(H,g), (Q,g) on a 4»-manifold M. 

For an almost Hermitian hypercomplex structure (H, g), H = (Ja ), we define a 
(1,2) tensor field A=v4H '* by the formula i4x = (1/2) g'1 V%g, XeTM. It was 
proved by E. Bonan [5] that Ax is a symmetric endomorphism commuting with Jay 

*= 1,2,3. 
Contracting tensor A we obtain 2-forms: coH'g(X) := TrAx, cF,g(X) := Tr(Y-> 

->i4yX), X, Y E TM. Then VHvoP = a/*'* ® vol* 

PROPOSITION 2. For any vector X € TM 

(8.1) 1) (VH'vol)x = (VH)X+ (1/4») û>(X)Id, TH'vol = T H + (1/4») S(co®U) 

where Vx vol = co(X) vol; 

(8.2) 2) (VÔ'vol)x = (VH)x + 2> a(X)J a + [l/4(* + 1)] (S"H)X, 
a 

w^ere Q = (H), that is H is a locally defined almost hypercomplex structure that gener­
ates Q, Vxvol = wH (X)vol and the ra, a = 1, 2, 3, are defined by (7.4). 

3) fQ = y^voi ^or ^ voiume j o r m v o j 

4) [5]. Canonical connection and structure tensor of almost Hermitian hyper­
complex structure (H, g) are given by 

(8.3) VH^ = VH + A, TH>g = TH + âA 

5) Canonical connection and structure tensor of almost Hermitian quatemionic 
structure (Q g) are given by 

(8.4.1) (Va«)x = (VH>«)x + S T«(X)7« + (l/4»)Ctf - (5*oX),-. J 
a 

(8.4.2) r&s = r e + &4 + (I/»)RHP-(-, -)(*~M = 

= TH-« + E 5(ra ® h ) + ( 1/») RHP» (•, "Kg - ' <r) 
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where H = {]a) is a local almost hypercomplex structure that generates Q, r a(a = 1, 2, 3) 
are locally defined 1-forms given by (7.4), a = o^,g and 

(8.5) RHP*(X, Y) = (l/4)[Sk°Y ~ Sfx] 

(see also n. 9). 

9. SPACE OF CURVATURE TENSOR OF TORSIONLESS q-UKE STRUCTURES 

Let §Cgln(V) be a space of endomorphisms. Recall that space 91(g) of curvature 
tensors of the type g is defined as the space of g-valued ^-closed 2-forms, 91(g) = {Re 
6§®A 2 V*, £R = 0} where & y ® V*® A2 V*-> V®A 3 V* is the Spencer opera­
tor. 

The curvature tensor in a point x of any torsionless connection of G-structure 
7z\ P->M belongs to 91(g). 

Now we describe the space 91(g) for g = spx + gln (H). For any bilinear form JB on 
y we set RB(X, Y) = 5| (y '° - Jf*'0, VX, 7 e V where 5 is given by (5.1) and we de­
note by 9tBil the space of all such tensors. 

PROPOSITION 3 (See [13,14,10]). 9tBii is a Q-submodule of Q-module 91(g) and a 
uniquely defined irreducible complementary submodule is di(sln(H)): 9t(g) = $i(spi + 
+ gl„(H)) = %-i + m(sl„(H)). 

The g-module Bil of bilinear forms has the following decomposition into the sum 
of irreducible modules, [5]: Bil = 5/ + S^ + Af + A^k where Si (resp., A2, ) is the 
space of symmetric (resp., skew-symmetric) forms which are Hermitian with respect 
to any complex structure J esply and S^, A2^ are complementary submodules of 
mixed forms. Hence decomposition of 91(g) into irreducible submodules may be writ­
ten as 

*-mix J 91(5?! + gln (H)) = 91(54 (H)) + M(Sh
2 ) + fft(SL) + 3t(A| ) + M(A2« 

As a simple Corollary we obtain the following decompositions into irreducible 
g-submodules: 

mspi+si„(H))=9t(5/„(H))+mi)+msD, 9i(gt(H))=mum)+SKAD. 
We indicate also well known decomposition of the space ?H(spi + spn ) into irre­

ducible (spx + spn )-submodules: di(spx + spn) = 91 (% ) H- RRHP» where RHp« is the cur­
vature tensor of the quaternionic projective space HPn with natural metric, given by 
(8.5). 

A torsionless almost quaternionic connection on a manifold with a quaternionic 
structure is called quaternionic. Curvature tensor of a quaternionic connection belongs 
to the space ?H(spi + gln(H)). Its ?H(sl„(H)) component doesn't change under change 
of quaternionic connection and it is called Weyl tensor of quaternionic structure. 

THEOREM 5. 1) [12] A quaternionic structure Q on a manifold M is integrable iff its 
Weyl tensor vanishes. 
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2) Let S be a (1-integrahle) q-like structure different from quatemionic one. It is 
integrahle iff its canonical connection is flat, that is its torsion and curvature tensors are 
zero. 

This work was done under the program of G.N.S.A.G.A. of C.N.R. and partially financed by 
M.U.R.S.T. 
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