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Geometria. — Holomorphic isometries of Cartari domains of type four. Nota(*) del 
Socio E D O A R D O V E S E N T I N I . 

ABSTRACT. — The holomorphic isometries for the Kobayashi metric of Cartari domains of type four 
are characterized. 

KEY WORDS: Cartari domain; Kobayashi metric; Holomorphic isometry; Complex extreme 

point. 

RIASSUNTO. — hometrie olomorfe di domini di Cartari del quarto tipo. Si caratterizzano le isometrie 
olomorfe per la metrica di Kobayashi dei domini di Cartan del quarto tipo. 

Let £(X) be the complex Banach space of all bounded linear operators on a com­
plex Hilbert space X. A Cartan factor of type four is a closed subspace X of £(X) 
which is invariant under the adjunction * in £(X) and such that X E X implies that X2 

is a scalar multiple of the identity I on X: 

(1) X2 = cl 
for some C G C The open unit ball D for the norm ||| ||| of Xis called a Cartan domain 
of type four. It is a bounded domain on which the group Aut D of all holomorphic au­
tomorphisms of D acts transitively. These facts imply that the Kobayashi and 
Carathéodory differential metrics on D coincide. Let Iso D be the semigroup of all 
holomorphic maps of D into D which are isometries for these differential metrics. The 
invariance properties of these metrics imply that AutD is a subgroup of IsoD: a 
proper subgroup if dimc X = o°. 

The group Aut D was determined by U. Hirzebruch when X has finite dimension 
and by L. A. Harris [2], when dimc X = &> (cf. [4] for further details and for bibli­
ographical references). 

In this Note the semigroup IsoD will be determined. Since AutD is known [2,4] 
and acts transitively on D, the main thrust in the paper will be concentrated in charac­
terizing the isotropy semigroup (Iso D)0 of 0 in Iso D (Theorem I). It will be shown, 
incidentally, that (Iso D)0 is linear, or, better to say, every element of (Iso D)0 is the re­
striction to D of a continuous linear operator on X. Hence H. Cartan's linearity theo­
rem (cf. e.g. [1]) extends from (AutD)0 to (IsoD)0 in the case of the Cartan domain 
D: a fact which does not hold for all Cartan domains in infinite dimensions, as exam­
ples show [3]. 

In the proof of Theorem I, the structure of complex discs affinely imbedded in the 
boundary of the Cartan domain will play a crucial rôle. 

1. As a consequence of (1), for X, Y e X, XY + YX is a scalar multiple of I. Set­
ting, for X} Y in OC, XY* + Y*X = 2(X\ Y)I the function X, Y-» (X| Y) e C is a posi-

(*) Presentata nella seduta del 9 maggio 1992. 
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tive-definite inner product on X, defining a norm || || which is equivalent to the norm 
HI I of X as a subspace of £(%). 

Hence the identity map of X onto itself is a continuous isomorphism of X, en­
dowed with the norm ||| |||, onto X equipped with the Hilbert space norm || ||. 

Changing notations, denoting by x, y, z, ... the elements of X and by x —>x the 
conjugation defined by the adjunction in £(X), the Cartan domain D is ex­
pressed [2,4] by 

(2) D = {xeX:\\x\\2<(l+ | ( x | x ) | 2 ) / 2< l} . 

Since D is the open unit ball for the norm ||| |||, the Kobayashi differential metric 
at the center 0 of D coincides with ||| |||. This latter norm is related to || || by the 
formula [2,4] : 

(3) 1MII2 = IMI2 + V I N I 4 " \(v\v)\2 (veX). 

The boundary 3D of D consists of the points of the closure D of D at which at least 
one of the inequalities in (2) becomes an equality. The Schwarz inequality implies that 
x e 3D if, and only if, ||#|| ^ 1 and 

(4) IW|2 = ( 1 + \(x\x)\2)/2. 

PROPOSITION 1. For any x e.X, for which (4) holds 

(5) y =x — (x\x)x 

is - up to constant factor - the unique vector such that 

(6) ||x + ^ll2 = ( l + \(x + Ky\x + Zy)\ )/2 

for all Ç in a neighborhood of 0 in C. 

PROOF. The equality (6) is satisfied by all Ç in a neighborhood of 0 if, and only if, 
(4) holds together with the following conditions: 

(7) (y\y) = 0, 

(8) V2 | (* l5» l=y , 
(9) (x\y) = (x\x)(x\y). 

Let ex and e2 be two orthonormal real vectors such that x and x are contained in 
the two dimensional complex subspace of X spanned by e\ and e2. Let {e,} be an 
orthonormal base of X, whose elements are all real vectors, containing e± = ej1 and 
e2 = e, . There exist a.x, a 2 , $ in C such that x = axe-i + a2e2, y = Zifyej- Hence 

(10) \\xf= k | 2 + \a2\
2 

(11) (x\x) = a2 + a2. 

and (4), (7), (8), (9) become 

(4') k | 2 + |« 2 | 2 = ( 1+ |a2 + a I | 2 ) /2 , 

(7') 2pj = 0, 

(8') 2 | a i ^ + a 2 4 | 2 = S | i3 , | 2 , ( a i - 5 I ( a 2 + a 2 ) ) ^ + ( a 2 - ^ ( a
2 + « 2 ) ) ^ = 0. 
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This latter equation is equivalent to 

(12) fk = A(a2 - 5£(<%f + a?2)), Jh = - A(ai - Tx{*\ + a?2)), 

for some À G C, SO that 

(13) a ^ + a2Pj2 = M a ^ - â^a2 ) , 

and, by (10), (11), (4), 

(14) | f t . | 2 + | / 3 , 2 | 2 = 2 | A | 2 ( N | 2 - l ) 2 . 

Setting <zl = \<zx\ e'dl, a2 = |a21 eih, with #i, 62 GR, (4') reads now 
4 | a i | 2 | a 2 | 2 sin2(0! - B2) = (\\x\\2 - l ) 2 . Thus, by (13) and (14), 

2 1 ^ + ^ = 8 ^ 

and (8') implies that y is uniquely defined, up to a constant factor À G C, by 

(15) y = & * i + & ' 2 , 

where ^ and /3y2 are given by (12). 
Finally, by (9), (10), (11) and (4), (y\y) = A2(l - 2||x||2 + |(x|x)|2)(x"|x) = 0, and 

conditions (7), (8), (9) are all satisfied. 
If aY ~â2 — 5^ a2 & 0, the linear system 

{ aax + bôTx = o^ — (x \x) a2 

aa2 + bcT2 = — ôq + (x|x) &i 

has the unique solution a = ((l - |(x|x) | )/2(a1ô^ - ô^a2))(x,x), è = ( | (x |x) | 2 -
— 1)72(^0^ - ôqa2), and the vector (15) is collinear to the vector); expressed by (5). If 
ai<*2 ~~ «îa2 = 0, then #2 = 0! + &7r for somek eZ. Hence (x |x) = a2 4- a2 = ( |OLX \

2 + 
+ |a2 |2)e2 /01 = | |x| |2e2^. 

Thus, by (4), | (x|x) \ = ||x|| = 1, and since ax — ôï[(x|x) = 0, a2 — a^(x|x) = 0 
then the vectors expressed by (5) and (15) both vanish. 

That completes the proof of Proposition 1. 
Note that, by (4), 

(16) | |x-(*|x)x| |2 = ( ( l - | (x |x) | 2 ) 2 ) /2 . 

2. Going back to the Cartan domain D defined by (2), Proposition 1 yields 

COROLLARY 2. For any x e 3D and any z > 0 there exists a unique y e X (defined up 
to a suitable constant factor) such that x + Çy G 3D for all £ G C with | Ç | < s. The vector 
y is expressed by (5). 

By (16), y = 0 if, and only if, | (x|x) | = 1, i.e., by (4), ||x|| = 1. This provides a new 
proof of the fact, established by L. A. Harris in [2] using a different argument, 
whereby the complex extreme points of the closure D of D are those points of 3D such 
that ||x|| = 1 or, equivalently, | (x |x) | = 1. 

Let A G £(X) be a linear isometry for the norm ||| |||. Since D is the open unit ball 
for I I then AD cD and A{3D) c 3D. For any z G X \ { 0 } , there is a unique / > 0 
such that x = tze 3D. Let e > 0, and let y be the vector defined (up to a suitable con-
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stant factor) by Corollary 2. Since A(x + Çy) = Ax + 'QAy e 3D whenewer |£| < £, 
then by Corollary 2 and by (5), Ay is proportional to the vector Ax — 
- {Âx \Ax)Ax. 

Since A is an isometry for ||| |||, then |||Ay||| = ||[y|||. But, being (y\y) — 0 and 
(Ay\Aj) = 0, (3) yields |||y|||2 = 2|W|2, \\\Ay\\\2 = 2\\Ay\\2, and therefore | | ^ | | = \\y\\, 
i.e., by (16) | (Ax\ Ax)\ = | (x\x) | or, equivalently, 

(17) |(A*|Âê)| = \{z\z)\ for iùi z e DC. 

As a consequence, if (z\z) — 0, then (Az\ Az) = 0. 

LEMMA 3. L^/ A he a hounded linear operator in a complex Hilbert space X endowed 
with a conjugation z—>z. If (z\z) = 0 implies that (Az\ Az) = 0, there exists OLEC such 
that tAA = al. 

Here the transposed operator A is defined by Av = A * v. 

PROOF. Let v G X be such that (v\v) & 0. For u e X and £ G C 

(18) (C« + i; I £« + z; ) = C2 (« |«) + 2£(« | v) + (p | u), 

U(Ç« +t;)|i4(C« + i>)) = Ç 2 ( ^ | 2 û ) + 2Ç(Au\Âv) + (Av\Âv), 

and whenever (£« + ^ | £& + z; ) = 0, then 04(£# + t>) | A(Çu + v)) = 0. 

Let 5 be the dense set in X consisting of those points u for which the roots of the 
polynomial (18) are distinct, i.e. S = {u G X: (u\v)2 ^ (u\u)(v\v)}. For every u e S 
there exists a G C such that 

{Au \Au) = a{u\û), {Au \ Av ) = a{u\v), {Av \ Av ) = a{v \v). 

The first and third conditions imply that a is independent of u e S and v. Since S is 
dense, these conditions are satisfied by all u and v in X. The second equation reads 
then *AA = od. QED. 

Going back to the isometry A, this Lemma implies the existence oi oceC such that 
tAA = al. By (17), \a\ = 1 and thus, by (4), \\Ax\\2 = (l + | {Ax\ Âx) \2)/2 = (l + 
+ | (x \x) | )/2 = ||x||2 for all* G 3D, and therefore also for all* G X, proving thereby that 

A is a linear isometry for the norm || ||. Choosing a square root of a, the operator A' = 
= A/ya is a linear isometry for both the norms || || and ||| |||, for which 

(19) *A'A' = I. 
The operators A{ = (A' +A7 )/2, A2 = {Af -A7 )/2i are real, and, for any real 

vector veX, {A fv\ TTv ) = \\A{v\\2 - | |4>| |2 + 2i{A[v\A2'v), \\A'v\\2 = \\Alv\\2 + 

+ I^>H2. _ 
Since, by (19), {A'v\A'v ) = ('A'A'v\v) = \\v\\2 = \\A'v\\2

f then ^ > = 0 for all 
real v G X, and therefore y42' = 0, proving thereby that A ' is a linear real isometry of 
the complex Hilbert space X. 

Viceversa, if A ' is a linear real isometry of the Hilbert space X, then, by (19) and 
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(3), p'zlH2 = \\A'z\\2 + ^\\A'z\\4- \(A'z\A'z)\2 = \\z\\2 + VlWI4" |fel*)|2 = 
= ||MIP for a l U e X 

In conclusion, the following Theorem has been established. 

THEOREM I. Every linear real isometry of the complex Hilbert space X is an isometry 
for the norm ||| |||. Viceversa, if A is a linear isometry for ||| |||, there exists a constant 
OLELC, with | a | = 1, such that a A is a linear real isometry of the complex Hilbert 
space X. 

This Theorem was established by L. A. Harris in [2] using a different argument, 
under the additional hypothesis that A be invertible in £{X). 

REMARK. Strictly similar considerations to those developed in n. 2 yield a general­
ization of Theorem I to the case in which A is a bounded linear map of a complex 
Hilbert space X into a complex Hilbert space X\ and both X and X' are endowed 
with conjugations and with norms ||| ||| defined by (3) in terms of their respective 
Hilbert space norms: 

If A is a real || \-isometry, then A is a ||| ^-isometry. Viceversa, if A is a ||| |||-zlyo#z-
etry, there is a G C, with | a | = I, such that oA is a real isometry. 

3. In this Section, H. Cartan's linearity theorem will be shown to hold for holo-
morphic isometries of Cartan domains of type four!1). 

Let h e Iso D be such that h(0) = 0. The differential of h at 0, A = dh{0) G £{X), is a 
linear isometry for the Kobayashi differential metric at 0. By Theorem I there is some 
9 e R such that eÎÇAis a real linear isometry in the complex Hilbert space X. Thus there 
is a holomorphic function /: D —» X - expressed in D by the normally convergent 
power series expansion l(x) = P2 (x) + P3 {x) + ..., where Pn : DC—> X is a continuous 
homogeneous polynomial of degree « = 2 , 3 , . . . - such that h(Çx) = ÇAx + /(Çx) 
for all x e D and all £ e C with | £| ^ 1. 

Hence 

\\h(Zx)\\2= |C|2||Ax||2 + 2Re(CUx|/(£x))) + | |/(^) 

where 

(Ax\l(M) = f(Ax\P2(x)) + <r3G4x|P3M) + ..., 

\\l(Kx)\\2= K|4{l|P2W||2 + 2Re(£ (P 2 W|P 3 W))+ |C|2 | | P 3 W | | 2 + . . . } . 

Setting £ = peld with p ^ 0 and 6 G R, integration with respect to (l/27r) i0 from 0 to 

I1) An example constructed in [2] shows that Cartan's theorem does not hold for all Cartan 
domains. 
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2n yields 

2 -

X ) | | 2 + . . . 

(20) — lRe(pe*6(Ax\l(pe*6x)))dO = 0, 
ITI J 

o 
2 -

(2D ^ | | | / ( p e ' s x ) | | 2 ^ = ||P2M||2 + ||P3(: 
0 

for all x e D. 
Since D is the unit ball for the norm ||| |||, the Kobayashi distance of x e D from 0 

is given by w(0, |||x|||) where OJ is the Poincaré distance in the open unit disc of C (cf. 
e.g. [1]). Hence 

(22) |||/(^)||| = HI 
for all x e D and all Ç e C with | f | ^ 1. Since <?z?yl is a linear real isometry for || ||, then 
(3) yields, for all real x s X, |||C*|||2 = IMP, \\\AÇx\\\2 = \\A^x\\2 = \\Çx\\2, and (22) 
gives 

2Re(&4x|/(fr))) + \\l(Çx)\\2 + Vll*(Wll4 " UHM\h(Zx))\2 = 0. 

Since the last summand is non-negative, (20) and (21) imply that 

(23) P 2 ( x ) = P 3 M = ... = 0 

for all real X ë D and therefore all real x G X Let X" be the closed linear real subspace 

of X consisting of all real vectors. 

LEMMA 4. Let g be a holomorphic map of a domain D c X into a complex Banach 
space 8. If D D X" * 0 and if g = 0 on D D X"} then g = 0 on D. 

This Lemma, well known for scalar valued holomorphic functions, extends trivial­
ly to the case of g: D —> 8 as a consequence of the Hahn-Banach theorem. 

Thus (23) implies that P2 = P} = ... = 0 , and in conclusion the following theorem 
holds. 

THEOREM II. If h e IsoD is such that h(0) = 0, there exist a linear real isometry A of 
the Hilbert space X and <p E R} such that h is the restriction to D of the linear operator 
e'?A. 

This Theorem provides a complete description of IsoD, as will be shown 

now. 

4. Assuming in C2 the canonical conjugation, the Hilbert space direct sum 
X@C2 is endowed with a conjugation leaving X and C2 invariant, and whose restric­
tions to X and to C2 coincide with the given ones. 
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Let J e£{X@C2) be the operator defined'by the matrix 

II 0 
J \o -i2 

where I and I2 stand for the identity operators in X and in C2. For M G £(X) and G e 
e £{X(BC2), fM e <£(2C) and *G e £(5€©C2) will denote the transposed operators in 
X and in X@C2 respectively. 

Let A be the semigroup consisting of all linear, real, continuous operators 
G: X@C2^X@C2 such that lGJG = J, and let f be the maximum subgroup of A 
consisting of all G e A which are invertible in £{X@C2). Every G e A is represented 
by a matrix 

I M B1 B2\ 

G = \('\Ci) En E12 

\(-|C2) E21 E22] 

where M e £(X) is a real operator, Bl,B2,Ci) C2 are real vectors in X, and 
J5n , Eu ,E2l, E22 are real scalars. 

As was shown in[4], the set A0 = {G G A: EnE22 — El2E2l > 0} is a subsemi-
group of A0. Therefore r0 : = A0 D F is a subgroup of F. 

For G e JE(3C©C2), let S G be the continuous quadratic polynomial X->C de­
fined on z G X by SG(z) = 2{z\Cx - C2) + (En - E22 + i{El2 + E21))(z|z) + E n + 
+ E22 + i(E21-E12). _ 

If G G A0, there is a neighborhood V of D such that SG(z) & 0 for all z G V [4]. 
Let G be the holomorphic map of D into Xdefined o n x e D b y G(x) = (2Mx + (l + 
+ (x|x))JB! - /(l - (x\x))B2)/SG(x). 

As was shown in [4], G{D) c D and G G ISO D for all G G A0. The map G->G 
defines a homomorphism <p: A0 —> Iso D. 

THEOREM III. TÂ  homomorphism $ maps A0 surjectively onto IsoD. 

PROOF. L e t / G ISO D and let x0 =/(0). Since <p(r0) acts transitively on D [4], there 
is some G G r 0 for which G(0) = x0. The map Â = G _ 1 o /e Iso D fixes 0. By Theo­
rem II there exist a linear, real isometry A of X and 0 G U, such that h(x) = ei6Ax, for 
all x G D. 

Let H G A0 be defined by 

Then £H(x) = 2e ~t6x, and therefore H(x) = eldAx = />(#)> for all x eD. 

Then / = GoH = IUG. QED 

The kernel of the homomorphism A0 -» Iso D consists of ± the identity operator 
on X®C2. Theorem III implies that <p(r0) = AutD as was shown in [4]. 
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