Rendiconti Lincei Matematica E Applicazioni

Edoardo Vesentini

Holomorphic isometries of Cartan domains of type four

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 3 (1992), n.4, p. 287-294.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1992_9_3_4_287_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1992.

Geometria. - Holomorphic isometries of Cartan domains of type four. Nota (*) del Socio Edoardo Vesentini.

Abstract. - The holomorphic isometries for the Kobayashi metric of Cartan domains of type four are characterized.

KEY words: Cartan domain; Kobayashi metric; Holomorphic isometry; Complex extreme point.

Riassunto. - Isometrie olomorfe di domini di Cartan del quarto tipo. Si caratterizzano le isometrie olomorfe per la metrica di Kobayashi dei domini di Cartan del quarto tipo.

Let $\mathcal{L}(\mathcal{K})$ be the complex Banach space of all bounded linear operators on a complex Hilbert space \mathcal{K}. A Cartan factor of type four is a closed subspace \mathcal{H} of $\mathcal{L}(\mathscr{K})$ which is invariant under the adjunction $*$ in $\mathscr{L}(\mathcal{X})$ and such that $X \in \mathscr{H}$ implies that X^{2} is a scalar multiple of the identity I on \mathcal{K} :

$$
\begin{equation*}
X^{2}=c I \tag{1}
\end{equation*}
$$

for some $c \in C$. The open unit ball D for the norm $\|\|\|\|$ of \mathcal{H} is called a Cartan domain of type four. It is a bounded domain on which the group Aut D of all holomorphic automorphisms of D acts transitively. These facts imply that the Kobayashi and Carathéodory differential metrics on D coincide. Let Iso D be the semigroup of all holomorphic maps of D into D which are isometries for these differential metrics. The invariance properties of these metrics imply that Aut D is a subgroup of Iso D : a proper subgroup if $\operatorname{dim}_{C} \mathcal{H}=\infty$.

The group Aut D was determined by U . Hirzebruch when \mathcal{C} has finite dimension and by L. A. Harris [2], when $\operatorname{dim}_{C} \mathcal{H}=\infty$ (cf. [4] for further details and for bibliographical references).

In this Note the semigroup Iso D will be determined. Since Aut D is known [2, 4] and acts transitively on D, the main thrust in the paper will be concentrated in characterizing the isotropy semigroup (Iso $D)_{0}$ of 0 in Iso D (Theorem I). It will be shown, incidentally, that (Iso $D)_{0}$ is linear, or, better to say, every element of (Iso $\left.D\right)_{0}$ is the restriction to D of a continuous linear operator on \mathcal{H}. Hence H . Cartan's linearity theorem (cf. e.g. [1]) extends from (Aut $D)_{0}$ to (Iso $\left.D\right)_{0}$ in the case of the Cartan domain D : a fact which does not hold for all Cartan domains in infinite dimensions, as examples show [3].

In the proof of Theorem I, the structure of complex discs affinely imbedded in the boundary of the Cartan domain will play a crucial rôle.

1. As a consequence of (1), for $X, Y \in \mathcal{H}, X Y+Y X$ is a scalar multiple of I. Setting, for X, Y in $\mathscr{C}, X Y^{*}+Y^{*} X=2(X \mid Y) I$ the function $X, Y \rightarrow(X \mid Y) \in C$ is a posi-
(*) Presentata nella seduta del 9 maggio 1992.
tive-definite inner product on \mathscr{A}, defining a norm $\|\|$ which is equivalent to the norm ||| ||| of \mathscr{X} as a subspace of $\mathscr{L}(\mathscr{X})$.

Hence the identity map of \mathscr{X} onto itself is a continuous isomorphism of \mathscr{X}, endowed with the norm $\|\|\|$, onto \mathcal{A} equipped with the Hilbert space norm $\|\|$.

Changing notations, denoting by x, y, z, \ldots the elements of \mathcal{H} and by $x \rightarrow \bar{x}$ the conjugation defined by the adjunction in $\mathscr{L}(\mathcal{K})$, the Cartan domain D is expressed [2,4] by

$$
\begin{equation*}
D=\left\{x \in \mathcal{H}:\|x\|^{2}<\left(1+|(x \mid \bar{x})|^{2}\right) / 2<1\right\} . \tag{2}
\end{equation*}
$$

Since D is the open unit ball for the norm $\|\|\|$, the Kobayashi differential metric at the center 0 of D coincides with $||||\mid$. This latter norm is related to $\|\|$ by the formula [2, 4]:

$$
\begin{equation*}
\|v\|^{2}=\|v\|^{2}+\sqrt{\|v\|^{4}-|(v \mid \bar{v})|^{2}} \quad(v \in \mathcal{H}) \tag{3}
\end{equation*}
$$

The boundary ∂D of D consists of the points of the closure \bar{D} of D at which at least one of the inequalities in (2) becomes an equality. The Schwarz inequality implies that $x \in \partial D$ if, and only if, $\|x\| \leqslant 1$ and

$$
\begin{equation*}
\|x\|^{2}=\left(1+|(x \mid \bar{x})|^{2}\right) / 2 . \tag{4}
\end{equation*}
$$

Proposition 1. For any $x \in \mathcal{H}$, for which (4) bolds

$$
\begin{equation*}
y=\bar{x}-(\bar{x} \mid x) x \tag{5}
\end{equation*}
$$

is - up to constant factor - the unique vector such that

$$
\begin{equation*}
\|x+\zeta y\|^{2}=\left(1+|(x+\zeta y \mid \overline{x+\zeta y})|^{2}\right) / 2 \tag{6}
\end{equation*}
$$

for all ζ in a neigbborbood of 0 in C.
Proof. The equality (6) is satisfied by all ζ in a neighborhood of 0 if , and only if, (4) holds together with the following conditions:

$$
\begin{align*}
& (y \mid \bar{y})=0 \tag{7}\\
& \sqrt{2}|(x \mid \bar{y})|=\|y\| \tag{8}\\
& (x \mid y)=(x \mid \bar{x})(\bar{x} \mid y) \tag{9}
\end{align*}
$$

Let e_{1} and e_{2} be two orthonormal real vectors such that x and \bar{x} are contained in the two dimensional complex subspace of \mathscr{H} spanned by e_{1} and e_{2}. Let $\left\{e_{j}\right\}$ be an orthonormal base of \mathscr{H}, whose elements are all real vectors, containing $e_{1}=e_{j_{1}}$ and $e_{2}=e_{j_{2}}$. There exist $\alpha_{1}, \alpha_{2}, \beta_{j}$ in C such that $x=\alpha_{1} e_{1}+\alpha_{2} e_{2}, y=\sum \beta_{j} e_{j}$. Hence

$$
\begin{align*}
& \|x\|^{2}=\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2} \tag{10}\\
& (x \mid \bar{x})=\alpha_{1}^{2}+\alpha_{2}^{2} \tag{11}
\end{align*}
$$

and (4), (7), (8), (9) become

$$
\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=\left(1+\left|\alpha_{1}^{2}+\alpha_{2}^{2}\right|^{2}\right) / 2
$$

(7') $\quad \sum \beta_{j}^{2}=0$,

$$
2\left|\alpha_{1} \beta_{j_{1}}+\alpha_{2} \beta_{j_{2}}\right|^{2}=\sum\left|\beta_{j}\right|^{2}, \quad\left(\alpha_{1}-\overline{\alpha_{1}}\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)\right) \overline{\beta_{j_{1}}}+\left(\alpha_{2}-\overline{\alpha_{2}}\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)\right) \overline{\beta_{j_{2}}}=0
$$

This latter equation is equivalent to

$$
\begin{equation*}
\overline{\beta_{j_{1}}}=\lambda\left(\alpha_{2}-\overline{\alpha_{2}}\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)\right), \quad \overline{\beta_{j_{2}}}=-\lambda\left(\alpha_{1}-\overline{\alpha_{1}}\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)\right), \tag{12}
\end{equation*}
$$

for some $\lambda \in C$, so that

$$
\begin{equation*}
\alpha_{1} \beta_{j_{1}}+\alpha_{2} \beta_{j_{2}}=\bar{\lambda}\left(\alpha_{1} \overline{\alpha_{2}}-\overline{\alpha_{1}} \alpha_{2}\right), \tag{13}
\end{equation*}
$$

and, by (10), (11), (4),

$$
\begin{equation*}
\left|\beta_{j_{1}}\right|^{2}+\left|\beta_{j_{2}}\right|^{2}=2|\lambda|^{2}\left(\|x\|^{2}-1\right)^{2} \tag{14}
\end{equation*}
$$

Setting $\quad \alpha_{1}=\left|\alpha_{1}\right| e^{i \theta_{1}}, \quad \alpha_{2}=\left|\alpha_{2}\right| e^{i \theta_{2}}$, with $\theta_{1}, \theta_{2} \in \boldsymbol{R}$, (4') reads now $4\left|\alpha_{1}\right|^{2}\left|\alpha_{2}\right|^{2} \sin ^{2}\left(\theta_{1}-\theta_{2}\right)=\left(\|x\|^{2}-1\right)^{2}$. Thus, by (13) and (14),

$$
2\left|\alpha_{1} \beta_{j_{1}}+\alpha_{2} \beta_{j_{2}}\right|^{2}=8|\lambda|^{2}\left|\alpha_{1}\right|^{2}\left|\alpha_{2}\right|^{2} \sin ^{2}\left(\theta_{1}-\theta_{2}\right)=2|\lambda|^{2}\left(\|x\|^{2}-1\right)^{2}=\left|\beta_{j_{1}}\right|^{2}+\left|\beta_{j_{2}}\right|^{2},
$$ and $\left(8^{\prime}\right)$ implies that y is uniquely defined, up to a constant factor $\lambda \in C$, by

$$
\begin{equation*}
y=\beta_{j_{1}} e_{1}+\beta_{j_{2}} e_{2}, \tag{15}
\end{equation*}
$$

where $\beta_{j_{1}}$ and $\beta_{j_{2}}$ are given by (12).
Finally, by (9), (10), (11) and (4), $(y \mid \bar{y})=\bar{\lambda}^{2}\left(1-2\|x\|^{2}+|(x \mid \bar{x})|^{2}\right)(\bar{x} \mid x)=0$, and conditions (7), (8), (9) are all satisfied.

If $\alpha_{1} \overline{\alpha_{2}}-\overline{\alpha_{1}} \alpha_{2} \neq 0$, the linear system

$$
\left\{\begin{array}{l}
a \alpha_{1}+b \overline{\alpha_{1}}=\overline{\alpha_{2}}-(\bar{x} \mid x) \alpha_{2} \\
a \alpha_{2}+b \overline{\alpha_{2}}=-\overline{\alpha_{1}}+(\bar{x} \mid x) \alpha_{1}
\end{array}\right.
$$

has the unique solution $a=\left(\left(1-|(x \mid \bar{x})|^{2}\right) / 2\left(\alpha_{1} \overline{\alpha_{2}}-\overline{\alpha_{1}} \alpha_{2}\right)\right)(\bar{x}, x), b=\left(|(x \mid \bar{x})|^{2}-\right.$ $-1) / 2\left(\alpha_{1} \overline{\alpha_{2}}-\overline{\alpha_{1}} \alpha_{2}\right)$, and the vector (15) is collinear to the vector y expressed by (5). If $\alpha_{1} \overline{\alpha_{2}}-\overline{\alpha_{1}} \alpha_{2}=0$, then $\theta_{2}=\theta_{1}+k \pi$ for some $k \in Z$. Hence $(x \mid \bar{x})=\alpha_{1}^{2}+\alpha_{2}^{2}=\left(\left|\alpha_{1}\right|^{2}+\right.$ $\left.+\left|\alpha_{2}\right|^{2}\right) e^{2 i \theta_{1}}=\|x\|^{2} e^{2 i \theta_{1}}$.

Thus, by (4), $|(x \mid \bar{x})|=\|x\|=1$, and since $\alpha_{1}-\overline{\alpha_{1}}(x \mid \bar{x})=0, \alpha_{2}-\overline{\alpha_{2}}(x \mid \bar{x})=0$ then the vectors expressed by (5) and (15) both vanish.

That completes the proof of Proposition 1.
Note that, by (4),

$$
\begin{equation*}
\|\bar{x}-(\bar{x} \mid x) x\|^{2}=\left(\left(1-|(x \mid \bar{x})|^{2}\right)^{2}\right) / 2 . \tag{16}
\end{equation*}
$$

2. Going back to the Cartan domain D defined by (2), Proposition 1 yields

Corollary 2. For any $x \in \partial D$ and any $\varepsilon>0$ there exists a unique $y \in \mathcal{H}$ (defined up to a suitable constant factor) such that $x+\zeta y \in \partial D$ for all $\zeta \in C$ with $|\zeta|<\varepsilon$. The vector y is expressed by (5).

By (16), $y=0$ if, and only if, $|(x \mid \bar{x})|=1$, i.e., by (4), $\|x\|=1$. This provides a new proof of the fact, established by L. A. Harris in [2] using a different argument, whereby the complex extreme points of the closure \bar{D} of D are those points of ∂D such that $\|x\|=1$ or, equivalently, $|(x \mid \bar{x})|=1$.

Let $A \in \mathscr{L}(\mathscr{H})$ be a linear isometry for the norm $\|\|\|$. Since D is the open unit ball for $\|\|\|\|$, then $A D \subset D$ and $A(\partial D) \subset \partial D$. For any $z \in \mathcal{C} \backslash\{0\}$, there is a unique $t>0$ such that $x=t z \in \partial D$. Let $\varepsilon>0$, and let y be the vector defined (up to a suitable con-
stant factor) by Corollary 2. Since $A(x+\zeta y)=A x+\zeta A y \in \partial D$ whenewer $|\zeta|<\varepsilon$, then by Corollary 2 and by (5), $A y$ is proportional to the vector $\overline{A x}-$ - $(\overline{A x} \mid A x) A x$.

Since A is an isometry for $\|\|\|$, then $\| A y\|=\|y\| \|$. But, being $(y \mid \bar{y})=0$ and $(A y \mid \overline{A y})=0$, (3) yields $\|y\|^{2}=2\|y\|^{2},\|A y\|^{2}=2\|A y\|^{2}$, and therefore $\|A y\|=\|y\|$, i.e., by (16) $|(A x \mid \overline{A x})|=|(x \mid \bar{x})|$ or, equivalently,

$$
\begin{equation*}
|(A z \mid \overline{A z})|=|(z \mid \bar{z})| \quad \text { for all } z \in \mathscr{H} . \tag{17}
\end{equation*}
$$

As a consequence, if $(z \mid \bar{z})=0$, then $(A z \mid \overline{A z})=0$.
Lemma 3. Let A be a bounded linear operator in a complex Hilbert space \mathcal{H} endowed with a conjugation $z \rightarrow \bar{z}$. If $(z \mid \bar{z})=0$ implies that $(A z \mid \overline{A z})=0$, there exists $\alpha \in C$ such that ${ }^{t} A A=\alpha I$.

Here the transposed operator ${ }^{t} A$ is defined by $\overline{{ }^{t} A v}=A^{*} \bar{v}$.
Proof. Let $v \in \mathscr{H}$ be such that $(v \mid \bar{v}) \neq 0$. For $u \in \mathscr{H}$ and $\zeta \in C$

$$
\begin{align*}
& (\zeta u+v \mid \overline{\zeta u+v})=\zeta^{2}(u \mid \bar{u})+2 \zeta(u \mid \bar{v})+(v \mid \bar{v}) \tag{18}\\
& (A(\zeta u+v) \mid \overline{A(\zeta u+v)})=\zeta^{2}(A u \mid \overline{A u})+2 \zeta(A u \mid \overline{A v})+(A v \mid \overline{A v})
\end{align*}
$$

and whenever $(\zeta u+v \mid \overline{\zeta u+v})=0$, then $(A(\zeta u+v) \mid \overline{A(\zeta u+v)})=0$.
Let S be the dense set in \mathscr{H} consisting of those points u for which the roots of the polynomial (18) are distinct, i.e. $S=\left\{u \in \mathscr{H}:(u \mid \bar{v})^{2} \neq(u \mid \bar{u})(v \mid \bar{v})\right\}$. For every $u \in S$ there exists $\alpha \in C$ such that

$$
(A u \mid \overline{A u})=\alpha(u \mid \bar{u}), \quad(A u \mid \overline{A v})=\alpha(u \mid \bar{v}), \quad(A v \mid \overline{A v})=\alpha(v \mid \bar{v})
$$

The first and third conditions imply that α is independent of $u \in S$ and v. Since S is dense, these conditions are satisfied by all u and v in \mathcal{H}. The second equation reads then ${ }^{t} A A=\alpha I$. QED.

Going back to the isometry A, this Lemma implies the existence of $\alpha \in C$ such that ${ }^{t} A A=\alpha I$. By (17), $|\alpha|=1$ and thus, by (4), $\|A x\|^{2}=\left(1+|(A x \mid \overline{A x})|^{2}\right) / 2=(1+$ $\left.+|(x \mid \bar{x})|^{2}\right) / 2=\|x\|^{2}$ for all $x \in \partial D$, and therefore also for all $x \in \mathcal{H}$, proving thereby that A is a linear isometry for the norm $\left\|\|\right.$. Choosing a square root of α, the operator $A^{\prime}=$ $=A / \sqrt{\alpha}$ is a linear isometry for both the norms $\|\|$ and $\|\|\|$, for which

$$
\begin{equation*}
{ }^{t} A^{\prime} A^{\prime}=I \tag{19}
\end{equation*}
$$

The operators $A_{1}^{\prime}=\left(A^{\prime}+\overline{A^{\prime}}\right) / 2, A_{2}^{\prime}=\left(A^{\prime}-\overline{A^{\prime}}\right) / 2 i$ are real, and, for any real vector $v \in \mathcal{H}, \quad\left(A^{\prime} v \mid \overline{A^{\prime} v}\right)=\left\|A_{1}^{\prime} v\right\|^{2}-\left\|A_{2}^{\prime} v\right\|^{2}+2 i\left(A_{1}^{\prime} v \mid A_{2}^{\prime} v\right), \quad\left\|A^{\prime} v\right\|^{2}=\left\|A_{1}^{\prime} v\right\|^{2}+$ $+\left\|A_{2}^{\prime} v\right\|^{2}$.

Since, by (19), $\left(A^{\prime} v \mid \overline{A^{\prime} v}\right)=\left({ }^{t} A^{\prime} A^{\prime} v \mid v\right)=\|v\|^{2}=\left\|A^{\prime} v\right\|^{2}$, then $A_{2}^{\prime} v=0$ for all real $v \in \mathscr{A}$, and therefore $A_{2}^{\prime}=0$, proving thereby that A^{\prime} is a linear real isometry of the complex Hilbert space \mathcal{H}.

Viceversa, if A^{\prime} is a linear real isometry of the Hilbert space \mathcal{H}, then, by (19) and
(3), $\left\|A^{\prime} z\right\|^{2}=\left\|A^{\prime} z\right\|^{2}+\sqrt{\left\|A^{\prime} z\right\|^{4}-\left|\left(A^{\prime} z \mid \overline{A^{\prime} z}\right)\right|^{2}}=\|z\|^{2}+\sqrt{\|z\|^{4}-|(z \mid \bar{z})|^{2}}=$ $=\|z\|^{2}$ for all $z \in \mathscr{H}$.

In conclusion, the following Theorem has been established.
Theorem I. Every linear real isometry of the complex Hilbert space \mathscr{H} is an isometry for the norm $||||\mid$. Viceversa, if A is a linear isometry for $|||| \mid$, there exists a constant $\alpha \in C$, with $|\alpha|=1$, such that αA is a linear real isometry of the complex Hilbert space \mathscr{H}.

This Theorem was established by L. A. Harris in [2] using a different argument, under the additional hypothesis that A be invertible in $\mathscr{L}(\mathscr{H})$.

Remark. Strictly similar considerations to those developed in n . 2 yield a generalization of Theorem I to the case in which A is a bounded linear map of a complex Hilbert space \mathscr{C} into a complex Hilbert space \mathcal{K}^{\prime}, and both \mathcal{H} and \mathcal{K}^{\prime} are endowed with conjugations and with norms $||||\mid$ defined by (3) in terms of their respective Hilbert space norms:

If A is a real ||||-isometry, then A is a ||| ||-isometry. Viceversa, if A is a |||||--isometry, there is $\alpha \in C$, with $|\alpha|=1$, such that αA is a real isometry.
3. In this Section, H. Cartan's linearity theorem will be shown to hold for holomorphic isometries of Cartan domains of type four ${ }^{(1)}$.

Let $b \in \operatorname{Iso} D$ be such that $b(0)=0$. The differential of b at $0, A=d b(0) \in \mathscr{L}(\mathscr{C})$, is a linear isometry for the Kobayashi differential metric at 0 . By Theorem I there is some $\varphi \in \boldsymbol{R}$ such that $e^{i_{\varphi}} A$ is a real linear isometry in the complex Hilbert space \mathscr{H}. Thus there is a holomorphic function $l: D \rightarrow \mathcal{H}$ - expressed in D by the normally convergent power series expansion $l(x)=P_{2}(x)+P_{3}(x)+\ldots$, where $P_{n}: \mathcal{H} \rightarrow \mathcal{H}$ is a continuous homogeneous polynomial of degree $n=2,3, \ldots$ - such that $h(\zeta x)=\zeta A x+l(\zeta x)$ for all $x \in D$ and all $\zeta \in C$ with $|\zeta| \leqslant 1$.

Hence

$$
\|b(\zeta x)\|^{2}=|\zeta|^{2}\|A x\|^{2}+2 \operatorname{Re}(\zeta(A x \mid l(\zeta x)))+\|l(\zeta x)\|^{2},
$$

where

$$
\begin{gathered}
(A x \mid l(\zeta x))=\bar{\zeta}^{2}\left(A x \mid P_{2}(x)\right)+\bar{\zeta}^{3}\left(A x \mid P_{3}(x)\right)+\ldots, \\
\| l \zeta x) \|^{2}=|\zeta|^{4}\left\{\left\|P_{2}(x)\right\|^{2}+2 \operatorname{Re}\left(\bar{\zeta}\left(P_{2}(x) \mid P_{3}(x)\right)\right)+|\zeta|^{2}\left\|P_{3}(x)\right\|^{2}+\ldots\right\} .
\end{gathered}
$$

Setting $\zeta=\rho e^{i \theta}$ with $\rho \geqslant 0$ and $\theta \in \boldsymbol{R}$, integration with respect to $(1 / 2 \pi) d \theta$ from 0 to
${ }^{(1)}$ An example constructed in [2] shows that Cartan's theorem does not hold for all Cartan domains.
2π yields

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}\left(\rho e^{i \theta}\left(A x \mid l\left(\rho e^{i \theta} x\right)\right)\right) d \theta=0 \tag{20}\\
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|l\left(\rho e^{i \theta} x\right)\right\|^{2} d \theta=\left\|P_{2}(x)\right\|^{2}+\left\|P_{3}(x)\right\|^{2}+\ldots \tag{21}
\end{align*}
$$

for all $x \in D$.
Since D is the unit ball for the norm $\|\|\|$, the Kobayashi distance of $x \in D$ from 0 is given by $\omega(0,\|x\|)$ where ω is the Poincare distance in the open unit disc of C (cf. e.g. [1]). Hence

$$
\begin{equation*}
\left\|f\left(\zeta_{x}\right)\right\|=\left\|\zeta \zeta_{x}\right\| \tag{22}
\end{equation*}
$$

for all $x \in D$ and all $\zeta \in C$ with $|\zeta| \leqslant 1$. Since $e^{i \xi} A$ is a linear real isometry for $\|\|$, then (3) yields, for all real $x \in \mathcal{A},\|\zeta x\|^{2}=\|\zeta x\|^{2},\|A \zeta x\|^{2}=\|A \zeta x\|^{2}=\|\zeta x\|^{2}$, and (22) gives

$$
2 \operatorname{Re}(\zeta(A x \mid l(\zeta x)))+\|l(\zeta x)\|^{2}+\sqrt{\|b(\zeta x)\|^{4}-|(b(\zeta x) \mid \overline{b(\zeta x)})|^{2}}=0 .
$$

Since the last summand is non-negative, (20) and (21) imply that

$$
\begin{equation*}
P_{2}(x)=P_{3}(x)=\ldots=0 \tag{23}
\end{equation*}
$$

for all real $x \in D$ and therefore all real $x \in \mathscr{H}$. Let $\mathcal{H}^{\prime \prime}$ be the closed linear real subspace of \mathscr{C} consisting of all real vectors.

Lemma 4. Let g be a bolomorphic map of a domain $D \subset \mathcal{A}$ into a complex Banach space 8. If $D \cap \mathcal{C}^{\prime \prime} \neq \emptyset$ and if $g=0$ on $D \cap \mathcal{X}^{\prime \prime}$, then $g=0$ on D.

This Lemma, well known for scalar valued holomorphic functions, extends trivially to the case of $g: D \rightarrow \delta$ as a consequence of the Hahn-Banach theorem.

Thus (23) implies that $P_{2}=P_{3}=\ldots=0$, and in conclusion the following theorem holds.

Theorem II. If $h \in \operatorname{Iso} D$ is such that $h(0)=0$, there exist a linear real isometry A of the Hilbert space \mathscr{H} and $\varphi \in \boldsymbol{R}$, such that b is the restriction to D of the linear operator $e^{i \varphi} A$.

This Theorem provides a complete description of Iso D, as will be shown now.
4. Assuming in C^{2} the canonical conjugation, the Hilbert space direct sum $\mathscr{H} \oplus C^{2}$ is endowed with a conjugation leaving \mathcal{H} and C^{2} invariant, and whose restrictions to \mathcal{H} and to C^{2} coincide with the given ones.

Let $J \in \mathscr{L}\left(\mathscr{C} \oplus C^{2}\right)$ be the operator defined by the matrix

$$
J=\left(\begin{array}{cc}
I & 0 \\
0 & -I_{2}
\end{array}\right)
$$

where I and I_{2} stand for the identity operators in \mathscr{H} and in C^{2}. For $M \in \mathscr{L}(\mathscr{H})$ and $G \in$ $\in \mathscr{L}\left(\mathscr{H} \oplus C^{2}\right),{ }^{t} M \in \mathscr{L}(\mathscr{H})$ and ${ }^{t} G \in \mathscr{L}\left(\mathscr{H} \oplus C^{2}\right)$ will denote the transposed operators in \mathscr{X} and in $\mathcal{H} \oplus C^{2}$ respectively.

Let Λ be the semigroup consisting of all linear, real, continuous operators $G: \mathcal{H} \oplus C^{2} \rightarrow \mathcal{H} \oplus C^{2}$ such that ${ }^{t} G J G=J$, and let Γ be the maximum subgroup of Λ consisting of all $G \in \Lambda$ which are invertible in $\mathscr{L}\left(\mathscr{C} \oplus C^{2}\right)$. Every $G \in \Lambda$ is represented by a matrix

$$
G=\left(\begin{array}{ccc}
M & B_{1} & B_{2} \\
\left(\cdot \mid C_{1}\right) & E_{11} & E_{12} \\
\left(\cdot \mid C_{2}\right) & E_{21} & E_{22}
\end{array}\right)
$$

where $M \in \mathscr{L}(\mathcal{H})$ is a real operator, $B_{1}, B_{2}, C_{1}, C_{2}$ are real vectors in \mathcal{H}, and $E_{11}, E_{12}, E_{21}, E_{22}$ are real scalars.

As was shown in [4], the set $\Lambda_{0}=\left\{G \in \Lambda: E_{11} E_{22}-E_{12} E_{21}>0\right\}$ is a subsemigroup of Λ_{0}. Therefore $\Gamma_{0}:=\Lambda_{0} \cap \Gamma$ is a subgroup of Γ.

For $G \in \mathscr{L}\left(\mathscr{H} \oplus C^{2}\right)$, let δG be the continuous quadratic polynomial $\mathcal{X} \rightarrow C$ defined on $z \in \mathcal{H}$ by o $G(z)=2\left(z \mid C_{1}-C_{2}\right)+\left(E_{11}-E_{22}+i\left(E_{12}+E_{21}\right)\right)(z \mid \bar{z})+E_{11}+$ $+E_{22}+i\left(E_{21}-E_{12}\right)$.

If $G \in \Lambda_{0}$, there is a neighborhood V of \bar{D} such that $\delta G(z) \neq 0$ for all $z \in V[4]$. Let \bar{G} be the holomorphic map of D into \mathscr{H} defined on $x \in D$ by $\bar{G}(x)=(2 M x+(1+$ $\left.+(x \mid \bar{x})) B_{1}-i(1-(x \mid \bar{x})) B_{2}\right) / \delta G(x)$.

As was shown in [4], $\bar{G}(D) \subset D$ and $\bar{G} \in \operatorname{Iso} D$ for all $G \in \Lambda_{0}$. The map $G \rightarrow \bar{G}$ defines a homomorphism $\phi: \Lambda_{0} \rightarrow$ Iso D.

Theorem III. The bomomorphism ϕ maps Λ_{0} surjectively onto Iso D.
Proof. Let $f \in$ Iso D and let $x_{0}=f(0)$. Since $\phi\left(\Gamma_{0}\right)$ acts transitively on D [4], there is some $G \in I_{0}$ for which $\bar{G}(0)=x_{0}$. The map $b=\bar{G}^{-1} \circ f \in$ Iso D fixes 0 . By Theorem II there exist a linear, real isometry A of $\mathscr{\mathscr { C }}$ and $\theta \in \boldsymbol{R}$, such that $b(x)=e^{i \theta} A x$, for all $x \in D$.

Let $H \in \Lambda_{0}$ be defined by

$$
H=\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right)
$$

Then $\partial H(x)=2 e^{-i \theta} x$, and therefore $\hat{H}(x)=e^{i \theta} A x=b(x)$, for all $x \in D$.
Then $f=\hat{G} \circ \hat{H}=\widehat{H \circ G} . \quad$ QED
The kernel of the homomorphism $\Lambda_{0} \rightarrow$ Iso D consists of \pm the identity operator on $\mathscr{H} \oplus C^{2}$. Theorem III implies that $\phi\left(\Gamma_{0}\right)=$ Aut D as was shown in [4].

References

[1] T. Franzoni - E. Vesentini, Holomorphic maps and invariant distances. North Holland, Amsterdam 1980.
[2] L. A. Harris, Bounded symmetric bomogeneous domains in infinite dimensional spaces. Lecture notes in mathematics, 634, Springer Verlag, Berlin 1974, 13-40.
[3] E. Vesentini, Holomorphic families of bolomorphic isometries. Lecture notes in mathematics, 1277, Springer-Verlag, Berlin 1987, 291-302.
[4] E. Vesentini, Semigroups in Cartan domains of type four. Note di Matematica, 9 Suppl., 1989, 123-144.

Scuola Normale Superiore
Piazza dei Cavalieri, 7-56126 PISA

