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Geometria. — Holomorphic isometries of Cartan domains of type four. Nota (*) del
Socio EpoarRDO VESENTINIL

Asstract. — The holomorphic isometries for the Kobayashi metric of Cartan domains of type four
are characterized.

Key worps: Cartan domain; Kobayashi metric; Holomorphic isometry; Complex extreme
point.

Ruassunto. — Isometrie olomorfe di domini di Cartan del quarto tipo. Si caratterizzano le isometrie
olomorfe per la metrica di Kobayashi dei domini di Cartan del quarto tipo.

Let £2(X) be the complex Banach space of all bounded linear operators on a com-
plex Hilbert space X. A Cartan factor of type four is a closed subspace I of £(X)
which is invariant under the adjunction * in £(X) and such that X e 9¢ implies that X?
is a scalar multiple of the identity I on X:

(1) X?=cl

for some ¢ € C. The open unit ball D for the norm || || of 9C is called a Cartan domain
of type four. It is a bounded domain on which the group Aut D of all holomorphic au-
tomorphisms of D acts transitively. These facts imply that the Kobayashi and
Carathéodory differential metrics on D coincide. Let Iso D be the semigroup of all
holomorphic maps of D into D which are isometries for these differential metrics. The
invariance properties of these metrics imply that Aut D is a subgroup of Iso D: a
proper subgroup if dime = .,

The group Aut D was determined by U. Hirzebruch when 3¢ has finite dimension
and by L. A. Harris [2], when dim; €= o (cf.[4] for further details and for bibli-
ographical references).

In this Note the semigroup IsoD will be determined. Since AutD is known [2, 4]
and acts transitively on D, the main thrust in the paper will be concentrated in charac-
terizing the isotropy semigroup (Iso D), of 0 in Iso D (Theorem I). It will be shown,
incidentally, that (Iso D), is linear, or, better to say, every element of (Iso D), is the re-
striction to D of a continuous linear operator on JC. Hence H. Cartan’s linearity theo-
rem (cf. eg [1]) extends from (Aut D), to (Iso D), in the case of the Cartan domain
D: a fact which does not hold for all Cartan domains in infinite dimensions, as exam-
ples show [3].

In the proof of Theorem I, the structure of complex discs affinely imbedded in the
boundary of the Cartan domain will play a crucial réle.

1. As a consequence of (1), for X, Y € 3¢, XY + YX is a scalar multiple of I. Set-
ting, for X, Y in 3¢, XY* 4+ Y* X = 2(X|Y) I the function X, Y — (X|Y) € C is a posi-

(*) Presentata nella seduta del 9 maggio 1992.
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tive-definite inner product on ¢, defining a norm || || which is equivalent to the norm
Illl of 9C as a subspace of £(X).
Hence the identity map of IC onto itself is a continuous isomorphism of I, en-
dowed with the norm || [|, onto 9¢ equipped with the Hilbert space norm || |.
Changing notations, denoting by %, 9, z, ... the elements of 9C and by x —x the
conjugation defined by the adjunction in £(%), the Cartan domain D is ex-
pressed [2,4] by

(2) D={xeac [P <1+ |&x|x)|*)/2<1}.
Since D is the open unit ball for the norm || ||, the Kobayashi differential metric
at the center 0 of D coincides with || ||. This latter norm is related to ||| by the

formula [2, 4]:

(3) el = ol + Vel = (@) ]* @ev0.

The boundary 8D of D consists of the points of the closure D of D at which at least
one of the inequalities in (2) becomes an equality. The Schwarz inequality implies that
x € 9D if, and only if, ||lx| < 1 and

(4) [P = (1 + | x]%)]?)/2.
Prorostrion 1. For any x € 3C, for which (4) holds

(5) y =x— (x|x)x

is — up to constant factor — the unique vector such that

6) e+ oylP = (1 + [ + |2+ B)|*)/2

for all ¢ in a neighborhood of 0 in C.

Proor. The equality (6) is satisfied by all £ in a neighborhood of 0 if, and only if,
(4) holds together with the following conditions:

(7) »ly) =0,
8) V2|9 =1l
9) (x]y) = (x|x)G]y) .

Let ¢; and e, be two orthonormal real vectors such that x and x are contained in
the two dimensional complex subspace of 9C spanned by e, and e,. Let {¢} be an
orthonormal base of I, whose elements are all real vectors, containing e; = ¢; and
e, =¢;,. There exist a;, ap,3; in C such that x = aje; + 0y, y = Zﬁ]—ej. Hence

(10) [+l = Jas|? + Joz|?

(11) (x]%) = 22 + o

and (4), (7), (8), (9) become

@) o |P+ e |2 = (1 + | +45]%)/2,

(7 Zg=0,

) 2|uf,+awp,2=2141%  (—xdd+a3) B+ —x(ad + 23)) B,=0.
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This latter equation is equivalent to

(12) E=)\(a2—&;(af+a§)), ,é;;= —May — z(a2 + a3)),
for some A e C, so that
(13) a3, +a2,8j2=1(a15¢;—a_1a2 ),
and, by (10), (11), (4),
(14 16,17+ 16,17 = 21212 lf - 1.
Setting  a; = |ay | e™, [aczle“’2 with 6,,0,eR, (4') reads now

4lay|? |az|? sin? (6, — 6,) = (||x||2 — 1)?. Thus, by (13) and (14),
2|18, + 2B, |2 =8| 2|2 |ag |2 |aa | 2sin?(6;, — 6,) = 2|2 |2 (I« — 1 = |8, >+ |8, |2,
and (8') implies that y is uniquely defined, up to a constant factor A € C, by
(15) y=Bierther,
where 3, and 3, are given by (12) ~
Finally, by (9), (10), (11) and (4), (y|y) = 22(1 = 2|lx[ + | (x|*)|?)&|x) = 0, and
conditions (7), (8), (9) are all satlsﬁed
If oy — a;2, # 0, the linear system
aoy +ba_1 =oc_2 —(J—Clx)az
agy + bay = — 2y + (% |x) &y
has the unique solution 2 = ((1 — I(xla_c)lz)/Z(al&—z - a4 ) %), b=(]kx|x)|*-
— 1)/2(ay @ — % a,), and the vector (15) is collinear to the vector y expressed by (5). If
oy — a_laz =0, then 6, = 6, + k= for some & € Z. Hence (x|%) = of + o = (Jo; |* +
+ [ap]?) e = ||x”2 2,
Thus, by (4), |(x|x) I =|x|| = 1, and since a; — a; (x|x) =0, a, — x; (x]|X) =0
then the vectors expressed by (5) and (15) both vanish.

That completes the proof of Proposition 1.
Note that, by (4),

(16) [ — Glx)? = ((1 = | x|%)]?)?)/2
2. Going back to the Cartan domain D defined by (2), Proposition 1 yields

CorOLLARY 2. For any x € D and any € > 0 there exists a unique y € 3 (defined up
to a suitable constant factor) such that x + &y € AD for all € C with |¢| < e. The vector
y is expressed by (5).

By (16),y = 0 if, and only if, |(x|X)| = 1, Ze., by (4), [|x|| = 1. This provides a new
proof of the fact, established by L. A. Harris in [2] using a different argument,
whereby the complex extreme points of the closure D of D are those points of 3D such
that ||x]| = 1 or, equivalently, |(x|%)| = 1.

Let A € £(30) be a linear isometry for the norm || ||. Since D is the open unit ball
for ||| ||, then AD ¢ D and A(8D) c dD. For any z € 9\ {0}, there is a unique ¢ > 0
such that x = fz € dD. Let ¢ > 0, and let y be the vector defined (up to a suitable con-
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stant factor) by Corollary 2. Since A(x + &y) = Ax + {Ay € dD whenewer | |_< g,
then by Corollary 2 and by (5), Ay is proportional to the vector Ax —
— (Ax | Ax) Ax

Since A is an isometry for |||, then [|Ay[| = [y[|. But, being (y[y) =0 and
(Ay| Ay) = 0, (3) yields [[yl? = 2[y[% [|4y[I* = 2ll4y[F, and therefore |4yl = |y,
ie, by (16) [(Ax|Ax)| = |(x|x)| or, equivalently,
(17) [(Az| Az)| = |(z]|z)| for all z e aC.

As a consequence, if (z|z) = 0, then (Azl?l—z) =0.

Lemma 3. Let A be a bounded linear operator in a complex Hilbert space I endowed
with a conjugation z —z. If (z|2) = 0 implies that (Az| Az) = 0, there exists o € C such
that ‘AA = ol

Here the transposed operator ‘A is defined by Ap = A*p

Proor. Let v € 9 be such that (v|v) # 0. For # € 9€ and e C
(18) Cu+v|Cu+v)=2w|u)+ 20u|) + (v]2),
(ACu +0)| ACu +v)) = P (Au| Au) + 28(Au| Av) + (Av| Av),
and whenever (Su + 0| Cu+v) =0, then (A(Cu +v)| A(Cu +v)) = 0.

Let S be the dense set in IC consisting of those points # for which the roots of the
polynomial (18) are distinct, ze. S ={u e C: (u|p)* # (u|u)(v|v)}. For every ue 8
there exists o € C such that

(AulZz:) = a(u|u), (Aul;l—;) = a(u|v), (Av|z—4;) = a(v|v).

The first and third conditions imply that « is independent of # € $ and v. Since § is
dense, these conditions are satisfied by all # and » in IC. The second equation reads

then ‘AA = ol. QED.

Going back to the isometry A, this Lemma implies the existence of « € C such that
A4 =4l By (17), ), |«| =1 and thus, by (4), A2 = (1 + |(Ax| Ax)|?)/2= (1 +
+ | x]%)]%)/2 = ”x”2 for allx € 8D, and therefore also for allx € ¢, proving thereby that
A'is a linear isometry for the norm || ||. Choosing a square root of «, the operator A’ =
= A/\« is a linear isometry for both the norms ||| and || ], for which
(19) AA =1

The operators A = (A" + A")/2, Aj = (A' — A")/2i are real, and, for any real
vector ve I, (A'v|ATv) = A o|? — |45 ol + 2/ (A{ v |45 v), |A'o|? =|A] 0| +
+ 1145 ol

Since, by (19), (A'v|A"v) = (A’ A'v|v) = |p|? = |A’v|]’, then A;» =0 for all
real v € 9(, and therefore A = 0, proving thereby that A’ is a linear real isometry of
the complex Hilbert space IC.

Viceversa, if A" is a linear real isometry of the Hilbert space J¢, then, by (19) and
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), Jl4'z[F = Azl + Azl - [(Az| A7) = [P+ VIEF - &P =
= [[z[P* for all z € 9¢.
In conclusion, the following Theorem has been established.

Tueorem 1. Every linear real isometry of the complex Hilbert space IC is an isometry
for the norm ||||. Viceversa, if A is a linear isometry for |||, there exists a constant
aeC, with |a| =1, such that oA is a linear real isometry of the complex Hilbert
space IC.

This Theorem was established by L. A. Harris in[2] using a different argument,
under the additional hypothesis that A be invertible in £(90).

Remark. Strictly similar considerations to those developed in n. 2 yield a general-
ization of Theorem I to the case in which A is a bounded linear map of a complex
Hilbert space € into a complex Hilbert space 3¢’, and both 9C and 3¢’ are endowed
with conjugations and with norms || || defined by (3) in terms of their respective
Hilbert space norms:

If A is a real || |-isometry, then A is a ||||-isometry. Viceversa, if A is a ||||-isom-
etry, there is o€ C, with |a| =1, such that «A is a real isometry.

3. In this Section, H. Cartan’s linearity theorem will be shown to hold for holo-
morphic isometries of Cartan domains of type four (1).

Let 4 € Iso D be such that #(0) = 0. The differential of 5 at 0, A = dh(0) € £(90), is a
linear isometry for the Kobayashi differential metric at 0. By Theorem I there is some
¢ € R such that ¢? 4 is a real linear isometry in the complex Hilbert space 9. Thus there
is a holomorphic function /: D — 9C — expressed in D by the normally convergent
power series expansion /(x) = P, (x) + P;(x) + ..., where P,: 3(— I( is a continuous

homogeneous polynomial of degree #»=2,3,... — such that h({x) = {Ax+1(¢x)
for all x € D and all {e C with |¢] < 1.
Hence

6zl = |21 |Ax|P + 2Re (£(Ax|(2))) + Il
where
(Ax|l(zx) = 2(Ax|Py(x) + P(Ax|Py(x)) + ...,
2zl = [¢]*{lIP, ()|? + 2Re (2P, () | P5 () + [Z[2 1P GolP + ... } .

Setting £ = ce” with ¢ = 0 and 6 € R, integration with respect to (1/27)d6 from 0 to

(1) An example constructed in [2] shows that Cartan’s theorem does not hold for all Cartan
domains.
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27 yields
2z
(20) L J Re (ce™ (Ax | ee™x))) d0 = 0,
0
2z
(1) = [ Werwlfds = 1P, + [P O + ...
0
for all x e D. :
Since D is the unit ball for the norm || ||, the Kobayashi distance of x € D from 0

is given by w(0, ||x||) where w is the Poincaré distance in the open unit disc of C (cf.
e.g. [1]). Hence

(22) Il @olll = flex|

for all x € D and all { € C with || < 1. Since e’ 4 is a linear real isometry for || ||, then
(3) yields, for all real xe ¢, [|cx||? = x|, JAZx][? = |Ax|P = [[¢x]’, and (22)

gives

2Re (¢(Ax]1(z0) + 10l + Vbl ~ ()] BE)|* = 0.
Since the last summand is non-negative, (20) and (21) imply that
(23) Py(x) =P3;(x) =...=0

for all real x € D and therefore all real x € 9C. Let 9C" be the closed linear real subspace
of IC consisting of all real vectors.

Lemma 4. Let g be a holomorphic map of a domain D C 9C into a complex Banach
space & If DN X" # B and if g =0 on DN I, then g =0 on D.

This Lemma, well known for scalar valued holomorphic functions, extends trivial-
ly to the case of g D — § as a consequence of the Hahn-Banach theorem.

Thus (23) implies that P, = P; = ... = 0, and in conclusion the following theorem
holds.

Traeorem IL. If b € Iso D s such that h(0) = 0, there exist a linear real isometry A of
the Hilbert space 9C and p € R, such that b is the restriction to D of the linear operator
e A.

This Theorem provides a complete description of IsoD, as will be shown
now.

4. Assuming in C? the canonical conjugation, the Hilbert space direct sum
B C? is endowed with a conjugation leaving 9¢ and C? invariant, and whose restric-
tions to IC and to C? coincide with the given ones.
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Let ] € L(3CD C?) be the operator defined by the matrix

I 0
J= (0 —Iz)’

where I and I, stand for the identity operators in JC and in C*. For M € £(3() and G €
€ LCDC?), "M e £(90) and ‘G € L£(3D C?) will denote the transposed operators in
9C and in ICD C? respectively.

Let A be the semigroup consisting of all linear, real, continuous operators
G: D C?— D C? such that ‘GJG =], and let I' be the maximum subgroup of A
consisting of all G € A which are invertible in £(9€ @D C?). Every G € A is represented
by a matrix

M B, B,
G= ('lcl) Ey, Ep,
('lcz) EZI Ezz

where M e £(9() is a real operator, B;, B,,C;, C, are real vectors in I(, and
E\, Ey, Es , E,, are real scalars.

As was shown in[4], the set Ay ={GeA: E;;E,, — E;E,; > 0} is a subsemi-
group of Ay. Therefore I'y:= Ay NI is a subgroup of I

For G e £(3¢@D C?), let 6G be the continuous quadratic polynomial € — C de-
fined on z€IC by ¢Gk) =2(z|C, — C,) + (Eyy — Eyy + i(Eys + Ex))(z|z) + Eyy +
+ Ey + i(Ey — Epp). _

If G e Ay, there is a neighborhood V' of D such that 2G(z) # 0 for all z e V[4].
Let G be the holomorphic map of D into I defined on x € D by Glx) = (2Mx + (1 +
+ (x]%)) B, —4(1 - (xlf))Pz)/aG(x). . .

As was shown in[4], G(D)cD and GelIsoD for all GeAy. The map G— G

defines a homomorphism ¢: Ay — Iso D.
Tueorem HI. The homomorphism ¢ maps A, surjectively onto Iso D.

Proor. Let fe Iso D and let x, = A(0). Since ¢(I'y) acts transitively on D [4], there
is some G e I'y for which G(0) = x,. The map » = G ™' ofe Iso D fixes 0. By Theo-
rem II there exist a linear, real isometry A of 9 and 6 € R, such that h(x) = e” Ax, for
all x e D.

Let H € Ay be defined by

A 0 0
H={0 cos 6 sinf |.
0 —sin 6 cos 6

Then ¢H(x) = 2¢ “x, and therefore H(x) = ¢ Ax = h(x), for all x € D.
Then f= GoH=Ho.G. QED

The kernel of the homomorphism Ay — Iso D consists of * the identity operator
on @ C? Theorem III implies that ¢(Iy) = Aut D as was shown in [4].
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