ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

Edoardo Vesentini

Holomorphic isometries of Cartan domains of type four

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **3** (1992), n.4, p. 287–294.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1992_9_3_4_287_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1992.

Geometria. — Holomorphic isometries of Cartan domains of type four. Nota (*) del Socio Edoardo Vesentini.

ABSTRACT. — The holomorphic isometries for the Kobayashi metric of Cartan domains of type four are characterized.

KEY WORDS: Cartan domain; Kobayashi metric; Holomorphic isometry; Complex extreme point.

RIASSUNTO. — Isometrie olomorfe di domini di Cartan del quarto tipo. Si caratterizzano le isometrie olomorfe per la metrica di Kobayashi dei domini di Cartan del quarto tipo.

Let $\mathcal{L}(\mathcal{K})$ be the complex Banach space of all bounded linear operators on a complex Hilbert space \mathcal{K} . A *Cartan factor of type four* is a closed subspace \mathcal{H} of $\mathcal{L}(\mathcal{K})$ which is invariant under the adjunction * in $\mathcal{L}(\mathcal{K})$ and such that $X \in \mathcal{H}$ implies that X^2 is a scalar multiple of the identity I on \mathcal{K} :

 $(1) X^2 = cI$

for some $c \in C$. The open unit ball D for the norm $\|\| \|\|$ of \mathcal{H} is called a *Cartan domain* of type four. It is a bounded domain on which the group Aut D of all holomorphic automorphisms of D acts transitively. These facts imply that the Kobayashi and Carathéodory differential metrics on D coincide. Let Iso D be the semigroup of all holomorphic maps of D into D which are isometries for these differential metrics. The invariance properties of these metrics imply that Aut D is a subgroup of Iso D: a proper subgroup if dim₆ $\mathcal{H} = \infty$.

The group Aut D was determined by U. Hirzebruch when \mathcal{H} has finite dimension and by L. A. Harris [2], when dim_c $\mathcal{H} = \infty$ (cf. [4] for further details and for bibliographical references).

In this *Note* the semigroup Iso *D* will be determined. Since Aut *D* is known [2, 4] and acts transitively on *D*, the main thrust in the paper will be concentrated in characterizing the isotropy semigroup (Iso *D*)₀ of 0 in Iso *D* (Theorem I). It will be shown, incidentally, that (Iso *D*)₀ is linear, or, better to say, every element of (Iso *D*)₀ is the restriction to *D* of a continuous linear operator on \mathcal{H} . Hence H. Cartan's linearity theorem (cf. *e.g.* [1]) extends from (Aut *D*)₀ to (Iso *D*)₀ in the case of the Cartan domain *D*: a fact which does not hold for all Cartan domains in infinite dimensions, as examples show [3].

In the proof of Theorem I, the structure of complex discs affinely imbedded in the boundary of the Cartan domain will play a crucial rôle.

1. As a consequence of (1), for X, $Y \in \mathcal{H}$, XY + YX is a scalar multiple of I. Setting, for X, Y in \mathcal{H} , $XY^* + Y^*X = 2(X|Y)I$ the function X, $Y \to (X|Y) \in C$ is a positive function X.

^(*) Presentata nella seduta del 9 maggio 1992.

tive-definite inner product on \mathcal{H} , defining a norm $\| \|$ which is equivalent to the norm $\| \| \|$ of \mathcal{H} as a subspace of $\mathcal{L}(\mathcal{H})$.

Hence the identity map of \mathcal{H} onto itself is a continuous isomorphism of \mathcal{H} , endowed with the norm $\|\| \|$, onto \mathcal{H} equipped with the Hilbert space norm $\|\| \|$.

Changing notations, denoting by x, y, z, ... the elements of \mathcal{H} and by $x \to \overline{x}$ the conjugation defined by the adjunction in $\mathcal{L}(\mathcal{H})$, the Cartan domain D is expressed [2, 4] by

(2)
$$D = \left\{ x \in \mathcal{H}: \|x\|^2 < (1 + |(x|\bar{x})|^2)/2 < 1 \right\}.$$

Since D is the open unit ball for the norm $\|\| \|\|$, the Kobayashi differential metric at the center 0 of D coincides with $\|\| \|\|$. This latter norm is related to $\|\| \|$ by the formula [2, 4]:

(3)
$$||v||^2 = ||v||^2 + \sqrt{||v||^4 - |(v|\overline{v})|^2} \quad (v \in \mathcal{H})$$

The boundary ∂D of D consists of the points of the closure D of D at which at least one of the inequalities in (2) becomes an equality. The Schwarz inequality implies that $x \in \partial D$ if, and only if, $||x|| \leq 1$ and

(4)
$$||x||^2 = (1 + |(x|\bar{x})|^2)/2.$$

PROPOSITION 1. For any $x \in \mathcal{H}$, for which (4) holds

(5)
$$y = \overline{x} - (\overline{x} | x) x$$

is - up to constant factor - the unique vector such that

(6)
$$||x + \zeta y||^2 = (1 + |(x + \zeta y | \overline{x + \zeta y})|^2)/2$$

for all ζ in a neighborhood of 0 in C.

PROOF. The equality (6) is satisfied by all ζ in a neighborhood of 0 if, and only if, (4) holds together with the following conditions:

(7)
$$(y | \overline{y}) = 0,$$

(8)
$$\sqrt{2} \left| \left(x \mid \overline{y} \right) \right| = \left\| y \right\|,$$

(9)
$$(x|y) = (x|\overline{x})(\overline{x}|y)$$

Let e_1 and e_2 be two orthonormal real vectors such that x and \bar{x} are contained in the two dimensional complex subspace of \mathcal{H} spanned by e_1 and e_2 . Let $\{e_j\}$ be an orthonormal base of \mathcal{H} , whose elements are all real vectors, containing $e_1 = e_{j_1}$ and $e_2 = e_{j_2}$. There exist $\alpha_1, \alpha_2, \beta_j$ in C such that $x = \alpha_1 e_1 + \alpha_2 e_2, y = \sum \beta_j e_j$. Hence

(10)
$$||x||^2 = |\alpha_1|^2 + |\alpha_2|^2$$

(11)
$$(x | \overline{x}) = \alpha_1^2 + \alpha_2^2$$

and (4), (7), (8), (9) become

(4')
$$|\alpha_1|^2 + |\alpha_2|^2 = (1 + |\alpha_1^2 + \alpha_2^2|^2)/2,$$

$$(7') \qquad \sum \beta_i^2 = 0 \,,$$

$$(8') \qquad 2|\alpha_1\beta_{j_1}+\alpha_2\beta_{j_2}|^2 = \sum |\beta_j|^2, \qquad (\alpha_1-\overline{\alpha_1}(\alpha_1^2+\alpha_2^2)) \ \overline{\beta_{j_1}}+(\alpha_2-\overline{\alpha_2}(\alpha_1^2+\alpha_2^2)) \ \overline{\beta_{j_2}}=0.$$

HOLOMORPHIC ISOMETRIES OF CARTAN DOMAINS OF TYPE FOUR

This latter equation is equivalent to

(12)
$$\overline{\beta_{j_1}} = \lambda(\alpha_2 - \overline{\alpha_2}(\alpha_1^2 + \alpha_2^2)), \quad \overline{\beta_{j_2}} = -\lambda(\alpha_1 - \overline{\alpha_1}(\alpha_1^2 + \alpha_2^2)),$$

for some $\lambda \in C$, so that

(13)
$$\alpha_1\beta_{j_1}+\alpha_2\beta_{j_2}=\overline{\lambda}(\alpha_1\overline{\alpha_2}-\overline{\alpha_1}\alpha_2),$$

and, by (10), (11), (4),

(14)
$$|\beta_{j_1}|^2 + |\beta_{j_2}|^2 = 2|\lambda|^2 (||x||^2 - 1)^2.$$

Setting $\alpha_1 = |\alpha_1| e^{i\theta_1}$, $\alpha_2 = |\alpha_2| e^{i\theta_2}$, with $\theta_1, \theta_2 \in \mathbf{R}$, (4') reads now $4|\alpha_1|^2 |\alpha_2|^2 \sin^2(\theta_1 - \theta_2) = (||x||^2 - 1)^2$. Thus, by (13) and (14),

$$2|\alpha_1\beta_{j_1} + \alpha_2\beta_{j_2}|^2 = 8|\lambda|^2 |\alpha_1|^2 |\alpha_2|^2 \sin^2(\theta_1 - \theta_2) = 2|\lambda|^2 (||x||^2 - 1)^2 = |\beta_{j_1}|^2 + |\beta_{j_2}|^2,$$

and (8') implies that y is uniquely defined, up to a constant factor $\lambda \in C$, by

(15)
$$y = \beta_{j_1} e_1 + \beta_{j_2} e_2$$
,

where β_{i_1} and β_{i_2} are given by (12).

Finally, by (9), (10), (11) and (4), $(y|\overline{y}) = \overline{\lambda}^2 (1 - 2||x||^2 + |(x|\overline{x})|^2)(\overline{x}|x) = 0$, and conditions (7), (8), (9) are all satisfied.

If $\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2 \neq 0$, the linear system

$$\begin{cases} a\alpha_1 + b\overline{\alpha_1} = \overline{\alpha_2} - (\overline{x} \mid x) \alpha_2 \\ a\alpha_2 + b\overline{\alpha_2} = -\overline{\alpha_1} + (\overline{x} \mid x) \alpha_1 \end{cases}$$

has the unique solution $a = ((1 - |\langle x | \overline{x} \rangle|^2)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ b = (|\langle x | \overline{x} \rangle|^2 - (1 - 1)/2(\alpha_1 \overline{\alpha_2} - \overline{\alpha_1} \alpha_2))(\overline{x}, x), \ c = (|\langle$

Thus, by (4), $|(x|\bar{x})| = ||x|| = 1$, and since $\alpha_1 - \overline{\alpha_1}(x|\bar{x}) = 0$, $\alpha_2 - \overline{\alpha_2}(x|\bar{x}) = 0$ then the vectors expressed by (5) and (15) both vanish.

That completes the proof of Proposition 1.

Note that, by (4),

(16)
$$\|\bar{x} - (\bar{x}\|x)x\|^2 = ((1 - \|(x\|\bar{x})\|^2)^2)/2$$

2. Going back to the Cartan domain D defined by (2), Proposition 1 yields

COROLLARY 2. For any $x \in \partial D$ and any $\varepsilon > 0$ there exists a unique $y \in \mathcal{H}$ (defined up to a suitable constant factor) such that $x + \zeta y \in \partial D$ for all $\zeta \in C$ with $|\zeta| < \varepsilon$. The vector y is expressed by (5).

By (16), y = 0 if, and only if, $|\langle x | \bar{x} \rangle| = 1$, *i.e.*, by (4), ||x|| = 1. This provides a new proof of the fact, established by L. A. Harris in [2] using a different argument, whereby the complex extreme points of the closure \overline{D} of D are those points of ∂D such that ||x|| = 1 or, equivalently, $|\langle x | \bar{x} \rangle| = 1$.

Let $A \in \mathcal{L}(\mathcal{H})$ be a linear isometry for the norm $\|\|\|\|$. Since D is the open unit ball for $\|\|\|\|$, then $AD \subset D$ and $A(\partial D) \subset \partial D$. For any $z \in \mathcal{H} \setminus \{0\}$, there is a unique t > 0 such that $x = tz \in \partial D$. Let $\varepsilon > 0$, and let y be the vector defined (up to a suitable con-

stant factor) by Corollary 2. Since $A(x + \zeta y) = Ax + \zeta Ay \in \partial D$ whenever $|\zeta| < \varepsilon$, then by Corollary 2 and by (5), Ay is proportional to the vector $\overline{Ax} - (\overline{Ax} | Ax)Ax$.

Since A is an isometry for ||| |||, then |||Ay||| = ||y||. But, being $(y | \bar{y}) = 0$ and $(Ay | \bar{Ay}) = 0$, (3) yields $|||y|||^2 = 2||y||^2$, $|||Ay|||^2 = 2||Ay||^2$, and therefore ||Ay|| = ||y||, *i.e.*, by (16) $|(Ax | \bar{Ax})| = |(x | \bar{x})|$ or, equivalently,

(17)
$$|(Az|\overline{Az})| = |(z|\overline{z})|$$
 for all $z \in \mathcal{H}$.

As a consequence, if $(z | \overline{z}) = 0$, then $(Az | \overline{Az}) = 0$.

LEMMA 3. Let A be a bounded linear operator in a complex Hilbert space \mathcal{H} endowed with a conjugation $z \to \overline{z}$. If $(z | \overline{z}) = 0$ implies that $(Az | \overline{Az}) = 0$, there exists $\alpha \in C$ such that ${}^{t}AA = \alpha I$.

Here the transposed operator ${}^{t}A$ is defined by $\overline{{}^{t}Av} = A * \overline{v}$.

PROOF. Let $v \in \mathcal{H}$ be such that $(v | \overline{v}) \neq 0$. For $u \in \mathcal{H}$ and $\zeta \in C$

(18) $(\zeta u + v | \overline{\zeta u + v}) = \zeta^2 (u | \overline{u}) + 2\zeta (u | \overline{v}) + (v | \overline{v}),$

 $(A(\zeta u + v) | \overline{A(\zeta u + v)}) = \zeta^2 (Au | \overline{Au}) + 2\zeta (Au | \overline{Av}) + (Av | \overline{Av}),$

and whenever $(\zeta u + v | \overline{\zeta u + v}) = 0$, then $(A(\zeta u + v) | \overline{A(\zeta u + v)}) = 0$.

Let S be the dense set in \mathcal{H} consisting of those points u for which the roots of the polynomial (18) are distinct, *i.e.* $S = \{u \in \mathcal{H}: (u | \overline{v})^2 \neq (u | \overline{u})(v | \overline{v})\}$. For every $u \in S$ there exists $\alpha \in C$ such that

$$(Au \mid \overline{Au} \,) = \alpha(u \mid \overline{u}), \quad (Au \mid \overline{Av} \,) = \alpha(u \mid \overline{v}), \quad (Av \mid \overline{Av} \,) = \alpha(v \mid \overline{v}).$$

The first and third conditions imply that α is independent of $u \in S$ and v. Since S is dense, these conditions are satisfied by all u and v in \mathcal{H} . The second equation reads then ${}^{t}AA = \alpha I$. QED.

Going back to the isometry A, this Lemma implies the existence of $\alpha \in C$ such that ${}^{t}AA = \alpha I$. By (17), $|\alpha| = 1$ and thus, by (4), $||Ax||^{2} = (1 + |(Ax|\overline{Ax})|^{2})/2 = (1 + |(x|\overline{x})|^{2})/2 = (1 + |(x|\overline{x})|^{2})/2 = ||x||^{2}$ for all $x \in \partial D$, and therefore also for all $x \in \mathcal{H}$, proving thereby that A is a linear isometry for the norm || ||. Choosing a square root of α , the operator $A' = A/\sqrt{\alpha}$ is a linear isometry for both the norms || || and || ||, for which

$$^{t}A'A' = I.$$

The operators $A'_1 = (A' + \overline{A'})/2$, $A'_2 = (A' - \overline{A'})/2i$ are real, and, for any real vector $v \in \mathcal{H}$, $(A'v | \overline{A'v}) = ||A'_1v||^2 - ||A'_2v||^2 + 2i(A'_1v | A'_2v)$, $||A'v||^2 = ||A'_1v||^2 + ||A'_2v||^2$.

Since, by (19), $(A'v | \overline{A'v}) = ({}^tA'A'v | v) = ||v||^2 = ||A'v||^2$, then $A'_2 v = 0$ for all real $v \in \mathcal{H}$, and therefore $A'_2 = 0$, proving thereby that A' is a linear real isometry of the complex Hilbert space \mathcal{H} .

Viceversa, if A' is a linear real isometry of the Hilbert space \mathcal{H} , then, by (19) and

(3),
$$|||A'z|||^2 = ||A'z||^2 + \sqrt{||A'z||^4} - |(A'z|\overline{A'z})|^2 = ||z||^2 + \sqrt{||z||^4} - |(z|\overline{z})|^2 = ||z||^2$$
 for all $z \in \mathcal{H}$.

In conclusion, the following Theorem has been established.

THEOREM I. Every linear real isometry of the complex Hilbert space \mathcal{H} is an isometry for the norm $\|\| \|\|$. Viceversa, if A is a linear isometry for $\|\| \|\|$, there exists a constant $\alpha \in C$, with $|\alpha| = 1$, such that αA is a linear real isometry of the complex Hilbert space \mathcal{H} .

This Theorem was established by L. A. Harris in [2] using a different argument, under the additional hypothesis that A be invertible in $\mathcal{L}(\mathcal{H})$.

REMARK. Strictly similar considerations to those developed in n. 2 yield a generalization of Theorem I to the case in which A is a bounded linear map of a complex Hilbert space \mathcal{H} into a complex Hilbert space \mathcal{H}' , and both \mathcal{H} and \mathcal{H}' are endowed with conjugations and with norms $\|\| \|\|$ defined by (3) in terms of their respective Hilbert space norms:

If A is a real $\| \|$ -isometry, then A is a $\| \| \|$ -isometry. Viceversa, if A is a $\| \| \|$ -isometry, there is $\alpha \in C$, with $|\alpha| = 1$, such that αA is a real isometry.

3. In this Section, H. Cartan's linearity theorem will be shown to hold for holomorphic isometries of Cartan domains of type four (1).

Let $h \in \text{Iso } D$ be such that h(0) = 0. The differential of h at $0, A = dh(0) \in \mathcal{L}(\mathcal{H})$, is a linear isometry for the Kobayashi differential metric at 0. By Theorem I there is some $\varphi \in \mathbf{R}$ such that $e^{i\varphi}A$ is a real linear isometry in the complex Hilbert space \mathcal{H} . Thus there is a holomorphic function $l: D \to \mathcal{H}$ – expressed in D by the normally convergent power series expansion $l(x) = P_2(x) + P_3(x) + \dots$, where $P_n: \mathcal{H} \to \mathcal{H}$ is a continuous homogeneous polynomial of degree $n = 2, 3, \dots$ – such that $h(\zeta x) = \zeta A x + l(\zeta x)$ for all $x \in D$ and all $\zeta \in C$ with $|\zeta| \leq 1$.

Hence

$$||b(\zeta x)||^{2} = |\zeta|^{2} ||Ax||^{2} + 2 \operatorname{Re} \left(\zeta (Ax | l(\zeta x)) \right) + ||l(\zeta x)||^{2},$$

where

$$(Ax | l(\zeta x)) = \overline{\zeta}^2 (Ax | P_2(x)) + \overline{\zeta}^3 (Ax | P_3(x)) + \dots,$$
$$\|l(\zeta x)\|^2 = \|\zeta\|^4 \left\{ \|P_2(x)\|^2 + 2\operatorname{Re}\left(\overline{\zeta}(P_2(x) | P_3(x))\right) + \|\zeta\|^2 \|P_3(x)\|^2 + \dots \right\}.$$

Setting $\zeta = \rho e^{i\theta}$ with $\rho \ge 0$ and $\theta \in \mathbf{R}$, integration with respect to $(1/2\pi) d\theta$ from 0 to

⁽¹⁾ An example constructed in [2] shows that Cartan's theorem does not hold for all Cartan domains.

. . .

 2π yields

(20)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re} \left(\rho e^{i\theta} \left(Ax \left| l(\rho e^{i\theta} x) \right) \right) d\theta = 0, \\ \frac{1}{2\pi} \int_{0}^{2\pi} ||l(\rho e^{i\theta} x)||^{2} d\theta = ||P_{2}(x)||^{2} + ||P_{3}(x)||^{2} + ||P_{3}(x)||^{2$$

for all $x \in D$.

Since D is the unit ball for the norm ||| |||, the Kobayashi distance of $x \in D$ from 0 is given by $\omega(0, |||x|||)$ where ω is the Poincaré distance in the open unit disc of C (cf. *e.g.* [1]). Hence

$$\||f(\zeta x)\|| = \||\zeta x\||$$

for all $x \in D$ and all $\zeta \in C$ with $|\zeta| \leq 1$. Since $e^{i\gamma}A$ is a linear real isometry for || ||, then (3) yields, for all real $x \in \mathcal{H}$, $|||\zeta x|||^2 = ||\zeta x||^2$, $|||A\zeta x|||^2 = ||A\zeta x||^2 = ||\zeta x||^2$, and (22) gives

$$2 \operatorname{Re} \left(\zeta(A_X | l(\zeta_X)) \right) + \| l(\zeta_X) \|^2 + \sqrt{\| b(\zeta_X) \|^4} - \| (b(\zeta_X) | \overline{b(\zeta_X)}) \|^2 = 0.$$

Since the last summand is non-negative, (20) and (21) imply that

(23) $P_2(x) = P_3(x) = \dots = 0$

for all real $x \in D$ and therefore all real $x \in \mathcal{H}$. Let \mathcal{H}'' be the closed linear real subspace of \mathcal{H} consisting of all real vectors.

LEMMA 4. Let g be a holomorphic map of a domain $D \in \mathcal{H}$ into a complex Banach space 8. If $D \cap \mathcal{H}'' \neq \emptyset$ and if g = 0 on $D \cap \mathcal{H}''$, then g = 0 on D.

This Lemma, well known for scalar valued holomorphic functions, extends trivially to the case of $g: D \rightarrow \delta$ as a consequence of the Hahn-Banach theorem.

Thus (23) implies that $P_2 = P_3 = ... = 0$, and in conclusion the following theorem holds.

THEOREM II. If $h \in \text{Iso } D$ is such that h(0) = 0, there exist a linear real isometry A of the Hilbert space \mathcal{H} and $\varphi \in \mathbf{R}$, such that h is the restriction to D of the linear operator $e^{i\varphi}A$.

This Theorem provides a complete description of Iso D, as will be shown now.

4. Assuming in C^2 the canonical conjugation, the Hilbert space direct sum $\mathcal{H} \oplus C^2$ is endowed with a conjugation leaving \mathcal{H} and C^2 invariant, and whose restrictions to \mathcal{H} and to C^2 coincide with the given ones.

292

Let $J \in \mathcal{L}(\mathcal{H} \oplus C^2)$ be the operator defined by the matrix

$$J = \begin{pmatrix} I & 0 \\ 0 & -I_2 \end{pmatrix},$$

where I and I_2 stand for the identity operators in \mathcal{H} and in C^2 . For $M \in \mathcal{L}(\mathcal{H})$ and $G \in \mathcal{L}(\mathcal{H} \oplus C^2)$, $M \in \mathcal{L}(\mathcal{H})$ and $G \in \mathcal{L}(\mathcal{H} \oplus C^2)$ will denote the transposed operators in \mathcal{H} and in $\mathcal{H} \oplus C^2$ respectively.

Let Λ be the semigroup consisting of all linear, real, continuous operators $G: \mathcal{H} \oplus \mathbb{C}^2 \to \mathcal{H} \oplus \mathbb{C}^2$ such that ${}^{\prime}GJG = J$, and let Γ be the maximum subgroup of Λ consisting of all $G \in \Lambda$ which are invertible in $\mathcal{L}(\mathcal{H} \oplus \mathbb{C}^2)$. Every $G \in \Lambda$ is represented by a matrix

$$G = \begin{pmatrix} M & B_1 & B_2 \\ (\cdot | C_1) & E_{11} & E_{12} \\ (\cdot | C_2) & E_{21} & E_{22} \end{pmatrix}$$

where $M \in \mathcal{L}(\mathcal{H})$ is a real operator, B_1, B_2, C_1, C_2 are real vectors in \mathcal{H} , and $E_{11}, E_{12}, E_{21}, E_{22}$ are real scalars.

As was shown in [4], the set $\Lambda_0 = \{G \in \Lambda: E_{11}E_{22} - E_{12}E_{21} > 0\}$ is a subsemigroup of Λ_0 . Therefore $\Gamma_0 := \Lambda_0 \cap \Gamma$ is a subgroup of Γ .

For $G \in \mathcal{L}(\mathcal{H} \oplus \mathbb{C}^2)$, let ∂G be the continuous quadratic polynomial $\mathcal{H} \to \mathbb{C}$ defined on $z \in \mathcal{H}$ by $\partial G(z) = 2(z | C_1 - C_2) + (E_{11} - E_{22} + i(E_{12} + E_{21}))(z | \overline{z}) + E_{11} + E_{22} + i(E_{21} - E_{12}).$

If $G \in \Lambda_0$, there is a neighborhood V of \overline{D} such that $\partial G(z) \neq 0$ for all $z \in V[4]$. Let \widehat{G} be the holomorphic map of D into \mathcal{H} defined on $x \in D$ by $\widehat{G}(x) = (2Mx + (1 + (x|\overline{x}))B_1 - i(1 - (x|\overline{x}))B_2)/\partial G(x)$.

As was shown in [4], $\widehat{G}(D) \subset D$ and $\widehat{G} \in \text{Iso } D$ for all $G \in \Lambda_0$. The map $G \to \widehat{G}$ defines a homomorphism $\phi: \Lambda_0 \to \text{Iso } D$.

THEOREM III. The homomorphism ϕ maps Λ_0 surjectively onto Iso D.

PROOF. Let $f \in \text{Iso } D$ and let $x_0 = f(0)$. Since $\phi(\Gamma_0)$ acts transitively on D [4], there is some $G \in \Gamma_0$ for which $\hat{G}(0) = x_0$. The map $h = \hat{G}^{-1} \circ f \in \text{Iso } D$ fixes 0. By Theorem II there exist a linear, real isometry A of \mathcal{H} and $\theta \in \mathbf{R}$, such that $h(x) = e^{i\theta}Ax$, for all $x \in D$.

Let $H \in \Lambda_0$ be defined by

$$H = \begin{pmatrix} A & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix}.$$

Then $\partial H(x) = 2e^{-i\theta}x$, and therefore $\hat{H}(x) = e^{i\theta}Ax = b(x)$, for all $x \in D$.

Then $f = \widehat{G} \circ \widehat{H} = \widehat{H \circ G}$. QED

The kernel of the homomorphism $\Lambda_0 \to \text{Iso } D$ consists of \pm the identity operator on $\mathcal{H} \oplus C^2$. Theorem III implies that $\phi(\Gamma_0) = \text{Aut } D$ as was shown in [4].

References

- [1] T. FRANZONI E. VESENTINI, *Holomorphic maps and invariant distances*. North Holland, Amsterdam 1980.
- [2] L. A. HARRIS, Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture notes in mathematics, 634, Springer Verlag, Berlin 1974, 13-40.
- [3] E. VESENTINI, *Holomorphic families of holomorphic isometries*. Lecture notes in mathematics, 1277, Springer-Verlag, Berlin 1987, 291-302.
- [4] E. VESENTINI, Semigroups in Cartan domains of type four. Note di Matematica, 9 Suppl., 1989, 123-144.

Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA