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Equazioni a derivate parziali. — Variational inequalities and rearrangements. Nota
di ANGELO Arvino, SivaNo MaTarasso e Gumo TROMBETTI, presentata (*) dal So-
cio E. Magenes.

Asstract. — We give comparison results for solutions of variational inequalities, related to general
elliptic second order operators, involving solutions of symmetrized problems, using Schwarz spherical
symmetrization.

Key worps: Schwarz symmetrization; Comparison results; Variational elliptic inequalities.

Russsunto. — Disequazioni variazionali e riordinamenti. Si danno risultati di confronto per soluzioni
di disequazioni variazionali, relative ad operatori ellittici del secondo ordine, riconducendosi a un pro-
blema a simmetria radiale con l'ausilio della simmetrizzazione di Schwarz.

1. INTRODUCTION

Let A be a second order differential operator defined by
Au = —(a;()u,), + (b; () u), + d; () u, + ¢y () u,

where we use the standard convention on repeated subscripts. The coefficients belong
to L*(Q2) (2= open bounded subset of RY) and satisfy the following condi-
tions:

(1) a;(0) &5 = [£]7 VeeRY,
@ 2 1b0) +d,(x)[*<R* R=0,
(3) (b)), +cox) Zclx) on @ (Q), clx)eL™ ().

Let # € Hy (Q) a solution of the variational inequality

(4) d(u,v—u)ZJf(v—u) YveH} (Q), u,v=0,
g

where fe L?(Q) and 4(.,.) is the bilinear form

a9 = [ay8ud, = [bit + [diog + [cost.
Q Q Q Q

Besides we consider the following symmetrized operator (4 = laplacian)

AU = —4U + Rlx| "% U, + ¢, ) U

(*) Nella seduta del 9 maggio 1992.
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and the related variational inequality (VV e H{ (Q*), U,V = 0)
5) «*(U,V-U)=

=JﬁUV—U%+jﬂﬂMV—m+%UW—Uﬁ>f#W%UL

||
o o
where Q7 is the ball of RN centered in O, such that |Q* | = |Q| = meas Q, f*(x) is the
spherical decreasing rearrangement of £, c4(x) is the spherical increasing rearrange-
ment of c.

We assume that (5) has an unique spherical decreasing solution U; then we can
«compare» the solution # of (4) with the solution U of the simpler problem (5). To be
more specific, if #*, U* denote the decreasing rearrangements of #, U respectively, we
get in particular
(6) Jexp (=RCx"MN e Nyu*(s)da < Iexp (=RCNNYU*(s)ds, sel0, |Q|1,

0 0
where Cy is the measure of the unit N-ball. This comparison result provides optimal
bounds for norms of the solution # of variational inequality (4) in terms of similar
norms of the solution U of problem (5); in particular (6) implies
sup #(x) =u*(0) < U*(0) = sup Ulx).
xel xeQ*
We point out that, if R =0, (6) becomes

(7) Iu < jU Vse [0, |Q]1,
0 0

that implies (see [2] for example

)

[Fa) < [FO)
Q ot

for all convex, nonnegative, Lipschitz continuous function F such that F(0) = 0.
Moreover the stronger inequality

(8) u*(s) < U*(s),

can be established when 0 <5 < |{x € Q: c(x) < 0}|. Therefore if ¢ < 0, from (8) we
can derive an optimal lower bound for the coincidence set of «

9) lu=0]|=|U=0|;

ifc =0, |U = 0] can be evaluated: |U = 0| = |Q]| — 5, where 5 is the unique solution
of the equation in s

-

j exp (=RCFN N f* (0)do = 0.,

0
As usual the procedure for obtaining comparison results as (6), (7) or (8) can be split
into two steps. At first, integrating on the level sets of the solution # to (4) an ordinary
integro-differential inequality satisfied by the rearrangement #* of # rises. The princi-
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pal tools we use at this stage are the isoperimetric inequality [12], a coarea formu-
la[16], Hardy inequality on rearrangements and so on. Then we handle the integro-
differential inequality in such a way to derive, via a maximum principle, the desired
estimations.

This method was firstly developed by Talenti [25] who studied an elliptic equation
without lower order terms; afterwords the method has been fitted to more general
cases: see Alvino-Trombetti[5-7], Bandle [8], Chiti[11], P. L. Lions[22],
Talenti[26], Alvino-Lions-Trombetti[1, 3, 4], Ferone-Posteraro[15], Giarrusso-
Trombetti [17], Trombetti-Vasquez [27].

Finally we mention the papers of Bandle-Mossino [9], Maderna-Salsa[23] who
earlier established comparison results for solutions to variational inequalities. For
variational parabolic inequalities see also Diaz-Mossino [14].

2. PRELIMINARY RESULTS

If ¢ L'(Q) we write |¢ >¢]:= |{x e Q: ¢(x) >¢}|, £ € R; then we set u. () =
= |¢ > ¢| ¢ € R (distribution function of ¢), ¢* (s) = sup {# | . (¢) = s} s € [0, |Q2]] (de-
creasing rearrangement of ¢), ¢.. (s) = ¢* (
ment of ¢), ¢* (x) = ¢* (Cy |x|"), x € Q% (spherical symmetric decreasing rearrange-
ment of @), ¢4 (x) = ¢, (Cy |x|V), x € Q% (spherical symmetric increasing rearrange-
ment of ¢). If ¢ = ¢* — ¢~, where ¢+ , ¢~ are the positive and negative part of ¢, we
have ¢* = ¢+" - ¢ and ¢, = 5 — ¢~ *. The distribution function . (¢) maps the in-
terval Jess.inf ¢, ess.sup ¢ [ into ]O |Q|[ If u; is strictly decreasing and continuous,
¢* is the inverse function of u,; generally ¢* is the smallest decreasing function from
[0, [2]] such that ¢* (s (¢)) = ¢ for every # € R. A basic property of ¢*, as well as of
any other type of rearrangement, is that ¢* and ¢ have the same distribution function.
Consequently

12
[Fe) = - JFt)dw(t)—Jw#)— jF;s
Q O*
whenever F is non negative and convex; in particular we have
leller = fle #llr = ll* e W € [1, + 1.
For the main properties of rearrangements we refer to[2, 8, 13, 18, 19, 24, 26]. We

just recall two results we will employ later on.

Lemma 2.1 (see[18]). If £ g are measurable functions on ), then

12] 12]

(10) ff*g-;.-gf}fgSJf*g"‘
0 0 0

(10) is known as Hardy inequality.
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Lemma 2.2 If

fg& < J.5¢, on [a,b]

and b =2 0 is a decreasing function on la, b] then

f¢/} < fgb/a, on [a,b].

For simplicity we use the following notations

p(s):= (NCYN)72s¥N =2 e(s):=exp (RCRNsUN),  B(s) = e(s) p(s),

F, (s) —j VAR

0

The following Theorem provides the basic inequality in the subsequent develop-
ments.

Tueorem 2.1. Let u be solution of (4) ; then (a.e. on [0, |u > 0|1)
(11) —du* [ds < B(s)F, (s) .

For the proof we could refer to[3]; however for the sake of completeness we give
a sketch of it. Consider the functions

b t+h<ulx),
¢ (x):=Rulx) =t t<ulx)St+h,
0 ulx) <t,

with 5 = 0, ¢ €10, sup «[. We have # = ¢, = 0 so we can replace the test function v in
(4) by the functions # = ¢;; we obtain

1
5w d) = j fé -
d
By ellipticity condition (1), letting 4 go to zero, we get
d d
(12) -7 J |Vu|? < - Jb]ux/u+ ij”x,-_
u>t u>t u>t

_ Jcou— I(b,-+cév)u,9+ Jf.

u>t u>t u>t

Since (see [3])
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setting ¢(x) = max {«(x) — ¢, 0}, by and (3) and Hardy inequality (10), we get

13) - g; J biuu + J byu,, — I coth <

u>t u>t u>t

if(bj¢xj—co¢+c¢)— qus - quS - Jc*u""
Q u>t u>t 0

where u(t) = u, (#) is the distribution function of #. Moreover

1/2
(14)  NCYu! < (—p )| - £ J val?|
R ) _ , d
(15) | J(bjw)uxj < NCT J/Ja(x) LRIN(— gy (s))(—g J IVulz),

()
(16) J S jf W
u>t 0
(14) is a consequence of the isoperimetric inequality [12], Fleming-Risheal coarea
formula[16], Schwarz inequality (see[25] for a complete proof); (16) can be easily
deduced from (10); for (15) we refer to[3].
From (12), (13), (15), (16), we obtain

-4 J|Vu|2s
u>t R tw y wlt)
EERTIN B | : P
<o j ls) 1IN p(s))( dsuj, A )+J(f ca®).
By Gronwall lemma
—% J |Vu|? < el ue)) jrwe_l(y-){f*(/%)—C»,-;(M)u*(fl)}(“l‘l');

hence, from (14) we get

(17) [—u' O < (@) F, (u@)).
By standard arguments (see [26] for instance), (17) can be written in terms of the
«inverse» function #* of u; then we get (11).
Remark 2.1. From (11) it follows
(18) F,20 on [0, |«>0]].

When does (11) become an equality? A close analysis of the proof shows it hap-
pens when A = A* and the problem (5) has a spherical decreasing solution U = U*.
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This circumstance is linked to spectral properties of the operator A#: we suppose (see
Proposition 2.1) the operator A* to satisfy conditions that imply the following

property
(19) A*V=0, V=20 ondQ*=V=0 onQ%.

ProrositioN 2.1. Let us assume ¢ = 0 or, if ¢~ %0, let any one of the following
equivalent three conditions be satisfied

7) there exists a non negative function HF#OQ such that the Dirichlet prob-
lem

A*Z=H, ZeH!Q?%),
has a non negative solution Z;

it) the first eigenvalue )\, of the problem
(20) Ao =20, o e Hi (QF),
is positive;

1i) there exists a > 0 such that
(21) je“Rlxl(lVgo|2+c#;oz)ZocJ'e_Rl"l|qu|2, Vo e Hy (Q%).

o o
Then the problem (5) bas a unique solution U = U¥. Moreover property (19) holds.

Remark 2.2. We observe that
A*Z=He —(e R Z ) +cpe R¥Z =R H;
hence the first eigenvalue Ay of the problem (20) is real and
Je‘RM (|V|? + cp¢®)dx

0*

(22) A = min
¢ e Hf J‘e—R|x|c~#¢2dx

Q#

Proposition 2.1 is proved in Appendix; now we point out that the above argu-
ments yield the following result:

Tueorem 2.2. If one of the conditions in Proposition 2.1 is verified, then
(23) —dU* Jds = B(s)Fy(s), ae. on [0, |U>0]|]
where U(= U?*) is the unique solution of (5).

Remark 2.3. From regularity results (see [10] for instance), the solution U of (5)
belongs to H*(Q*) and then U* € €' (10, |Q|1). Consequently if |U > 0| < |Q| then
U*' (|U>0]) =0 and from (23) it follows
(24) Fy(JU>0|)=0.

Remark 2.4. We have
(25) F*6) <0 on [|[U>0],|Q]].
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Namely if |U > 0| < inf{s: ¢, (s) > 0} =5, then from (24)
|U > 0] |U > 0]

J el f¥ = j e le, U*<0;
0

so f* cannot be non negative on [0, |U > 0|1 If |U > 0| >s,, from (23) we have
—(B7IU* ) +ele,Ur=e ! f* on Isy, |U > 0]|L[,
U*(|lU>0)=U*(|U>0])=0,

while e 'c,. > 0and U* > 0o0n ls;, |U > 0|[; by maximum principle f* cannot be non
negative on Is;, |U > 0|[ Then we get (25).

Remark 2.5. If ¢ = 0, from the Remark 2.3, either |U > 0| = |Q] or |U > 0] is
the unique solution of the equation in s

5

F(s)=je—*f*=o.

0
If u is solution of (4), by (18), F(|u > 0|) = 0, and then
(26) |lu>0| < |U>0|,

from which the optimal bound (9) for the coincidence set of u.

With Theorem 2.1 and Theorem 2.2 as a starting point we can establish the follow-
ing crucial inequality.

Lemma 2.3. Let u, U solutions of (4), (5), respectively; assume that one of the condi-
tions in Proposition 2.1 is fulfilled; then, if w =u* —U*,

(27) w'—ﬂ(s)]e_lc*wBO, ae. on [0, |u>0]].
0
Proor. From (11) and (23) it follows
(28) w’—,B(s)Je“lc*wZO, 0<s<M,
0

where M = min{|« > 0|, |U>0|}. If |4« > 0| < |U > 0| (27) is trivial. Otherwise
we set

f*@), 0ss<|U>0],
0, |[U>0| <s< |u>0][;

7(:):={

by virtue of (24), (23) becomes

—-%Ux—*- =,B(S)Je_1[j~[—c*U*] a.e. on [0, |« > 0]].

0
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Hence by (11)
] 0 0ss<|U>o0l,
w’—ﬁ(s)fe‘%uv?
’ —s) [ et/ lU>0l<s<lu>0].
>0l

From Remark 2.4 we have (27).

3. COMPARISON RESULTS

As pointed out in the introduction the kind of comparison results we can derive
from inequality (27) depends on the sign of the function c(x). At first we consider the
cases ¢ = 0, ¢ = 0, ¢ < 0; although these cases fall within a more general one (see The-
orem 3.4), we prefer to give direct, simpler proofs.

When ¢ = 0 we have

THEOREM 3.1. Let u be a solution of (4) where the coefficients of operator A satisfy
(1), (2) and (3) with ¢ = 0. Then we have
(29) u*<U* on [0, |Q]]
We can assume f* #0, otherwise (29) is trivial for » = U = 0. We have

$

F,(s) = Fy(s) = F(s) = je‘lf*;

0
from (11), (26), (23) we get
|u>0] |U > 0|

u*(s) < I,BFS J,BF:U*(S)

that is (29).

Remark 3.1. The previous result is a slight generalization of a result of 19, 23] con-
cerning the case R = 0,

The following two theorems are concerned with the cases ¢ =0 and ¢ <0
respectively.

TueoreMm 3.2. Let u be a solution of (4) and assume that operator A satisfies (1), (2)
and (3) with ¢ 2 0. Then we have

(30) u*<U*, on [0,5],

(31) je*lu* sje*U*, on [5, |Q11,

where 5 = |{s: ¢, (s) = 0}].
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THEOREM 3.3. Let u be a solution of (4) and assume that operator A satisfies (1), (2),
and (3) with ¢ < 0; if one of the conditions i), ii), iii) of Proposition 2.1. is verified,
then

(32) u*<U*, on [0,]Q]]

Proor oF Tueorem 3.2. If |u > 0] <35, (31) is trivial. Then let it be |# > 0| >75;
setting

W(s)=Je_lc.kw, sels, lu>0]1,
where w =u* — U*, by (27) we have
—(ec W'Y +pW <0, on I5, |#>0|[,
WE) =0, W' (l«>0])<0.

Hence, by maximum principle, we get W(s) <0 on [5, |# > 0|], that is

(33) je_lc*u*SJe_lc*U*, sels, |u>0]|];

by Lemma 2.2, we deduce (31). From (31) we have #* (5) < U* (5); since ' = 0 on
[0, 5], we get (30).

Proor oF THEOREM 3.3. We assume ¢ < 0; otherwise we replace ¢ by ¢ — ¢ with
¢ >0 and gain the result getting ¢ go to zero. Setting

s

Wis) = | dw,
J
where w =u* —U* and é = —e !¢, (> 0), from (27) we have
(34) —(7'W') —gW <o, on [0, |#>0]1,
W) =0, W'(Ju>0])<0.

At first we show that
(35) W) <0 selo, |«>0]|].

If (35) does not hold, as w(|u > 0]) <0, there exists s€]0, |# > 0|] such that
w(s) =0 and w(s) <0 for s[5, |« > 0|]; hence W' (5) =0 and W * 0 on [0,5].
The first eigenvalue X of the problem

—(671Z2")Y —pZ=2pZ, Z(0)=Z'(5)=0,
is the same as the first eigenvalue of the problem

A*o=)c"*9, oeH{(B)),
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where B is the ball centered in O such that |B| =5. The conditions on A* (see 7) in
Proposition 2.1 and Remark 2.2) yield that A is positive. Hence by (34), using varia-
tional characterization of 2,

OSXJ,B(WﬂZS J [a—l(d‘g+)2—ﬁ(w+)2] <0
0 0

and then W * =0 that is absurd.

From (35), integrating (34) on [s, |# > 0|1, we easily obtain (32).

In the following Theorem we make no assumption concerning the sign of the func-
tion c. We assume ¢ ¥, ¢~ #0 in order not to fall in previous cases.

Tueorem 3.4. Let u be a solution of (4), with operator A satisfying (1), (2), (3) and
one of the conditions i), i), iii) of Proposition 2.1, then

(36) u*<U*, on [0,5],
(37) Je_lu* < fe_lU*, on [5, |21,

where 5 = |{s: ¢, (s) < 0}].

From (27) we get
-w' < —Bje_l{ci +c 7w+ Z,BJe"lc_*w;
0 0

if we set d=e " !(cf+c™*) and assume for sake of simplicity
(38) [{xeQ: c=0}| =0,

the function

Wi(s) = Je'l(c.}: +c w,

0

verifies the following conditions
-@T'W') + W< TW,
(39) { g

w©o)=0, W' (la>0])<o0,
where T is the operator defined by
( )':{Zﬂ(s)go({), (_)sss}
28(5)9(),  s<s<|
Our first goal is to show that
(40) W<0 on [0,]|«>0]].
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Suppose that this is not the case; then for some 5 €10, |# > 0] we have W' (5) =0,
and W *#0 on [0,5], and

—@T'W') + WS TW
1) { (¢ )+

wo)=0, W' ()=0,
Let G be the Green operator of the problem
-@7'Z") +BZ=g, Z(0)=Z'(5)=0;

obviously G is a linear, positive, compact operator from ° in @° By (41) we
have

(42) W < G(T(W)) = K(W),

where K = Go T is a linear, positive, compact operator acting on the space @°. Now
we use some properties on positive operators (see [20] for an exhaustive treatment).
From (42), by using theorem 2.5 of [20], the operator K has an unique (within the
norm) positive characteristic vector ¢, K¢ = u¢ with u = 1. However, if 2, is the first
eigenvalue of problem (20) with Q* replaced by the ball centered in O whose measure
is 5 and ¢ is a relative eigenfunction, we have (see also (23))

8 [T —etyere
0
it follows
_(awl@’)’+,3@=(2+Xl),3‘l76'~*§0*€_1,
0
with
26):= [ 2% ;
0
thus

D=(1+2"'2)K0.

Hence 9 is a positive characteristic vector of K and then 1 + 4; /2 = u~%. Since 2; > 0
(see 77) in Proposition 2.1 and Remark 2.2), we get u < 1 that is absurd. Then we have
(40), from which we deduce

(43) w(0) <0
that is

sup #(x) =u*(0) < U*(0) = sup U*(x).
xel xe Ot

Moreover, from (27) we have, if s € [0, 5],

(44) w' = =) Wis) =0.
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So in order to obtain (36), we have to show that w(s) < 0. Namely, if w(s) > 0, since
w(|u>0]) <0, by (43) there exists s’, 5" e[0, |« >0]] such that s’ <5<s"
and

(45) w(s') =w(") =0, w(is)>0 on I/, s"[.
Hence, from (27), if s >,

w(5)>,35)( +J_l r )

and then from (40) and (45) we have w'(s) = 0 on [5,s"], that is absurd. Now we
show the validity of (37). From (27), if 5 <s < |4 > 0|, we have

w' + Bls) W) — B6s)

“—-ﬁ"!

N

!
o
* 4
S
v
o

and then by (40)

w —ﬂ(:)f “lejw=0, on [s |u>0]].

_Y

Setting
Wi(s) = Je‘lc:;w = fo“w,
we have
(46) —(@7'W') +8W <0, on T |«>0]|l,
WGE) =0, W (Ja>0])<0

and then, by maximum principle W(s) <0 on [5, |# > 0[], that is (37).

Thus Theorem is proved under condition (38); let us show that the result is valid
without this supplementary hypothesis. Proceeding as in the proof of Theorem 3.3 we
replace the coefficient ¢y in (5) by

_feate) —e i cpx) SO,
¢ x) ‘{C#(x) if cp(x) >0,

and consider the perturbed problem
(U, V—U") = ”U,g(v— Ue), + —llfl—x,-U,;(V— U +cUs(V-U9|=
.Q#
ij#(V—UE), VVeH; Q*), with Us, V=0.
.Q#

The above arguments yield (36), (37), with the rearrangement of U ° instead of U*;
getting ¢ go to zero we get the result.
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ApPPENDIX
A. Proor or Prorosrrion 2.1.
7)=> i) We have
)\IJ-C‘#e_Rl"l ¢ Z = Je‘RMHgﬁl R
o* o*

where ¢, is the first eigenfunction; we conclude observing that ¢; does not change sign
on Q*

#7) =>477) From Remark 2.2 we have

(AI+1)je—R‘x|c“#¢2s fe‘R""(|V¢|2+c#+¢2), ¢ e HY
o* ot
and then, with 0 < a < 1,

[ 7R (V8] + cpg) — [ 7R Vg |2 =
o o
=(1-a Je_Rl"l |Ve|? + Je‘Rlxl (cf —c H)$=
o* ot
Z (A —a—ak) Je_R|x|c'#¢2 + ocJ'e_Rl"ic;;r ¢ .
o o
Then we conclude choosing 0 < a < A; /(1 + A,).
i) = 1) By coercivity we have existence and unicity of the solution of
— (e Rl Z.), tcpe “Rixl 7z = ¢RI [ |
ZeH},
and hence of A*Z =H, Ze Hy. By (47) we have, with H = 0,

(47)

aje*lxl IVZ- |2 < je-Rlxl[|vz-|2+c#|z—|2]= - je-Rlxlﬂz-so.
o ot ot

Then Z~ = 0. With similar arguments we can prove (19).
Since U is solution of (5) iff U is solution of the variational inequality

je-Rlx! [U, (¢ — U), + s Ulg — U)] = je-Rlxlf#(qs - U),
o* o
by #7) we obtain the existence and unicity of solution U (spherically symmetric). Now
we show U = U*, that is U is also spherically decreasing. For sake of simplicity we as-
sume f* and ¢, sufficiently smooth. Deriving with respect to ¢ = |x| the equa-
tion

A*U=f*, on {x: U>0},
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we obtain setting v = U,
n—1

(48) Upo — >

P
We note that £# — ¢,, U < 0 and #(0) = 0, 2(|U > 0|) < 0. The operator at left side in
(48) is A* + (n — 1) |x| =% and obviously it has the property (19); thenv = U, < 0.

vp+Rvp+(”_1 +c#)v=fp#—c#pU.
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