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Rend. Mat. Acc. Lincei
5. 9, v. 3:261-269 (1992)

Analisi matematica. — A uniqueness theorem for the approximable solutions of the
stationary Navier-Stokes equations. Nota (*) del Corrisp. Grovannt PrOUSE.

AsstraCT. — It is proved that there can exist at most one solution of the homogeneous Dirichlet
problem for the stationary Navier-Stokes equations in 3-dimensional space which is approximable by a
given consistent and regular approximation scheme.

Key worps: Fluid dynamics; Approximation schemes; Weak solutions.

Russsunto. — Un teorema di unicita per le soluzioni approssimabili delle equazioni di Navier-Stokes. Si
dimostra che esiste al pitt una soluzione del problema di Dirichlet omogeneo per le equazioni stazionarie
di Navier-Stokes in 3 dimensioni che sia approssimabile mediante uno schema di approssimazione consi-
stente e regolare.

1. — The aim of this paper is to prove a uniqueness theorem relative to the solution
of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in
3-dimensional space. This will be done, basically, by introducing the definition of
«approximable» weak solution and of the corresponding «approximation scheme»
and showing that there cannot exist two weak solutions which are approximable by the
same approximation scheme; hence, for instance, a certain finite difference scheme
leads to only one solution, which however can be different from the one obtained by
another approximation scheme.

Let Q be a bounded, open set c R’ and denote by N, N’ (s = 0) respectively the
space of vectors v = {v;, v,,v;} € D(Q) such that div # = 0 and the closure of N in
H*(Q); we shall, in particular, consider the Hilbert spaces N° and N', in which the
scalar product is defined by

(1.1) (w0, V)yo = (, V)12,  (a, vy = (&, V) () -
Setting
2 auk
Av=—plv, Bw@) =@V =/_J€E= K
we shall say, following a well known definition (see, for instance[1,2]) that u is a

weak solution in Q of the stationary Navier-Stokes equations satisfying homogeneous
Dirichlet boundary conditions if

) ueNL
#) Ve N1, (Ao +Blx) — f, (p> = 0, having assumed that fe (N1)" and denot-
ed by (,) the duality between (N')’ and N™.

In order to introduce the concept of approximable weak solution, we must recall
some definitions, due essentially to Temam [1], regarding approximation schemes

(*) Presentata nella seduta del 24 aprile 1992.
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relative to Navier-Stokes equations; in what follows, » will denote a real index which
will, eventually, — 0 (1).
Let W be a Banach space ¢ L?(Q); we shall call approximation of W a set con-
sisting of:
a;) A Banach space FcL?({2) and an isomorphism w of W into F;
b,) A family of triples {W,, p;, 7, } such that, Vb, W, is a Banach space c L?(Q),
Py is a continuous linear mapping of W), into F, 7, is a mapping of W into W,.
An approximation of W is said to be stable if
(1.2) Apsll= sup |pp#yllr <M (M independent of 5).

s vy, = 1
An approximation of W is said to be convergent if:
a;) }}2110 prue=wu inF, NVaueW,
b,) V sequence {#, } of elements of W, such that lim p, #, = y in F, there
exists # € W such that y = wa. b0
Let now {(N}, ps, ), (w, F)} be a stable and convergent approximation of N'; we

introduce the forms a, (%, v}, ), b, (u;, v, ,w)) defined in the following way.
ay (uy,, vy) is a bilinear, continuous form on Nj X Nj such that, Vb,

(1.3) |2 (ty, 03) | < 1l oy g 2 N
(1.4) ay (wy, ) = Gll”b”%\l,} ,
with ¢;, o positive constants, independent of 4.
by (my,, vy, w,) is a trilinear, continuous form on N} X N} X N} such that, Vb,
(1.5) b;,(ub,vb,w;,)= —bb(ub,w;,,vb).
(1.6) by (ty, v, 0) < 5| 203 ||po || ”N;,‘ |4 |l.»
with 1/p + 1/g = 1/2, ¢, independent of 5.
We shall, moreover, assume that
a;) If bh'mo Drtty = wu, blimo Ppvp, = wv respectively in the strong and weak
topology of F, then
(1.7) blimo ay (@, vy) = (, V)51 ;
by) If lim %, = & in L? lim p,v, = wv in the weak topology of F, lim w), = w
. © h—0 h—0 h—0
in L®, then
(1.8) blimo by (uy,, vy,,w;) = (V) v, )50
The set I, = {(N}, py, I};), (o, F), (@, b,)} will be called an approximation scheme
of the problem considered if {(N}, ps, I';), (w, F)} is a stable and convergent approxi-
mation of N! and if (1.3), (1.4), (1.5), (1.6), (1,7) (1.8) hold.

On the basis of the definitions given above, it is possible to define approximate
and approximable solutions. We shall say that #, is an approximate solution, relative to

(1) For other approximation schemes, using a different approach, see [3].
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the scheme I, of the homogeneous Dirichlet problem for the stationary Navier-
Stokes equations, with known term f, € (N})', if:
i) uy € Np;
i) Vo, e Ny, pay(uy, @) + by, m,, @) =1y, ®),
where (,) denotes the duality between (Nj)' and Nj.
Let fbe an arbitrary function € (N')’ and {f,} a set such that f,e (N}')' and
(1.9) Jim (fs, @) = (£, )
V set {@,} such that @, e N} bhino o, =we in F.
We shall say that the approximation scheme I'y is consistent and regular if:
«) Vb there exists one, and only one, approximate solution #;, corresponding
to fp;
B) It is possible to select, from any sequence {#, } a subsequence {#, } such
that
(1.10) oy #, — ou weakly in F,  #, —u weakly in L?,
where # is a weak solution corresponding to f;
y) V fixed 5 > 0, bhm};u;, =u; weakly in L?.
We shall, finally, say th;t the weak solution #, corresponding to the known term f
is approximable by the consistent and regular scheme I, if there exists a sequence {#, }
of approximate solutions, corresponding to the known terms f, satisfying (1.9), such

that «
(1.11) ”li{nmp,,ﬂu,,n =wu  weakly in F.

In the sections which follow, we shall prove the following

Tueorem. Let I'y be a consistent and regular approximation scheme. There exists at
most one weak solution which is approximable by such a scheme.

The guideline of the proof is the following.

a) If there exist two weak solutions which are approximable by the same con-
sistent and regular approximation scheme I',, then there exist infinitely many weak
solutions, with the power of the continuum, which are approximable by I';. The set of
these solutions will in the sequel be denoted by U (Lemma 1).

b) The set U is compact in L4 (Lemma 2).
¢) Let {u,} be any sequence c U; {«, } cannot then be a basis of U (Lemma 3).
The proof of the Theorem will then consist in showing that
a) It is not possible that there exist a sequence {#,} of linearly independent
solutions (since, in this case, {#,} would be a basis, against ¢));
4 B) it is not possible that there exist only a finite number p of linearly indepen-
dent solutions (since, in this case, U would contain only a finite number of elements,
against a)).
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2. — Let {g;} be an orthonormal basis in N' and denote by g; the (eventual) ele-
ments of {g;} such that (#,g;)y: =0 V# e U; the remaining elements of {g;} will
form a sequence which we shall denote by {gi} (eventually {g}} = {g;}). We shall,
moreover, denote by N*' be the subspace of N' spanned by {g;}.

We now state and prove the Lemmas mentioned in the preceding section.

Lemma 1. Let #, v be two weak solutions, corresponding to the same known term f,
approximable by the same consistent and regular approximation scheme T'y. There exist
then infinitely many (with the power of the continuum) weak solutions which are approx-

imable by T,

Let #, be the approximate solution corresponding to the scheme I';; by the as-
sumptions made, there exist a function ¢* € N” and two sequences {# }, {#;} such
that

21)  lim (s, @)z = (w, 9*)p2 =25 lim (s, 9*)12= (v, 9")12 = > .

Hence, since I, is regular (=>h — (#,, ¢* );: is continuous Vb > 0), fixed an arbitrary
number y € («, ), there exists a sequence {#,} such that
(22) bl,jmo(ub]w’ ‘p':'-' )LZ =7.

Since I', is a consistent scheme, we may, on the other hand, assume that
(2.3) lim #,»=z  weakly in L?,

h"—0
with z € U; consequently, y = (z, ¢*);2 and, since 7 is arbitrarily chosen in («, 8), there
exist infinitely many solutions with the power of the continuum, all approximable
by I b

Lemma 2. The set U is compact in L*.

The statement is obviously true if U consists of only a finite number of elements.
Suppose now that {#, } is a sequence ¢ U; setting in 7) of section 1 ¢ = %, we obtain
directly (since (B(#),#)=0 YzeN")

(2.4) |lz,lyy <M (M independent of #).
It is then possible to select from {#,} a subsequence {#, } such that
(2.5) l,im0 u, =u

in the weak topology of N* and in the strong topology of L*. Bearing in mind that V z,
veN', (uV) u, o) = —((u"V) @,u), it follows then, by (2.5), that # € U. Hence, U
is L* compact.

Lemma 3. Let {u,} be a sequence c U; then {um,} cannot be a basis in N**

By Lemma 2, we may assume, in fact, that lim #, = # € U. On the other hand, it
n— ®

is well known that, if a sequence {z,} is a basis in a Banach space and if z, — z, then
necessarily z = 0. If therefore {#,} were a basis, # = 0 would be a solution, which, by
the uniqueness theorem of «small» solutions (see, for instance[1]), is unique.
Hence, U would consist of only one element and could not contain a sequence. The
Lemma is thus proved.
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3. — Let us now prove the uniqueness Theorem stated in section 1.
We show, to begin with, that, if {#,} is a sequence of solutions, then the elements
of {#,} cannot all be linearly independent in N*!. Let, in fact,

(3.1) w = _21 G, 88 k=1,2,..)
P

where, by the assumptions made, the linear combinations 2, &; g¥ are all linearly in-
i=1

dependent in N*!. Since { g7} is a basis in U, it follows that also {#,} is a basis in U,
and this, by Lemma 3, is not possible. »
Finally, we must consider the case in which all solutions # are linear combinations

P
of a finite number p of solutions: # = D, a,#;. Since, by the assumptions made, there
E=1

exists an infinite number of solutions, all satisfying (2.4), there must exist a solution,
«*, which is a limit point for U; we shall then denote by o the neighbourhood of #*

defined by
(3.2) s={vel*: ||a* -1+ <1}.

By construction, & contains an infinte number of solutions; let ¢ < p be the number of
linearly independent solutions € o; these will be denoted by #, (& =1, 2, ..., ¢), with
vy = u*. By (3.2) we have

(3.3) ley —vpllie <1 VE=1,2,...,9.

9
Let now # = 2, a,v, be a solution € o; the coefficients «, must then satisfy the

. k=1
equations

9

q q
ZIO%AVk + /eE—:1OCkB(vk) - f/;_:lak =0,

(3.4) , ,
Azoc/ev/e-f—B( 20{/61//6)‘ f=0
k=1 k=1

and, consequently, Vpe N,

9
(35) gb? (0(1 g eeey Ocq) = k§1ak ((fyk-V) v, (P)Lz —

S ([ e Y e

Equations (3.5) constitute an algebraic system of degree 2 in the unknowns
@y, &y, ..y &, which, obviously, admits the ¢ solutions P;(1,0,...,0),
P,(0,1,...,0),...,P,(0,0, ..., 1). According to Lemmas 1 and 2, on the other hand, if
we assume that there exists more than one solution, in every neighbourhood of #;
must be contained infinitely many solutions, 7.e. the system (3.5) must admit infinitely
many solutions in every neighbourhood of P;. We shall show that this is absurd and,
consequently, that the solution is unique. The proof is given in the Appendix.
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4. — The uniqueness Theorem proved in the preceding Section holds for solutions
which are approximable by a consistent and regular approximation scheme.

Examples of such schemes are the finite difference and finite elements schemes de-
scribed by Temam. It is, in fact, proved in[1] that these schemes are consistent and
from Temam’s analysis it also follows that they are regular (ze. that condition y) of
section 1 is satisfied) provided that, when 5 — 0, the sequence of grids is chosen in an
appropriate way ().

It can also easily be shown that another consistent and regular approximation
scheme can be obtained by considering as approximate solutions the solutions of the
Navier-Stokes equations with an «artificial viscosity» term, Ze.

(4.1) Awuy + Buy) +/9A2u;j+Vp=f, div z, =0
with the boundary conditions

u
(42) u), |9_Q == —b = 0
on |an

This approximation scheme falls into the general pattern described in Sect. 1 by set-
ting F=W =N! N} = N'NH? with norm defined by

(4.3) el = Nl + AllAae |7,

7, = G (Green’s operator, from (N!)’ to N', associated to —4), p, embedding opera-
tor from Ny into N'. For a more detailed description of this scheme see[2,4].

APPENDIX
Let us prove the following statement:

Assume that all the solutions belonging to the neighbourhood o of v, introduced in Sec-
tion 3 depend linearly on the q independent solutions vy, v,, ..., v,; there exists then a
neighbourbood of v, which contains no other solutions apart from v,.

The proof will be carried out considering separately the following cases:

i) Tt is possible to find in & ¢ linearly independent solutions 1, ..., , such that
the functions
(5.1) =0V, + (v, VYo, +Av, (k=1,...,9)
are linearly independent.
ii) Whatever choice is made of v, ..., 7,, the corresponding functions zy, ..., 2,
are not linearly independent, ze. there exist (4, ..., A,) #0 such that
q
(52) kE )\kzk =0.
=1

This case can be divided into two subcases:

(2) In the finite difference scheme, for example, it is sufficient to assume that, if the net points are
the centers of the grid, one net point remains fixed Vb.
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ii;) There exist v, ..., v, such that (5.2) holds with

q
(5.3) kE e #0,
=1

or
ii,) For every choice of vy, ...,v,, (5.2) holds with

q

(5.4) kZ X =0.
=1

Let us start by considering case i).

Observe that the tangent hyperplanes in P; to the hypersurfaces (3.5) are given by

9
(5.5) 2 alz 9) = (=, 9).
Observe, moreover, that, if z;, ...,z, are linearly independent, it is possible to choose
@1, ..., @, such that the corresponding hyperplanes are linearly independent.
Assume, in fact, that zy, ....z, are linearly independent and set
where G is Green’s operator, from (N')’ to N relative to A; by (5.5) we obtain
q
(5.7) /ez—:1ak<zk’sz>=<z1’sz> G=1..,9.

If the hyperplanes (5.7) were not linearly independent, there would exist
(A1, ..., 2,) #0 such that

9 q
(58) _21)\/&/6, GZ]> = 'zl)\]' (Zk>zj)(N‘)' =0 (k = 1, ,q) ,
j= ji=

which is absurd, since z, ...,z, are linearly independent. Hence, the hypersurfaces

¢, =0(/=1,2,...,9) have, in a neighbourhood of P;, in common only the point P; .
Our statement is therefore true in this case.
Consider now case ii;). By (5.1), (5.2), we have

q q 9
(5.9) (v,-V) kE M + ( kZ Am-v)vl +Ak2 Mvp =0
=1 =1 =1

and, consequently, mgltiplying by w = é:l Mo, and observing that, by (5.3), we can
always assume that k§=:1 N=1,

.10 (0 ) ) + {0 S e, w) + alf = 0.

On the other hand, bearing in mind (3.2) (3),

(5.11) (V) élml,@ < (@) w,w)| +

q
+ [{(20-V) /;::17% (01 — w), w)| < “w”zz\rlk:ﬁiaf q””l — s < [l R .

() For the sake of simplicity, we shall assume that the embedding constants are = 1.
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Hence, by (5.10),

q
(5.12) w= 2 h,=0,
k=1
which is absurd, since »,, ..., 7, are linearly independent. _
We now consider case ii,). Let us choose arbitrarily #,, ..., v, such that vy, ..., v,

are linearly independent solutions € ¢ and let

q
(5.13) u= kE )
=1

be any other solution € o. Setting

(5.14) 2, = VYu+@aV)v,+Au,

there exist then (4, A, ..., A,) #0 with A, # 0 such that
7-1 q

(5.15) Aoz, + kglxkz,e =0, kgl XN%=0,

that is

-q—l

(5.16) kZ Ml Vo + (0, V) oy + Aoy ] +
=1
q q q
+)‘q (111’V) kz oV + ( kz a/evk'V) (41 +A /ezldk’l//e =0.
=1 =1 =
g-1

It follows, setting w = >, (A, + A o) v + A a,v,, that
K=1

(5.17) (v V)w+@wV)o, +Aw =0
and, consequently, multiplying by w,
(5.18) (Vo w) + |wlf = 0.

Hence, repeating the procedure followed in formulas (5.9) to (5.12), we may conclude
that if

g-1

(5.19) 2 M+ 2o+ A0, %0,

k=1
9
je. if kz o # 1, then (5.18) implies that w = 0, which is absurd.
-1
Consequently, (5.15) can hold only if # is given by (5.13), with

q
(5.20) kZ =1,

=1
that is if all the solutions of (3.5) belong to the hyperplane I of equation
(5.28).

Observe now that, repeating the proof given in formulas (5.10) to (5.12), it can be
shown that 2z, # 0 (£ = 1, 2, ..., ¢); by (5.4) it is then obviously possible to choose ¢ =
= @ in such a way that the hypersurface ¢; = 0 has, in P, a tangent hyperplane which
coincides with II. Hence, bearing in mind that ¢; is a polynomial of degree 2, the hy-
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persurface ¢z = 0 has in common with IT either only the point P;, or a set which con-
tains a straight line A.

On the other hand, if we assume that the number of solutions is infinite and de-
note by I the set of points of IT which represent these solutions, it is obvious that I’
must have infinite points in common with A, Ze. that all the second grade hypersur-
faces ¢/, = 0 must contain A. This however is absurd, because there would then exist
solutions for which (2.4) does not hold.

Hence, also in this case these cannot by any other solutions in a neighbourhood of
P,. This completes the proof of our statement.

Lavoro eseguito nell’'ambito dei Contratti di Ricerca MURST 40% e 60%.
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