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Fisica matematica. — General construction of Banach-Grassmann algebras. Nota di 
VLADIMIR G. PESTOV, presentata (*) dal Corrisp. C. Cercignani. 

ABSTRACT. — We show that a free graded commutative Banach algebra over a (purely odd) Banach 
space E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if E is infinite-di­
mensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addi­
tion to the only one example previously known due to A. Rogers. 

KEY WORDS: Banach-Grassmann Algebras; Super analysis; Graded algebras. 

RIASSUNTO. — Costruzione generale di algebre di Banach-Grassmann. Si mostra che un'algebra di Ba­

nach libera graduato-commutativa su uno spazio di Banach E puramente dispari è un'algebra di Banach-

Grassmann nel senso di Jadczyk e Pilch se e solo se E ha dimensione infinita. E quindi possibile ottenere 

un gran numero di nuovi esempi di algebre di Banach-Grassmann separabili, in aggiunta all'unico esem­

pio precedentemente noto, dovuto ad A. Rogers. 

1. INTRODUCTION 

In superanalysis one is supposed to have at hand a ground algebra serving as a 
supply of odd (anticommuting) constants [1-7]. For general reasons, such an algebra 
A is assumed to be a Hausdorff topological associative unital graded commutative al­
gebra [4], and as a rule, a locally convex one [6]. A natural requirement that any 
«supernumber», x, should decompose into the body (number) part, xB, and the soul 
(nilpotent) part, xs, imposes upon A the condition of being a local algebra [5]. The 
property of convergence of the so-called superfield expansion [7] ( = Grassmann 
analytic continuation [8] ) at least in the analytic case actually restricts the class of 
ground algebras to the complete locally multiplicatively convex algebras in the sense 
of [9,10], and this way one comes to the notion of a graded local Arens-Michael, or 
GLAM, algebra ([11]; cf. also [12]). Numerous examples of GLAM algebras can 
be found in [11,13]; all concrete algebras of «supernumbers» [1-8] fit into that 
class. 

Among particularly convenient properties of ground algebras is the Jadczyk-Pilch 
self-duality property introduced in [14] for graded commutative Banach algebras. 
The Banach algebras with that property - the so-called Banach-Grassmann algebras -
have become popular recently [15,16]. However, the Rogers algebra 23,» [17] still 
remains actually the only example of a Banach-Grassmann algebra. There are also 
some other examples [13,18] but they are unseparable and thus «too big». 

The present Note adds a large amount of new examples of separable Banach-
Grassmann algebras. They are just exterior algebras over Banach spaces endowed 
with a relevant norm and completed after that. We call this construction «a free 
graded commutative Banach algebra over a Banach space». It was proposed by us ear-

(*) Nella seduta del 14 marzo 1992. 
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lier [13]; here we study the structure of such algebras in more detail and show that a 
free graded commutative Banach algebra A E over a (purely odd) Banach space E is a 

B 

Banach-Grassmann algebra in the sense of [14] if and only if dim E = oo. 
Since A/i = -Boo then our result can be viewed as an extension of a theorem 

B 

from [19]. However, the method of proof used in [19] cannot be extended beyond 
the particular case E = lx. For unseparable F s , the result has been stated by us earli­
er [13]; its generalization to a separable case is not quite trivial. 

2. PRELIMINARIES 

(2.1). A graded-commutative algebra [2-10] A is an associative algebra over 
the basic field K with a fixed vector space decomposition A = A0 ©A1, where A0 is 
called the even and A1 the odd part (sector) of A, in such a way that the parity x of any 
element x G A0 U A1 defined by letting x eAx

y x G {0, 1} = Z2 , meets the following 
restrictions: 

(2.1.1) xy=x+y,xyyeA°UA1 

(2.1.2) xy = (- lfyyx, x, y G A0 U A1 

(2.2) By a normed algebra we mean an algebra A together with a fixed submulti­
plicative norm on it, || • ||A ; the submultiplicativity of the norm [22] means that 
ll^ylh - IMIAIMIA f° r all x> J ^ A. For a unital algebra A this condition implies 

(2.3) Recall that an lx (resp. /«>, or c0) type sum [20] of a family of normed spaces 
{Ex) oc e A} is the Banach space completion of the linear space © Ea endowed with 

ll II \ ^ ll ll / . Il II II II \ « e j 4 

the norm ||#||:= ZJ \\xa\\Ea (respectively, \\x\\ : = sup \\xa \\Ea )• 
oc^A <x(=A 

(2.4) A Banach-Grassmann algebra [14] is a complete normed associative unital 
graded commutative algebra A satisfying the following two conditions. 

BGi (Jadczyk-Pilch self-duality). For any r, s G Z2 = {0, 1} and any bounded A°-
linear operator T: Ar —» As there exists a unique element a G Ar + s such that Tx = ooc 
whenever x G Ar. In addition, ||tf|| equals the operator norm ||T||op of T. 

BG2. The algebra A decomposes into an lx type sum A — K@]\©A1 where 
K = R or C and X? is the even part of the closed ideal J A topologically generated by the 
odd part A1. In other words, for an arbitrary xeA there exist elements xB G K, X$ G J%, 
and x1 G A1 such that x = xB + x$ +X1 and ||x|| = ||xB|| + \\xs\\ + H r̂11|. 

(2.5) As it was noted in [13], it suffices to verify the condition BGi in the case 
r = 1 only. Furthermore, denote by LAo (A1, A) the totality of all bounded Allinear op­
erators from A1 to A [14]. It is convenient to split the Jadczyk-Pilch self-duality con­
dition BGx into the two ingredients. Denote by pA: A—>LAo(A1,A) the left regular 
representation of A defined by letting pA (x)(£) = x£. The condition BGX is equivalent to 
the following: 
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JP) pA is an isometric isomorphism of A onto LAo (A1, A), 

or, in more detail: 

JP1 ) pA is an isometric embedding, 

JP2) PA is onto. 

(2.6) We say that a Hausdorff topological associative unital graded commutative 
algebra A is a supemumber algebra (SN algebra; SNA) if it admits a decomposition into 
a topological direct sum A — K(BJA where JA, as above, is a closed ideal topologically 
generated by the odd part A1. In other terms, A is a local graded-commutative topo­
logical algebra such that the maximal ideal JA is topologically generated by the odd 
part. Such an algebra admits a unique (continuous) character pA : A —> K called the 
body map. See [13] for a more detailed treatment of SN algebras. 

(2.7) ASSERTION. [13] A Banach graded commutative algebra A admits a norm sat­
isfying the condition BG2 iff A is an SN algebra. 

(2.8) COROLLARY. A Banach graded commutative algebra A admits a norm making it 
into a Banach-Grassmann algebra iff A is an SN algebra meeting the condition JP. 

(2.9) Let E and F be any two normed spaces. Their weak tensor product [21] is 
the completion E ^ F of the algebraic K-tensor product E ® F endowed with the uni­

form cross norm defined as follows: 

II»IU®F := sup{|( /®*)(«) | : feE', \\f\\op < l,geF, \\g\U < 1}. 

Clearly, for each x e E, y e F the following holds: | | ^ ® ^ | | E ® F = IWIE'IMIF-

(2.10). If yl and B are normed algebras then so is A ® B [22]. If, moreover, both 
A and B arc graded commutative unital complete normed algebras then A ® B is so as 
well. 

(2.11). Remark that if A and B are normed unital algebras then A® B contains 

their lœ type sum A © B as a normed linear subspace under an isometric embedding 

a®b*->a®\B+ 1A ®b. As a corollary of this really obvious remark, for any pair of 
normed subspaces E^>Ay F^B the /«, type sum E®F embeds into AQB isometri-
cally in a canonical way. 

(2.12). For an element a of an algebra A we denote by 1a the left annihilator of a; 
this is the set {x e A: xa = 0}. This is an ideal in A. If A is a topological graded com­
mutative algebra then La is a closed graded ideal. See [3,6]. 

We say that a graded commutative algebra A is effective if f i j 1 ^ : a e A1} = (0). 
Clearly, this is precisely the case where the representation pA (2.5) is effective. 

(2.13). ASSERTION. ([13]; cf. also [19,6]). Let A be an effective graded commu­
tative Banach algebra and let T e LAo (A1, A). Then for any a e A\ T(a) E La. 
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(2.14). ASSERTION. [13] Let A and T be as above and let a, be A1. Then 
aT(b) = TT(a)b. 

3 . F R E E G R A D E D C O M M U T A T I V E B A N A C H A L G E B R A S 

(3.1). THEOREM. (Announced in [13] without a proof.) Let E be a normed space. 
There exists a complete normed associative unital graded commutative algebra A E with 
the following properties. 

1) A(E) contains B as a normed subspace of the odd part { AE)1 in such a way that 

E U {1} topologically generates AE. 
B 

2) Every linear operator f from E to the odd part A1 of a complete normed associa­
tive unital graded commutative algebra A with a norm \f\op ^ 1 extends to an even homo-

morphism f. AE-^A with a norm \f\op ^ 1. 
B 

Such an algebra A E is unique up to an even isometric isomorphism. Moreover, A E is 
B B 

a supernumber algebra. 

PROOF. Let AE — © A E be the exterior algebra over E (to be more pedantic, 
n = 0 

what we need is rather a symmetric algebra over a purely odd linear space (0) © E, 
see [23, Ch. 3], but such ideological subtleties do not affect the reasoning that 

n 

much). Endow each /z-th exterior power A E, n e N with the maximal norm making it 
i 

into a normed space in such a way that for every / = 0, 1, ..., n — 1 and every x e AE, 
n — i 

y e A E the following holds: \\x A ^ H A E — IMIAHIMI'A'H- TO convince oneself that 
there is indeed at least one norm with such a property, consider the canonical anti-

n 

symmetrization map from the /z-th tensor power E®n onto A E and endow the latter 
space with the quotient norm of the cross norm || • ||£ ® || • \\E ® ... ® || • \\E (n times). 

n 

By the way, the norm one comes to is precisely the desired maximal norm on A E. 
Similar constructions have been performed, say, in [24], where the uniform cross 
norm | H | E ^ ... ® \'\E is used, and in[25] for Hilbert spaces E only. 

n 

The completion of A E relative the norm defined above will be denoted by 
AE. 
B n 

Now denote by A E the lx type sum of all the A E's, n eN. A little effort is needed 
B B 

to observe that the norm on that lx type sum is the maximal one making A E into a 
B 

(complete) normed algebra in such a way that E is a normed subspace of A E. The de-
B 

sired universality property follows from this latter observation more or less directly. 

(Hint: no submultiplicative prenorm on A E, whose restriction to E is less than or 

equal to || • ||E, exceeds || • ||AE at some point). Both properties of essential uniqueness 

and of being an SN algebra are obvious. 
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(3.2). EXAMPLE. The algebra Al\ is just the Rogers algebra Bœ [17]. Its nonsepa-

rable analogues of the type A l\ CO have been considered in [18,26]. For a finite di-
B 

mensional E the algebra A E is an ordinary Grassmann algebra, AKn — A(n). 
B B 

(3.3). ASSERTION. For a normed space E, the condition dim E = o° is equivalent to 
the fact that the left regular representation pAE : A E —» L(A£)o (( A E)1, A E) is an iso-

j j i . B B B B B 

metric embedding. 

PROOF. The «if» part stems from the observation that for a Grassmann algebra 
A(q) the map pA^ merely is not an injection. To prove the «only if» part, we establish 
the following somewhat stronger result. Let dim E = °°. Then for an arbitrary 
x e AE and each e > 0, there is an y e E with | |xy| |AE> | |#| |AEIMIE - e. 

B B B 

Let x e A E and s > 0. Assume without loss of generality that | |x| |A£ < 1. There is 

a unique representation of x as a sum x = 2 x„ where xn G A E and ||x|| = Z, ||#« 11 
n - 0 S n = 0 

Za %n 
= N+ 1 

< e/3. For every n = 0,1, ...,N 

x„ ~ K II < e/(3N + 3). Fix a finite subset 

(see the proof of 3.1 above). Fix N with 
n 

there are elements xn' e A E such that 
Zi, ..., Zk e E with the property: all the elements xn', « = 1, ..., N are in a subalgebra 
generated by {zi, . . . , % } . Without loss of generality, one may assume that ||*/|| = 1, 

N 

/ = 1, ...,k. Put xr = ^ xn'. 
n = 0 

Thanks to the infinite dimensionality of E, there exists a nontrivial continuous lin­
ear functional/e E' with ||/||op = 1 and/fe) = 0, / = 1, ..., k. Fix a n j e E such that 
||3;|| < 1 + e/3 and \\f(y)\\ = 1. The map F sending each # e E to the pair (a — f(a)y) © 
(Bf(a) is a contracting linear operator from E to the /» type sum H © K1 where 
H = fer/. 

The contracting linear operator F from E to the space H © K1 canonically embed­

ded (2.11) into the (odd part of) the weak tensor product algebra A H ^ A K 
B n 

1 ~ 

— A H ® A (f ) (here J stands for the element 1K of the one-dimensional linear space K1 ] 
B 

extends to a contracting even homomorphism F: A E —> A H ® A (J) (3.1). Now one 
B 

has a chain of simple majorations: ||xy||AE > ||F(x':y)||AH® A(ç) = 1 1 ^ ' )|IAH X 

iy B B \/ B 

X|k||A(f)> E lkllAB = ll*'llAB^NlAEl|yllE-e. 
» = 0 B B B 

(3.4). ASSERTION. [13] A free graded commutative Banach algebra A E is effec­
tive iff dim E = oo. 

(3.5). Remark that an algebra A E is separable if and only if so is E. The proof is 
B 

very similar to the demonstration valid in the case of free topological 
groups [27]. 
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4 . B E R E Z I N T O P O L O G Y 

(4.1). Let E be a normed space. Denote by ifE the canonical projection map from 
the exterior algebra A E onto the n-Ûi exterior power A E. By the Berezin topology on 

AE (resp. AE) we mean the projective topology (see [21, Ch. 1]) with respect to 
3 n n 

the family of maps T?E : AE -> A E (resp. ifE : A E —> A E). In other words, sets of the 
B B B 

form {ifE ) U where n e N and U is open in A E form a base fot* the Berezin 
topology. 

(4.2). The completion of AE w.r.t. the Berezin topology is denoted by AE. 

There is a canonical continuous even monomorphism iF : A E c-> AH, whose restric-
5 Ber 

tions to the /z-th exterior powers iE : A E —» A E are homeomorphisms. Actually, the 
.B Ber 

algebra A E is isomorphic, as a locally convex space, to the Tychonoff product of all 
Ber ' 

the Banach exterior powers of E, namely, AE — X A E; thus, elements of A E are 
Ber = 0 B Ber 

just arbitrary formal series of the type 2J xn, xne AE. 
n = 0 B 

(4.3). Here is still another description of the Berezin topology. A sequence 
(xk )k e N of elements of the algebra A E converges in A E (to an element x) if and only 

Ber Ber n 

if for each n eN the sequence ( 4 ^ ) ^ e N converges in A E (to an element 7fEx). 

(4.4). ASSERTION. Let E be a normed space. Suppose an element x G A E is such that 
Ber 

the operator of the left multiplication by x maps ( AE)1 to A E and it is continuous w.r.t. 
the norm topology on A E. Then x G AE. 

B B 
oo n 00 

PROOF. Let x e A E \ AE, that is, x = 2 x„ where x„ e A E and 2 ||*« || = + °° • 
Ber n = 0 

Using 3.4, pick for every k e N an element ^ e £ such that | | ^ | |E ^ 1 and 

• - 1 / * . 
n = 0 

£ +1 ~> 
A E -

» = 0 

* 
AE 

It is easy to see that \\xy\ 
n = 0 

Jk oo as k —» oo. Thus, the operator of the 

left multiplication by x sends a subset {yk : k e N} of the unit ball in ( A E)1 to an un­
bounded subset {xyk : k e N} of the space A E and hence is discontinuous, in contra­
diction to the conditions of Assertion. 

(4.5). COMMENT. A topology on an exterior algebra called by us the Berezin 
topology was considered originally in a more general context by F. A. Bere­
zin [28,1.3.3]. The algebra A E makes sense for an arbitrary locally convex 

Ber 

space E (see [11, Sec. 2]). The most widely known example of a graded commutative 
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algebra endowed with the Berezin topology is the De Witt supernumber algebra 

A a, [6,7] isomorphic to the algebra AK0J. 
Ber 

5. SELF-DUALITY 

(5.1). ASSERTION, (cf. [6,13,19]) Let E be an infinite-dimensional normed space 

and let a eE. Then the annihilator La in the algebra A E coincides with a l\E. 

PROOF. Let x e ±a; it may be assumed that x G À E for an n G, N . We represent x as 

^jXj Xj ...Xj wherex{. G E. Now it remains to note that thanks to the infinite dimension­

ality of E, for arbitrary lineally independent yly ...yy^eE their (wedge) product does 

not vanish. 

(5.2). COROLLARY. Let E be an infinite dimensional normed space. Let aly ..., a„ G E 

Then 1aì fì 1a2 P\ ... (~) Lan = axa2...an A E in A E. 
B B 

(5.3). LEMMA. Let E be an infinite dimensional normed space and let T G 

G L(AE)o (( A E)1, A E). Then there exists x e. A E such that xa = T(a) for all a e 
B B B Ber 

E ( A E ) 1 . 
B 

PROOF. Choose a sequence of linearly independent elements aiya2, ...,a„, ... 
in E. 

Assertions 2.13 and 3.4 imply that T(ax ) e 1aì; by virtue of 5.1, there is bx G A E 
B 

with T{ax ) = bia1. 

Suppose that for an n G N elements b1, ..., bn G A E have been chosen in such a 

way that for every / = 1, ...,«• one has 
(bi + ax b2 + ax a2bj, + ... + a1 a2 .. .a„ _ i bn ) a^ = T(a^ ). 

Consider an operator Tn +1 defined by letting T„ + 1(x):= T(x) — (b1 + axb2 + ... + 

+ ai...a„-1b„)x. It is easy to see that Tn + l(a^) = 0 for all / = 1,..., n and Tn + Ì(an + Ì) e 

eLan + x (use 2.13 and 3.5 together with the boundedness and ( A E)°-linearity of 
N. B 

Tn + 1). This implies that Tn + Y {an + \ ) G 1ai for all / = 1, ..., n + 1 (use 2.14) and hence 

there is bn + x G A E such that T^ + x (a„ + i ) = ^i ^2 • • •
 an bn + Ian + I ( u s e ^-2). Now it is 

B 

obvious that (bx + a1b2 + ... + axa2 ...anbn + 1)ai = T{a{) for all / = 1, ..., n + 1. The 

recursion step thus is performed. 

Denote xn \= bx+ axb2+ ... + ax.. .anbn + x for every n e N. Since for every n eN 
n 

one has ^ ( ^ . . . ^ + 1 ^ + 2 ) = 0 then the sequence ij^Exk)k^N stabilizes in A E for 
B 

every fixed n G N , that is, all the elements of it coinq.de pairwise for k > n. By force of 

4.3, the sequence (xn ) n e N converges to some x G A £ . It is clear that for every n G N , 
Ber 

T(tf„) =##„ . Finally, taking into account that [\Lan = (0) and arguing as in [13, 
n e N 

Sect. 7], with the help of 2.14, one deduces that T(a) = xa for an arbitrary 

a G A E. 
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(5.4). MAIN THEOREM. Let E be a normed space. Then the free graded commutative 

Banach algebra A E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if 
B 

and only if dim E — oo . 

PROOF. Combine 2.4, 2.6, 3.2, 3.4, 4.4, and 5.3. 

CONCLUSION 

In our view, it should be interesting now to extend the concept of Jadczyk-Pilch 

self-duality beyond the Banach case (for example, in order to make it applicable to 

any GLAM algebra in the sense of [11]). Some aspects of an extension are discussed 

in [5,6]. However, while the properties BG2, JP2 and partly ]PX are readily amenable 

to such a generalization, it is not quite clear how to generalize the property of pA being 

an isometry, and hence there is still some way to go. 
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