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Fisica matematica. — General construction of Banach-Grassmann algebras. Nota di

Veabmmir G. Pesrtov, presentata (*) dal Corrisp. C. Cercignani.

AsstrACT. — We show that a free graded commutative Banach algebra over a (purely odd) Banach
space E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if E is infinite-di-
mensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addi-
tion to the only one example previously known due to A. Rogers.

Key worps: Banach-Grassmann Algebras; Superanalysis; Graded algebras.

Russsunto. — Costruzione generale di algebre di Banach-Grassmann. Si mostra che un’algebra di Ba-
nach libera graduato-commutativa su uno spazio di Banach E puramente dispari & un’algebra di Banach-
Grassmann nel senso di Jadezyk e Pilch se e solo se E ha dimensione infinita. E quindi possibile ottenere
un gran numero di nuovi esempi di algebre di Banach-Grassmann separabili, in aggiunta all'unico esem-
pio precedentemente noto, dovuto ad A. Rogers.

1. INTRODUCTION

In superanalysis one is supposed to have at hand a ground algebra serving as a
supply of odd (anticommuting) constants [1-7]. For general reasons, such an algebra
A is assumed to be a Hausdorff topological associative unital graded commutative al-
gebra[4], and as a rule, a locally convex one[6]. A natural requirement that any
«supernumber», x, should decompose into the body (number) part, x5, and the soul
(nilpotent) part, x;, imposes upon A the condition of being a local algebra[5]. The
property of convergence of the so-called superfield expansion[7] (= Grassmann
analytic continuation [8]) at least in the analytic case actually restricts the class of
ground algebras to the complete locally multiplicatively convex algebras in the sense
of[9, 101, and this way one comes to the notion of a graded local Arens-Michael, or
GLAM, algebra ([11]; cf. also[12]). Numerous examples of GLAM algebras can
be found in[11,13]; all concrete algebras of «supernumbers»[1-8] fit into that
class.

Among particularly convenient properties of ground algebras is the Jadczyk-Pilch
self-duality property introduced in[14] for graded commutative Banach algebras.
The Banach algebras with that property — the so-called Banach-Grassmann algebras —
have become popular recently[15,16]. However, the Rogers algebra B., [17] still
remains actually the only example of a Banach-Grassmann algebra. There are also
some other examples[13, 18] but they are unseparable and thus «too big».

The present Note adds a large amount of new examples of separable Banach-
Grassmann algebras. They are just exterior algebras over Banach spaces endowed
with a relevant norm and completed after that. We call this construction «a free
graded commutative Banach algebra over a Banach space». It was proposed by us ear-

(*) Nella seduta del 14 marzo 1992.
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lier [13]; here we study the structure of such algebras in more detail and show that a
free graded commutative Banach algebra /; E over a (purely odd) Banach space E is a

Banach-Grassmann algebra in the sense of[14] if and only if dim E = o,
Since /B\ll = B, then our result can be viewed as an extension of a theorem

from [19]. However, the method of proof used in[19] cannot be extended beyond
the particular case E = /;. For unseparable E’s, the result has been stated by us earli-
er[13]; its generalization to a separable case is not quite trivial.

2. PrReLIMINARIES

(2.1). A graded-commutative algebra[2-10] A is an associative algebra over
the basic field K with a fixed vector space decomposition A = A° @ A!, where A° is
called the even and A' the odd part (sector) of A, in such a way that the parity x of any
element x € A° U A' defined by letting x € A*, X € {0, 1} = Z,, meets the following
restrictions: )

(2.1.1) w=x+7 xyeA’UA
(2.1.2) xy = (—1yx, x, ye AU A
(2.2) By a normed algebra we mean an algebra A together with a fixed submulti-

plicative norm on it, ||+||;; the submultiplicativity of the norm[22] means that

2y lls < lxllal7]ls for all x, y € A. For a unital algebra A this condition implies
14l = 1.

(2.3) Recall that an /; (resp. /., or ¢;) type sum [20] of a family of normed spaces
{E,, € A} is the Banach space completion of the linear space @ E, endowed with

A
Ea)‘ ae

(2.4) A Banach-Grassmann algebra[14] is a complete normed associative unital
graded commutative algebra A satisfying the following two conditions.
BG, (Jadczyk-Pilch self-duality). For any r,s € Z, = {0, 1} and any bounded A°-
linear operator T: A”— A° there exists a unique element 2 € A”** such that Tx = ax
whenever x € A". In addition, ||a|| equals the operator norm [T/, of T.

x||:= sup|lx,
aed

the norm [x|:= 2 [|x, g, (respectively,
xel

BG,. The algebra A decomposes into an /; type sum A =K @ J{ @ A' where
K =R or C and ]} is the even part of the closed ideal J; topologically generated by the
odd part A'. In other words, for an arbitrary x € A there exist elements x5 € K, x{ € ],
and x' e A such that x =x; +x{ + x! and ||x| = [|xs] + [|x& || + [|=].

(2.5) As it was noted in[13], it suffices to verify the condition BG; in the case
# = 1 only. Furthermore, denote by Ly (A!, A) the totality of all bounded A% linear op-
erators from A’ to A[14]. It is convenient to split the Jadczyk-Pilch self-duality con-
dition BG, into the two ingredients. Denote by g: A — Ly (A', A) the left regular
representation of A defined by letting 4 (x)(£) = x£. The condition BG, is equivalent to
the following:
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JP) ¢, is an isometric isomorphism of A onto Ly (A', A),
or, in more detail:
JP,) g4 is an isometric embedding,

JP,) p4 is onto.

(2.6) We say that a Hausdorff topological associative unital graded commutative
algebra A is a supernumber algebra (SN algebra; SNA) if it admits a decomposition into
a topological direct sum A = K @ J, where J,, as above, is a closed ideal topologically
generated by the odd part Al. In other terms, A is a local graded-commutative topo-
logical algebra such that the maximal ideal ], is topologically generated by the odd
part. Such an algebra admits a unique (continuous) character 8,: A — K called the
body map. See[13] for a more detailed treatment of SN algebras.

(2.7) Assertion. [13] A Banach graded commutative algebra A admits a norm sat-
isfying the condition BG, iff A is an SN algebra.

(2.8) CoroLLARY. A Banach graded commutative algebra A admits a norm making it
into a Banach-Grassmann algebra iff A is an SN algebra meeting the condition [P.

(2.9) Let E and F be any two normed spaces. Their weak tensor product [21] is
the completion E @ F of the algebraic K-tensor product E (§) F endowed with the uni-

form cross norm defined as follows:
lulleg e :=sup {1 (f@@)|: feE', [ fllp = 1, F, gl = 1}

Clearly, for each x € E, y € F the following holds: ||x ® yllz ez = [lxllz* Iy [l
(2.10). If A and B are normed algebras then so is A @ B [22]. If, moreover, both

A and B are graded commutative unital complete normed algebras then A Q B is so as
well.

(2.11). Remark that if A and B are normed unital algebras then A Q B contains
their /,, type sum A §B B as a normed linear subspace under an isometric embedding
a®b—a® 13+ 1,Db. As a corollary of this really obvious remark, for any pair of

normed subspaces E <A, F<>B the /,, type sum E §B F embeds into A Q B isometri-
cally in a canonical way. -

(2.12). For an element 4 of an algebra A we denote by *a the left annibilator of a;
this is the set {x € A:xa = 0}. This is an ideal in A. If A is a topological graded com-
mutative algebra then 'z is a closed graded ideal. See[3,6].

We say that a graded commutative algebra A is effective if N{*a: a e A’} = (0).
Clearly, this is precisely the case where the representation g, (2.5) is effective.

(2.13). AssertioN. ([13]; cf. also[19,6]). Let A be an effective graded commu-
tative Banach algebra and let T e Ly(A*, A). Then for any a € A', T(a) € *a.
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(2.14). AsserTiON.[13] Let A and T be as above and let a, be A’ Then
aTh) = TT)b.

3. FREE GRADED COMMUTATIVE BANACH ALGEBRAS

(3.1). TueEoREM. (Announced in[13] without a proof.) Let E be a normed space.
There exists a complete normed associative unital graded commutative algebra /\ E with
the following properties.

1) Q(E ) contains B as a normed subspace of the odd part ( é\ E)Y in such a way that

E U {1} topologically generates /}E,

2) Every linear operator f from E to the odd part A* of a complete normed associa-
tive unital graded commutative algebra A with a nom ||f||,, < 1 extends to an even homo-

morphism f- /\E——)A with a norm ||f||op <

Such an algebra /\ E is unique up to an even isometric isomorphism. Moreover, \ E is
B B

a supernumber algebra.

Proor. Let AE = néo AE be the exterior algebra over E (to be more pedantic,
what we need is rather a symmetric algebra over a purely odd linear space (0) @ E,
see[23, Ch.3], but such ideological subtleties do not affect the reasoning that
much). Endow each #-th exterior power /\ E, » e N with the maximal norm maklng it
into a normed space in such a way that for every7 =0, 1, ...,# — 1 and every x € A E,

n—1
y e A E the following holds: ||x Ay|ir < ]lx”/\E”yl]”/\ E- To convince oneself that
there is indeed at least one norm with such a property, consider the canonical anti-
n

symmetrization map from the #-th tensor power E®” onto /A E and endow the latter
space with the quotient norm of the cross norm |||z ® |||z ® ... ® |- ||z (# times).
n

By the way, the norm one comes to is precisely the desired maximal norm on A E.
Similar constructions have been performed, say, in[24], where the uniform cross
norm ||||E@ - |- |lz is used, and in[25] for Hilbert spaces E only.

, The completion of AE relative the norm defined above will be denoted by
i n

Now denote by /Q E the /; type sum of all the Q E’s, n € N. A little effort is needed
to observe that the norm on that /; type sum is the maximal one making Q E into a
(complete) normed algebra in such a way that E is a normed subspace of /; E. The de-

sited universality property follows from this latter observation more or less directly.

(Hint: no submultiplicative prenorm on QE, whose restriction to E is less than or
equal to ||+||, exceeds || ||,z at some point). Both properties of essential uniqueness
B

and of being an SN algebra are obvious.
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(3.2). ExampLe. The algebra /; [, is just the Rogers algebra B, [17]. Its nonsepa-
rable analogues of the type /Q [;(I') have been considered in [18,26]. For a finite di-
mensional E the algebra QE is an ordinary Grassmann algebra, /B}K” = A(n).

(3.3). AsserTiON. For a normed space E, the condition dimE = o is equivalent to

the fact that the left regular representation ¢ NE /\ E—L NEF o (( /\ E)!, /\ E) is an iso-
metric embedding,

Proor. The «if» part stems from the observation that for a Grassmann algebra
N(g) the map ¢ 5, merely is not an injection. To prove the «only if» part, we establish
the following somewhat stronger result. Let dim E = o. Then for an arbitrary
xe /\E and each ¢ > 0, there is an y € E with ny“/\E = “xﬂ,\EHy“E -

Letx e /\ E and ¢ > 0. Assume without loss of generality that ||x|| NES 1. There is
a unique representation of x as a sum x = E x, where x, € /\ E and ||x]| = E [l I
=0
> R
=N+
there are elements x, € A E such that ||x,, - x, || < ¢/(3N + 3). Fix a finite subset

2, ---, 2% € E with the property: all the elements x, ,# = 1, ..., N are in a subalgebra
generated by {z, ...,z }. Without loss of generality, one may assume that |x;|| = 1

N
i=1,..,k Pux' =2 x.
n=0

(see the proof of 3.1 above). Fix N with < ¢/3. For every n = 0,1,...,N

Thanks to the infinite dimensionality of E, there exists a nontrivial continuous lin-
ear functional fe E' with [|f|l,, =1 and Aiz;)) = 0,7 =1, ..., k. Fix an y € E such that
[yl =1+ /3 and || Ay)|| = 1. The map F sending each « € E to the pair (2 — fla)y) ®
@ fla) is a contracting linear operator from E to the /, type sum H §|9K1 where

H = kerf.

The contracting linear operator F from E to the space H §B K canonically embed-
ded (2.11) into the (odd part of) the weak tensor product algebra é\H ® /B\ K'=
= Q H @ A(Z) (here £ stands for the element 1 of the one-dimensional linear space K*)

extends to a contracting even homomorphism F: /} E— /B\ HQ A(&) (3.1). Now one
has a chain of simple majorations: |xy|[rz = [|Fic'Vlare ae = 1F6 an X

N
XNellae = 2 lls/lxe=lx"lye 2 Ixlly£llylle = e
(3.4). ASSERTION [13] A free graded commmutative Banach algebra /\E is effec-
tive iff dim E = .

(3.5). Remark that an algebra /; E is separable if and only if so is E. The proof is

very similar to the demonstration valid in the case of free topological
groups [27].



228 V. G. PESTOV

4. BEREZIN TOPOLOGY

(4.1). Let E be a normed space. Denote by 7% the canonical projection map from
the exterior algebra AE onto the #-th exterior power A E. By the Berezin topology on

AE (resp. /\E) we mean the projective topology (see [21, Ch.1]) with respect to
the family of maps 7%: AE — /\ E (resp. %: /\ E— /\ E). In other words, sets of the

form (7%)"'U where ne N and U is open in /\E form a base for the Berezin
topology.

(4.2). The completion of AE w.r.t. the Berezin topology is denoted by /\E

There is a canonical continuous even monomorphism 7 : /\EL> N\ E, whose restr1c-
Ber

tions to the #-th exterior powers 77 : /\ E— }{\ E are homeomorphlsms Actually, the
er

algebra ]{\ E is isomorphic, as a locally convex space, to the Tychonoff product of all

o 7
the Banach exterior powers of E, namely, ]{\ E= X Q E; thus, elements of ]{\ E are
er n=0 er
had n
just arbitrary formal series of the type X x,, x, € /} E.
n=0

(4.3). Here is still another description of the Berezin topology. A sequence

(% )e « N Of elements of the algebra /\ E converges in /\ E (to an element x) if and only

er n

if for each » € N the sequence (n’,’;xk )t N converges in QE (to an element 7fx).

(4.4). AsserTiON. Let E be a normed space. Suppose an element x € /\ E is such that

Ber
the operator of the left multiplication by x maps ( Q E)'to /\ E and it is continuous w.r.t.
the norm topology on /\E Then x € /\ E.

Proor. Let xe /\E\/\E that is, x = Z x, where x, e/\E and E Hx = +o.

n=0
Using 3.4, pick for every £ € N an element y, € E such that llye lle S 1 and

(S0 )i

( Z xn)yk
left multiplication by x sends a subset {y,: £ € N} of the unit ball in ( /\ E)! to an un-
bounded subset {xy,: £ € N} of the space /\ E and hence is discontintous, in contra-

k+1

n

éE_ l/k.

It is easy to see that [|xy|| = — o as £ —> o, Thus, the operator of the

diction to the conditions of Assertion.

(4.5). CommenT. A topology on an exterior algebra called by us the Berezin
topology was considered originally in a more general context by F. A. Bere-
zin[28,1.3.3]. The algebra A E makes sense for an arbitrary locally convex

space E (see[11,Sec.2]). The most widely known example of a graded commutative
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algebra endowed with the Berezin topology is the De Witt supernumber algebra

A, [6,7] isomorphic to the algebra I{\K"

5. SELF-DUALITY

(5.1). Assertion. (cf.[6,13,19]) Let E be an infinite-dimensional normed space
and let a € E. Then the annibilator *a in the algebra é\ E coincides with a /} E.

n
Proor. Let x € *a; it may be assumed that x € Q E for an #» € N. We represent x as
sz-lx,-2 ...X; where x; € E. Now it remains to note that thanks to the infinite dimension-

ality of E, for arbitrary lineatly independent y;, ..., y, € E their (wedge) product does
not vanish.

(5.2). CoroLrLary. Let E be an infinite dimensional normed space. Let a,, ...,a,€ E
Then ‘*a;, Nta, N ... NYa, =aja,...a, /}; E in QE.

(5.3). Lemma. Let E be an infinite dimensional normed space and let T e

eL/\EO(( /\E) /\E) Then there exists xe]{\E such that xa = T(a) for all a e
e (NE),

Proor. Choose a sequence of linearly independent elements 4;,a,, ..., 4q,, ...
in E.

Assertions 2.13 and 3.4 imply that T(a;) € *a;; by virtue of 5.1, there is b, € /} E
with T(a,) = by 4.

Suppose that for an # € N elements b, ..., b, € /A E have been chosen in such a
way that for every 7 = 1,...,# one has ?

(by +a1by +aya:b5+ ... v ayay...a, _1b,)a; = Ta;).
Consider an operator T, , , defined by letting T, ., (x):=T(x) — (by + a1, + ... +
+ay...a, 1b,)x. ItiseasytoseethatT,,(¢) =Oforall;=1,...,nand T, (a,,,) €
ela,,ﬂ (use 2.13 and 3.5 together with the boundedness and (Q E)°-linearity of
T, . ). This implies that T, , , (4, ,) € *a, foralli = 1, ..., n + 1 (use 2.14) and hence

there is b, ., € QE such that T, , (4, +1) =a145...a,b, , 14, (use 5.2). Now it is
obvious that (b; + a6, + ... + a1a5...a,b,,)a;, =T(g;) for all i =1, ...,n + 1. The
recursion step thus is performed.

Denote x, := b, + a1b, + ... + a,...a,b, , | for every n € N. Since for every n e N
one has 7% (a;...a,,1b,,,) =0 then the sequence (7fx; ), n stabilizes in /§E for

every fixed # € N, that is, all the elements of it coincide pairwise for £ > 7. By force of
4.3, the sequence (x, ), y converges to some x € /\ E. It is clear that for every n € N,

T(a,) = xa,. Finally, taking into account that ﬂ 14, =(0) and arguing as in[13,

Sect. 7], with the help of 2.14, one deduces that T(a) =xa for an arbitrary
ae /B\E.
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(5.4). MaN THEOREM. Let E be a normed space. Then the free graded commutative
Banach algebra /1; E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if

and only if dimE = o,

Proor. Combine 2.4, 2.6, 3.2, 3.4, 4.4, and 5.3.

CONCLUSION

In our view, it should be interesting now to extend the concept of Jadczyk-Pilch
self-duality beyond the Banach case (for example, in order to make it applicable to
any GLAM algebra in the sense of [11]). Some aspects of an extension are discussed
in[5, 6]. However, while the properties BG,, JP, and partly JP; are readily amenable
to such a generalization, it is not quite clear how to generalize the property of ¢ being
an isometry, and hence there is still some way to go.
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