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Equazioni differenziali ordinarie. — Some properties of collision and non-collision 
orbits for a class of singular dynamical systems. Nota di VITTORIO COTI ZELATI e ENRI­

CO SERRA, presentata (*) dal Corrisp. A. Ambrosetti. 

ABSTRACT. — We present some regularity properties of periodic solutions to a class of singular po­
tential problems and we discuss the existence of a regular solution. 

KEY WORDS: Periodic solutions; Kepler problem; Variational methods. 

RIASSUNTO. — Alcune proprietà delle soluzioni di collisione e di non collisione per una classe di sistemi 

dinamici singolari. Si presentano alcune proprietà di regolarità delle soluzioni periodiche di una classe di 

sistemi dinamici con potenziale singolare e si prova l'esistenza di una soluzione regolare. 

1. INTRODUCTION 

In this Note we are concerned with the existence of periodic solutions for second 
order Hamiltonian systems of the form 

(1) -q"{t) = VV{t,q{t)) 

where q{t) G R N and Ve CxiR X Rn\{0}; R) is T-periodic in t and V{t, x) -> - oo as 
| * | - > 0 . 

In order to find classical solutions of (1) {i.e. solutions q{t) G 
G C2 ([0, T]; RN\{0})), an important role is played by the behavior of V{t,x) near the 
singularity x = 0. 

More precisely, defining as usual the functional /:A—»R, where A = {u G 
eHl(S1;RN)\u(t)*0Vt) by 

T T 

(2) f{u)=^ [ \u'{t)\2dt- iv{t,u{t))dt 
0 0 

we recall that one has/(«) —» +•. oo as u —> dA weakly in H1 if V is a «Strong Force», 
i.e. if 

(3) -V{t,x)>c/\x\2 

for some c > 0 when | x | is close to 0, while, in case (3) is violated, one can have situa­
tions in which/' {u„ ) —> 0, f{u„) —» c < + <*>,un—> dA. As a consequence, one can use 
standard variational arguments to study (1) if (3) holds, while they generally fail if (3) 
is not satisfied. 

To prove existence for (1) when (3) does not hold one possible approach, used for 
the first time by A. Bahri and P. H. Rabinowitz in [3], is the following: 

a) Perturb V by a strong force, for example setting Ve{t,x) = V{t,x) — 

- s / | * | 2 ; 

(*) Nella seduta del 14 marzo 1992. 
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b) Prove existence of a solution qt for 

(1). -*"(*) = VV, (/,*(/)). 

This is possible using variational techniques since V£ now satisfies the strong force 
condition (3). 

c) Try to pass to the limit as £—>0 to find a solution q of (1). 

This approach indeed works, but one cannot prove in general that such a solution q 
is a classical solution of (1). This is the reason which led Bahri and Rabinowitz to the in­
troduction in [3] (Definition 3.1) of the concept of generalized solution q of (1). 

In the paper [3] existence of at least one generalized solution is proved. In partic­
ular, in such a paper it is asked if such a generalized solution has additional 
regularity. 

The main object of this Note (we refer to [5] for a more detailed discussion and 
for the complete proofs) is to show that generalized solutions indeed have additional 
regularity under mild assumptions on the behaviour of V near the singularity. In par­
ticular we show that every generalized solution has only finitely many collisions; and 
we also show that the number of collisions can be bounded in terms of the value of the 
action functional or the Morse index of a sequence of approximated solutions. 

Lastly we prove existence of a noncollision (i.e., of a classical) solution for a class 
of singular systems when V behaves near the singularity as — \x\ ~a, 1 < a < 2. Such a 
problem has been studied by many authors; we recall here [1,6,11]. In all these pa­
pers global assumptions are made on the potential V which imply that it is not too far 
from a radial one; here we only make assumptions on the behaviour of V for x close to 
0. Such a result is similar to that of [4], valid only for planar systems, and to that 
of [7], valid only for even potentials. 

As far as the case a = 1 is concerned, we cannot prove the existence of a non-colli­
sion solution, but we prove that the solution found in [3] if it does collide, it is re­
flected back by the singularity. 

After completing the paper, we received the paper [10], where some results relat­
ed to ours are obtained. 

2. REGULARITY PROPERTIES OF GENERALIZED SOLUTIONS 

In this Section we establish some properties of generalized solutions by mak­
ing some assumptions on the potential V near its singularity and by considering 
solutions obtained as limit of classical solutions of perturbed problems. When q is 
a generalized solution of (1) we denote by G(q) its collision set, namely the set 
{te[0,T]/q(t) = 0}. 

Let g = {G e e00 ( £ N \ { 0 } ; R)/G(x) < -a/\x\2 + b for some*, b > 0}; then we 
give the following definition 
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DEFINTION 2.1. We say that a generalized solution q of (1) is a variational solution 
of (1) if 3G E g such that Vs > 0 3qe e A satisfying 

(i) qz is a classical solution of 

(4), -qt = VV{t,qs) + &G(qt); 
T T T 

(ii) /fo) = ì J 1̂  |2 - J V{t,q.) ~ e JG(q.) < C, 
0 0 0 

where C does not depend on a; 

(iii) qe->q inH 1 ( t S
1 ;K N ) . 

REMARK 2.2. (i) The generalized solution whose existence is proved in [3] is actu­
ally variational. 

(ii) Since q£—>q in H1, #£ is a classical solution in [0, T] and ^ is a classical sol­
ution in [0, T]\C(q), we easily deduce that q£-^q in C2(J3) VB compact subset of 
[0, T]\C(q). 

We now make some assumptions on V near the singularity and show that these im­
ply additional regularity for a variational solution. 

Consider V E C1 (R X # N \ { 0 } ; #) and assume that 30 < a < 2 such that 

(VI) V is T-periodic in t\ 

(V2) V(/,x)= - | x | - a + U(/,x); 

(V3) \VU(t,x)\ |x | a + 1 ^ 0 as \x\ -> 0, uniformly in /; 

(V4) 3a ' < a such that |3U(*,x)/3^| | x | a ' ->0 as \x\ —» 0, uniformly in /. 

We start by 

LEMMA 2.3. Suppose VeCl(RX RN\{0}; R) satisfies (VI-V4). Let ^ be a varia­
tional solution of (1) with collision set C(q). Then 3EeR such that 

(5) | \qU)\2 + V(t, q{t)) =E+ j ^-(s, q(s))ds V? e [0, T ] \ e ( ^ ) . 
0 

We can now state a first regularity result. 

THEOREM 2.4. Suppose V satisfies (V1-V4). Let q be a variational solution of (1). 
Then q has only finitely many collisions. Moreover 3à > 0 such that d2 \q{t)\2 jdt2 > 0 
V* such that \q(t)\ < o\ 

REMARK 2.5. If the potential V does not depend explicitly on time the previous re­
sults hold true under less restrictive assumptions, and their proofs are very simple. 
Moreover, if V(x) + (VV(x),x)/2< -a/\x\* VxeRN\{0} for some a >0 and ae]0,2[, 
then the number of collisions 3Z(q) of a generalized solution q can be estimated in terms 
of the value of the action functional as ^l{q)<0L~2'aa{2 + a)-{2 + a)^2f{q)2 + aT{a-2),a. 
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We now turn to the relationship between the Morse index and the number 
of collisions of a generalized solution. 

Actually, one cannot give a meaning to the Morse index m_ of a generalized sol­
ution (the functional is not C2 in such a point), so we will take q to be a variational sol­
ution and bound the number of its collisions by the Morse index of the sequence of 
classical solutions of (1)£ which converge to q. We recall that the Morse index m(x) of a 
critical point x of a functional / e (S2 (H; R) is the dimension of the maximum sub-
space of H where d2J(x) is negative definite. 

THEOREM 2.6. Suppose Ve C2(R X RN\{0}; R), N > 3, satisfies (VI-V4). As­
sume there exist a > 0 and C > 0 such that 

(V5) |V2U(/,3;)| \y\" + 2-°£C as |y| ->0 uniformly in /, 

(V6) |VU(*,;y)| M - 1 - > 0 as |y| -> » uniformly in /. 

Let q be a variational solution of (1). Then 

3£(tf)(N - 2) < lim infm(q£ ) 

where qt are classical solutions of (l)e such that qe->q. 

The proof relies on the results obtained by E. Serra and S. Terracini in [7] to 
which we refer for the details. 

REMARK 2.6. It is not difficult, using results contained in [2,8,9] and [12] to 
show that, in the setting of [3] (and also in the setting of Sect. 3), m(qs) < N — 2. 
This implies that the generalized solution found in [3] has at most one colli­
sion. 

3. EXISTENCE RESULTS 

In this Section we will sketch how to prove existence of a noncollision solution in 
the case V has the form V(x) = - \x\ " a 4- U(t9x) with 1 < a < 2. 

Actually, we will show how the generalized solution found in [3] is a noncollision 
one in our situation. 

Let us assume Ve CHR X RN\{0}; R) satisfies (VI), (V2) and 

(V7) U ( / , X ) < 0 V ( / , X ) 6 R X J R N \ { 0 } , 

(V8) lim U(t,x)= lim |VU( / ,x ) |=0 , 
\x\ —» 0° | x | —» oo 

(V9) 3 r > 0 , 3<f> e C1 (10, r];R) such that U(/,x) = j>(\x\), V 0 < |x| ^ r, V/, 

(V10) l imi ' ( j )* a + 1 = 0. 

Our main result is the following 

THEOREM 3.1. Let VeCHR X RN\{0}; RN) satisfy (Vi), (V2) and (V7)-(V10), 
with a > l and N ^ 3 . Then there exists at least one noncollision solution of (1). 

SKETCH OF THE PROOF. The proof is divided in various steps. 
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STEP 1. Existence of a variational solution q (limit of a sequence qs of classical sol­
ution of approximated problems): such a proof follows the one in [3], to which we 
refer for details. The solutions q£ are found by minimaximizing the functional 

T 

fAq)=f(q)-e\G(q)dt (G e g) 
o 

over a suitable class T of subsets of A. In this way one finds for each e > 0 critical lev­
els c£ for/£ and corresponding solutions qz of (l)e which can be shown to converge to a 
(variational) solution q of (1). 

STEP 2. Properties of q and q£(l < oc < 2). 

We show that if q has a collision then qs has a self-intersection for e small. The 
proof is similar to that of [4]. 

We now use the fact that qz has a self-intersection to find a contradiction. 

STEP 3. The solutions qt cannot have self-intersections for s small (0<a<2) . 
More precisely, one can show that, whenever qt has a self intersection, then 3Aer 

such that 

max fe (x) = c£, V/£ (x) & 0 Vx e A 
XE.A 

contradicting the fact that ce is a minimax value. This proves step 3 and the 
Theorem. 

In the case a = 1 Theorem 3.1 cannot hold. However the method used to prove 
Theorem 3.1 shows that the solution found as a limit of solutions of approximated 
problems has still some additional properties. Precisely we have 

THEOREM 3.2. Suppose that the assumptions of Theorem 3.1 hold with a = 1. 
Then there exists a generalized solution q of (1) such that for every t e 6(q) one has 
q{t + t) = q(t — t). Moreover, such a solution has at most one collision. 

This work was supported by M.U.R.S.T. gruppo 40% «Equazioni differenziali e applicazioni». 
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