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Analis i matematica. — Function spaces of Nikolskii type on compact manifolds. 

N o t a d i C R I S T I A N A B O N D I O L I , p resen ta ta (*) da l Socio E . M a g e n e s . 

ABSTRACT. — Nikolskii spaces were defined by way of translations on Rn and by way of coordinate 
maps on a differentiable manifold. In this paper we prove that, for functions with compact support in Rn, 
we get an equivalent definition if we replace translations by all isometries of Rn. This result seems to jus­
tify a definition of Nikolskii type function spaces on riemannian manifolds by means of a transitive group 
of isometries (provided that one exists). By approximation theorems, we prove that - for homogeneous 
spaces of compact connected Lie groups - our definition is equivalent to the classical one. 

KEY WORDS: Nikolskii spaces; Isometry groups; Compact homogeneous spaces. 

RIASSUNTO. — Spazi funzionali del tipo di Nikolskii su varietà compatte. Gli spazi di Nikolskii sono stati 
definiti in R" tramite le traslazioni e su varietà differenziabili mediante carte locali. In questa Nota si di­
mostra che, per funzioni a supporto compatto in Rn, si ottiene una definizione equivalente sostituendo le 
traslazioni con tutte le isometrie dirette. Ciò giustifica la definizione tramite isometrie, che viene qui pro­
posta successivamente per spazi del tipo di Nikolskii su spazi omogenei di gruppi di Lie compatti e con­
nessi. Una caratterizzazione mediante approssimazione permette infine di dimostrare che, per tali varie­
tà, la definizione qui proposta è equivalente a quella usuale. 

I N T R O D U C T I O N 

Several classes of function spaces on Rn can be defined by means of translations. 
Then the question might arise: if we replace the translations by all the isometries of 
Rn, do we get an equivalent definition? 

In this paper we will consider a family of Nikolskii spaces on Rn and give (in n. 1) an 
affirmative answer to the previous question, for functions of compact support. 

This result suggests to define (as we do in n. 2) Nikolskii spaces on a riemannian 
manifold by way of the isometries of the manifold, provided that they are - shall we 
say - enough. Nikolskii spaces on a C°° manifold are usually defined by coordinate 
maps. Here we propose the definition by isometries only for a more restricted class of 
manifolds, namely the homogeneous spaces of compact connected Lie groups (among 
which there are, for example, spheres and tori). However, for these spaces, our defini­
tion is equivalent to the classical one (as we prove in n. 3); moreover, it allows us to 
use the invariance property of the Laplace-Beltrami operator of the manifold with re­
spect to the isometries. This fact could prove useful in some applications to evolution 
problems on riemannian manifolds (see the last remark of the paper). 

The result of the equivalence quoted in n. 1 is based on a characterization of 
Nikolskii functions in Rn, which we report as Theorem 1. A similar characterization 
for the function spaces which we have introduced on manifolds is given in Theorem 3. 
Both results are used in n. 3 to show that - for compact homogeneous spaces - our 
definition and the classical one are in fact equivalent. 

(*) Nella seduta dell'8 febbraio 1992. 
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1. - NOTATION. Let x = (xi,..., x„) e Rn, A — [a^ be a real n X n matrix, r be a real 
positive number and feL1 (Rn). Then we define: 

\l/2 ( [ n^ \ l / 2 
\X\ = 2 ^ , \A\= | d , B(0,r) = { x e ^ | M < r } , 

v4/= l 

| /W^ = J/M^, 11/11 = /|/W|^. 

In this Section we consider the following Nikolskii spaces (see, e.g., [4, §8.2] 
and [9, §8.4]). 

DEFINITION 1. For every X e]0,1[ /e/ 

Nx(Rn) = Nx = {feLl{Rn)\ sup |̂ rA|l/(^ + ̂ )-/Mll<+00}. 

The space NA can be characterized by the following Theorem 1. The proof we ex­
pose here is a discretisation of the one given by [12, Ch. Ill, Th. 4]; see, also, 
[11, V. 4.2] and [10, Lemma 2.2]. For a more general statement, see, for example, 
[2,6.2] and [8, Ch.II, 9]. 

THEOREM 1. feNx if and only if there is a sequence (jÇ-)y=o, I, ... of functions in 
C00 r\W1,1{Rn) satisfying the conditions: 

+ 00 

W f=lf inLl{Rn)\ 
7 = 0 

there exists c>0 such that, for every j , 
{U) UHc2-\ \pkg<c2«-™ k=\,...,n. 

PROOF. Assume that feNx. Let 9 be a smooth function, supported on B(0,1), 

such that 9 ^ 0 and <p(x)dx= 1. 

Define <pj(x)=2fn<p(2?x) ( /= 0,1,2,...); <pj = 9j-9j_l (>= 1,2,...); &) = Po = 9-
In this way we have: 

for every j> 0, J </y(x) ix; = 0, supp ty cB{0,2~j+l), J Dkty(x) dx = 0; 

there exists C > 0 such that for every j^0, for every &= 1,...,«, ||D^<//y||^C2/. 
L e t / = / * ^ ( / = 0 , l , . . . ) . 
Then feC^n W1' l (Rn) and / = E jÇ- in L1 OR"). 

y 
Moreover, since / e N A , there is a constant M > 0 such that, for every heRn, 

\\f{x + h)~ /M| | ^ M\h\x; hence, for every j^0, 

M\\ = l JAx-y)<t>j(y)dy dx = \ j(f(x-y)-f(x))^(y)dy dx^: 

: / ^(y)\ \\f{x-y)- f(x)\dxdy^\ {fy(y)\ M\y\xdy ^2M2^+ 1)A = cx2~*. 
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Similarly, we estimate the norms ||D ĵÇ-|| for every k= 1,2, ...,#, and we obtain 

l|D* fj || = | |/* Dk <Pj || = / / (f(x -y)- f(x)) Dk fy (y) dy dx' 

lj\Dk^(y)\M\y\xdy^C2JM2{-J+1)x==c22
{1-x)j. 

Conversely, let 
+ 00 

where the fj satisfy the conditions of Theorem 1. 
For every j>0, for every h = (hiy ...,hn) we have 

l 

dx^ M(x + h)-£(x)\\=f l\Dkfj{x + th)hkdt 
o 

^\h\\[ti\\DkfJ{x + th)\dx\dt=\h\ ÎJlDkfiWldx. 

So we obtain 

M(x + b)-fj(x) ^:i 
'2c2'Xj' 

vy. 
cn\h\2{l-x)i 

Let/0 be such that 2*> s£2/(«|/>|) <2,i> + 1 . (Thus cn\h\2(l~x)3 ^2c2~X] for j^j0; 
cn\h\2{l-xv>2c2->'J f o r / > / 0 ) . 

This implies that, for every h e R", 

+°° h +0» 

\\f(x + h)-f(x)\\^ 1 M(x+.h)-t{x)\\*S 1 cn\h\2<l-W + . -2 2c2-*^ 
7 = 0 / = 0 y=7o+l 

7o +oo / +oo \ 

^«i|A| S 2(1 'A)y + 2^ 2 2-* = cn\h\{2-j»Y-l[ S 2 ( A - ^ ) + 
y = - ° ° y=y0 + i 7 = 0 

+ 00 

+2c2-^o+1)[ E 2-A-'') = c1|Â|(2>»)1-A + ^(2-'» + 1 ) 

i^ i l* l 2 \ i-^(#iy< w_ 
« |A| 

Therefore / e N \ 

Now let us introduce new function spaces, which are closely related to the Nikol-
skii spaces NA. They are defined by replacing, in Definition 1, the group of transla­
tions with the identity component SO(n) X Rn in the group of all isometries of the eu-
clidean space Rn. 

Let G be the group SO(n) y\Rn and V be the Lie algebra of SO(n). 
We define d(A) = min {|X| | X e V and exp X = A} for every A e SO{n); | (A, b) \ = 

= d(A) + \b\ for every (A,b)eG. 
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DEFINITION 2. For every X e]0,1[, let 

Ex = {feLHRn)\ sup \(A,b)\~x\\AAx + b)-Ax)\\<+«>}-
(A,b)eG,(A,b)^(I,0) 

Evidently, Ex c N\ 
Conversely, we have 

THEOREM 2. Let supp f be compact. Then feEx if and only fe NA. 

PROOF. Let us suppose tha t / eN A and supp / i s compact. It is sufficient to show 
that 

sup | (y l , 0 ) | - A | | / ( ^ ) - / (x ) | |<+œ. 
AeSO(n),A*I 

Let us write / = 2 / as in Theorem 1. 
j 

Since supp / i s compact, we may choose r > 0 so that s u p p / cB(0, r) for every/. 
Let A eSO(n) and xeRn; choose X e V s o that e x p X - A and |X| = d(A). Consider 
the curve in Rn given by a{t) = exp tX-x.te [0,1]. Remember that exp tX e SO(n) and 
<x'(t)=X-exp tX-x. 

Therefore 
l 

dx^ WfiiAx) - / M U = / / V/(exp tX-x) •«'(/) it 
o 

l l 

; [ f | V ^ ( e x p / X - x ) | | a ' ( / ) | i ? f ^ ^ [ [ É |D*jÇ-(exp/X-x)||X-exp/X-x|<fo<fc = 
o o 

l 

^ 5 / 2 f f 2 |D^ / (exp /X-x) | |X | | exp /X |HixJ /^ 

l 

o 

: «3 |X| f f Ì \Dk fj (exp tX-x)\ \x\ dx dt s£ «3 r|X| 2(1 " w = Cl |X| 2 d-A)y 

0 B(0,r) 

Thus we have both the following estimates 

2c2~Xj 

U(Ax)-Mx)\ V;. 
q|X|2 ( 1-A^ J 

Following the same reasoning as in the second part of Theorem 1 we get 

sup | (^,0) | -A | | / (ylx)-/W| |<+oo. 
AeSO(n),A*I 

We therefore have feEx. 

REMARK 1. If supp/is not compact, it is not true tha t / e NA implies/e Ex. We out­
line a counterexample; details will appear in[ l ] . 

Suppose that n = 2. Fix A e]0,1[; choose p > 0 such that px>2. Denote, for every 
keN, afe = (tan(p~^7r/4))-1; Qk the square with vertices in (^,0), (ak + 1,0), (ak + 
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+ 1,1), (tf*, 1); Xk the characteristic function of Q^. Let 

Then we have fe Nx and ft Ex. 

2. - In this Section we consider compact homogeneous spaces and on them we de­
fine and characterize function spaces of the Nikolskii type. Our main references here 
are the books [3, Ch. II, Ch.X; 7, Ch. IV, Ch.V]. 

Let G be a compact connected Lie group, K a closed Lie subgroup of G/M the 
space of left cosets xK, xeG. Fix on M, once and for all, a G-invariant riemannian 
metric (by G-invariant we mean that each transformation T(X):M—*M, z(x)p = x-p 
(x e G) is an isometry). Let p denote the invariant measure on M corresponding to the 
riemannian metric. Let g be the Lie algebra of G and exp : g —> G the exponential 
mapping; since G is compact, exp is onto G. 

For every X e g, we define a vector field on M by the formula 

X M p ) = M /(exP^-p)-/(p) for / £ ^ ( M ) ; peM 

Finally, let | | denote a norm in g, induced by an inner product. 

The previous Theorem 2 seems to justify the following 

DEFINITION 3. For every X e]0,1[ let 

EX(M) = {fe 

As before, we have 

Ex(M)={feLHM)\ sup |X|-A||/(exp X-p) - Ap)hm < +*>} • 
Xeg,X=É0 

THEOREM 3. feEx(M) if and only if there is a sequence (jÇ)y=o,i,... of functions in 
C00 (M), satisfying the conditions: 

+ 00 

/=o 

//?ere Ê'x/te c > 0 J-̂ C/? that, for every j y 

Uh(M)^c2-*; | |X^- | | L 1 ( M ) ^^2 ( 1 -^ ' , V X e g with |X| = 1. 

PROOF. Suppose that fe Ex (M). 

Let the measures on M, G, K be normalized so that F(x) dx = [ F(xk) dk J dp 
for every FeC(G). G M\K J 

For/ = 0 ,1 , . . . , let By be the ball of radius 2~j in g ; we may suppose that B0 is a nor­
mal neighborhood of 0 in g. Let py be a smooth function on G, supported on exp Bjy 

such that py ^ 0, J py (x) dx = 1 and ||Xpy||Li(G) ^ C2y |X| for every X e g, where X is the 
G 

right invariant vector field on G, defined by X. 
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Let !̂ 0 = 9o, fy = py — 9y_ ! f o r / ^ 1. For every x e G, let/(x) = f(xK). The function/ 
is right K-invariant; since fe Ll(M)} fe L1 (G) and F; = <ly * / is a smooth, right jfC-in-

+ 00 

variant function on G. Since (çy) is an approximate identity, / = S F) in Ll{G). 

Define on M=G/K f(xK) = F,(x); then / e C00 (M) and / = S f in L1 (M). 
We have to estimate the norms H/HL^M) and ||X*/||Li(M).

 J~° 
For every / ^ 1 we obtain 

ll^llL'(M,=l|Fylb,G)=/l^*/W|^ = 
G 

= j \^y)Ky-lx)dy-\b(y)f{x)dy dx^\ \\^{y)\\Ay-1 x)-f(x)\dxdy. 
G G G G G 

Since supp </y ç exp Ey_ x, for every y in supp </y there exists exactly one Y e B; _ x 

such that y = exp Y. 
Then it follows that 

/ \~fiy'lx) - / M | dx = ||/(exp (-Y)x) -/M||L 1 ( G ) = 
G 

= ||/(exp (-Y)-p) -/(^)||i.(M, < L | y | ^ L 2 < 1 - ^ . 

This implies 

| | / | | L l ( M ) ^ L 2 ( 1 - ^ / | ^ ( 3 ; ) | ^ « C l 2 ^ . 
G 

In a similar way, we estimate ||X*/||Li(M). Let X e g with |X| = 1. For every x e G 
we have 

X^(xK)=XFJ(x)=X^ 

Therefore 

IWIII.(M)=II(%)*/IIL.(G). 

Since X<pj has mean value zero (see [13, p. 387]) we obtain 

\\X*fjhm^j \\X^{y)\\f{y-lx)-f{x)\dxdy^L2^ 
G G + 0 0 

Conversely, l e t / = 2 / , where t h e / satisfy the conditions (/) and (it). 

Let p e M and Ye§; write Y = sX with |X| = 1 and's ^ 0. For every/ = 0 ,1 , . . . we 
define 

Ay:[0,l]->/J, hJ(t) = fJ(exptY-p). 

Since 

/ ( e x p ( ^ + / ) 7 - p ) - / ( e x p / y . p ) 
A/ (/) = lim = 7"/(exp tY-p) 
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we have 

\ff(txPY-p)-fj(p)\ = | hj {t)dt\^s\ \X*fj (exp tsX-p)\dix. 

Moreover, the G-invariance of the measure n implies that 

|bÇ-(exp Y-p) - fj(p)hW = / U(exp Y-p) - fj(p)\ MP) « 
M 

1 1 

**s\ j\X*fJ(exptsX-p)\d!j.(p)dt = sj \\X^fj(p)\dix(p)dt^cs2{1-^ = c\Y\2{1-x)J. 
0 M 0 M 

Therefore 

\2r2~Xj 

||jÇ-(exp Y-p) - fj(p)\ym « l v 1 „a_AV Y/'. 
C |7|2 (1-

The conclusion follows from the same argument as in the second part of 
Theorem 1. 

COROLLARY 1. Let f be a smooth function. Then feEx (M). 

PROOF. Let/0 = f,fj• = 0 for every j> 0. It suffices to prove that there exists C> 0 
such that, for every X e g with |X| = 1, IIX^/IIL^M) ^ C. Choose an orthonormal basis 
Xly...,Xq in g. Let X e g with unit norm; then it follows that bix ...bq eR exist such 

that X = 2 biXi, with \b{\ ^ 1. Since X* = 2 b{Xf, the result is easily proven. 

3. - In this Section we shall compare the spaces Ex (M) introduced in n. 2, with the 
Nikolskii spaces, defined on a riemannian manifold by coordinate maps. 

Let M be a riemannian manifold; let {(Ua, <pa)\a e A} be an atlas on M. 

DEFINITION 4. For every X e]0, 1[, let 

Nx (M) = {/e L1 (M)|Va e A, V? e Q00 (Ua) (tf) o ^ e NA (*»)}. 
It is easy to see that this definition is independent of the various choices of the atlas; in 
fact one need only check Fo <P e Nx (Rn), if F is a function in Nx (Rn) with compact 
support and <P is a diffeomorphism (and this result follows, for example, from Theo­
rem 1). 

Now let M be a compact homogeneous space, as in the previous Section; let n be 
its dimension. 

THEOREM 4. 

NX(M) = EX(M) 

PROOF. Let us assume that feNx(M). Choose an atlas"{(U/,ç>/)|/= 1, ...,r} of M. 
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Select two open coverings {V/} and {Wì} of M and a partition of unity {pi} such that 
supp fpi ç Wi ç Vi ç Vi ç [//. 

For every /, let // = <£/•/ and Fi=fio<pJl in ?/(U/) (and F/ = 0 elsewhere). Since 
/ e NA (M), F/ e NA (/?*); therefore there exists a sequence (F^y=o, 1,... of functions satis­
fying the conditions of Theorem 1. Moreover, since supp F/ c <pi(Wi), we may suppose 
that suppFyC<pi(Vi). 

If we define^ = F y o <pt in [7/ (and^ = 0 elsewhere), theny^ e C00 (M). Furthermore 
+ 00 

it is easily seen that^ = E ^ in L1 (M) and that there is a constant cx > 0 such that, for 
y=o 

every >, ||^||Li(M) ^ ^ 2 " ^ . 
Now we have to estimate ||X*^||Li(M), for X e g with |X| = 1. To do this, take an 

orthonormal basis Xly ...,Xn + k of g. Let Xfv, ...,X*+k be the corresponding vector 
fields on M. Let 3>i,...,;y„ be the system of coordinates on 17/; then, for every s = 
= 1, ...,« + £, there exist functions a[y...>a5

n in C00 ([//) such that 

X*(p)^taï(p)^(p) VpeU/. 

Let A = max max max|#/(p)|. Then 
l^s^n + k l^i^n peVi 

\\x,*Ah (M) s fk(p)i 
V/ 

* M 2 f 
i=l J 

MP) '• 

dji 
(P)Â dt*(p)^<2At f |AF^(x) |^^c 3 2 ( 1 -

i=i J 

A)y 

n + k 
?i(Vi) 

Now let X e g and |X| = 1; then X = S ^X, with |£J ^ 1; therefore 
s=l 

n*v* /yllL^M) 2 i^M (« + k) cò 2 d-A)y 

It follows from Theorem 3 that fi eEA(M). Since / = 2 Mf= 2 / / , we obtain 
/ e£ A (M) . \l=l ' / = 1 

To prove the other half of the Theorem, take an atlas {(17/,p/)|/= 1,...,r} with the 
property that for every coordinate neighborhood (U/,9/) there are n unitary vectors 
X/i,..., Xi„ e g such that the corresponding vector fields Xj\,. ..,X*„ generate the mod­
ule of all vector fields on 17/. 

Now suppose that / eF A (M) . Let feCc°°(t7/); we have to prove that 
f/op/"1 eNx(Rn). Choose Wt and V} open sets of M such that 
supp ÇçWiçViÇ Vi ç U/. Since f / e FA (M) (the proof is similar to that of Corollary 1), 
there exists a sequence {fi) of functions of C°° (M) satisfying the following condi­
tions: 

M supp /• ç V/ #«</ f / = S /• /« L1 (M) ; 
y=o 
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(it) 
there exists c > 0 such that, V/ 

MhM«2-»'; \\X*fj\\LHm^c2«-^, VXe§with\X\ = l. 

We define F = Ç/o (pjl in <pi(U/) (and F = 0 elsewhere); Fy = ^ o cpj1 in 9/(17/ ) (and 

Fj = 0 elsewhere). Then Fy e Q (Rn)y I^Fj = F in L1 (H") and there exists cx > 0 such 

that, for every/, ||Fy||Li(ir) ^Ci?"^. 
It only remains to estimate the norms HD^H^^») for h = l,...,n. 
Let yi,...yy„ be local coordinates with respect to (U/,9/). Then 

MIL>(*«)= / I A ^ M I ^ ^ Q / 
9 » 

d(x(p) = q 
3y/J LHUt) 

?i(Vi) 17/ 

From our hypothesis on the atlas, it follows that there are n functions a\, ...,<4 in 
C00 (U/) such that 

-£-(p)=t af (p) mp) for every peUh 

L e t A = max max max;|^(p)|. 

We obtain 

dyh 
fj LHUi) 

i=\ i—\ 

Hence, by Theorem 1, FeNÀ(Rn). 

REMARK 2. Nikolskii spaces on open sets of Rn naturally occur in the study of par­
tial differential equations. By analogy, the function spaces Ex (M), that we have intro­
duced here, could prove interesting in problems concerning differential equations on 
manifolds, particularly if we have to consider differential operators, which are invari­
ant under global transformations of the manifold. 

An example of such a situation is the following. 
In [6] a regularity result is proven for the solution of the two-phase Stefan prob­

lem in a bounded domain Q of Rn
y under the assumption that the initial data are as­

signed in a suitable Nikolskii space on Q. The demonstration makes use, among other 
things, of the invariance property of the Laplacian with respect to the translations of 
R": A(f(x + h)) = (Af)(x + h). 

Also for applications, it is interesting to study a similar problem no longer in Q, but 
rather on a riemannian manifold M (for instance, on the boundary of Q) and - also in 
this case - to take the initial data in NA (M) (this problem is proposed in [5,5.c]). The 
definition of NA (M) utilizes coordinate maps; therefore, it is not clear how to use the in­
variance property of the Laplace-Beltrami operator of M under all isometries of M: 

(*) A(f(g-x)) = (Af)(g-x) for every isometry g of M. 

If however M is a homogeneous space of a compact Lie group, the definition of Ex (M) 
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(which makes use of a transitive group of isometries of M) and Theorem 4 allow us to 
avail ourselves of the property (*). In this case therefore it seems possible to extend 
the techniques of [6] and consequently to obtain a similar regularity result. 
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