LUCIA SERENA SPIEZIA

Infinite locally soluble k-Engel groups

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1992_9_3_3_177_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.
Teoria dei gruppi. — *Infinite locally soluble k-Engel groups.* Nota di Lucia Serena Spiezia, presentata (*) dal Socio G. Zappa.

Abstract. — In this paper we deal with the class \mathcal{S}_k^* of groups G for which whenever we choose two infinite subsets X, Y there exist two elements $x \in X, y \in Y$ such that $[x, y, ..., y] = 1$. We prove that an infinite finitely generated soluble group in the class \mathcal{S}_k^* is in the class \mathcal{S}_k of k-Engel groups. Furthermore, with $k = 2$, we show that if $G \in \mathcal{S}_2^*$ is infinite locally soluble or hyperabelian group then $G \in \mathcal{S}_2$.

Key words: Groups; Engel; Varieties.

Riassunto. — k-Engel gruppi infiniti localmente risolubili. Si definisce la classe \mathcal{S}_k^* dei gruppi G per i quali comunque si prendano due sottoinsiemi X, Y, esistono due elementi $x \in X, y \in Y$ tali che $[x, y, ..., y] = 1$. Si prova che un gruppo infinito risolubile finitamente generabile nella classe \mathcal{S}_k^* è nella classe \mathcal{S}_k dei gruppi k-Engel. Inoltre, per $k = 2$ si è provato che se $G \in \mathcal{S}_2^*$ è infinito e localmente risolubile od iperabeliano allora $G \in \mathcal{S}_2$.

1. Introduction

Let \mathcal{V} be a variety of groups defined by the law $w(x_1, ..., x_n) = 1$. Following [3] we denote by \mathcal{V}^* the class of groups G such that, whenever $X_1, ..., X_n$ are infinite subsets of G, there exist $x_i \in X_i, i = 1, ..., n$, such that $w(x_1, ..., x_n) = 1$.

In [2] P. Longobardi, M. Maj and A. H. Rhemtulla proved that $\mathcal{V}^* = \mathcal{V} \cup \mathcal{F}$, where \mathcal{F} is the class of finite groups and \mathcal{V} is the class of nilpotent groups of class $\leq n - 1$, while in [3] P. S. Kim, A. H. Rhemtulla and H. Smith studied \mathcal{V}^*, where \mathcal{V} is the class \mathcal{C}_2 of metabelian groups. They proved, among other things, that an infinite locally soluble \mathcal{C}_2^*-group is actually a metabelian group. In this paper we study \mathcal{S}_k^*, where \mathcal{S}_k is the class of k-Engel groups and $k \geq 2$ is an integer.

We show the following results:

Theorem A. Let G be an infinite locally soluble group. If $G \in \mathcal{S}_2^*$, then $G \in \mathcal{S}_2$.

Theorem B. Let G be an infinite hyperabelian group. If $G \in \mathcal{S}_2^*$, then $G \in \mathcal{S}_2$.

Theorem C. Let G be an infinite finitely generated soluble group. If $G \in \mathcal{S}_k^*$, then $G \in \mathcal{S}_k$.

Finally we show that if $G \in \mathcal{S}_k^*$ is infinite, then the centralizer $C_G(x)$ is infinite for every element x of G.

Notation and terminology are the usual ones (see for instance [4]). We recall that a group is said to be a k-Engel group if $[x, y, ..., y] = 1$ for all $x, y \in G$.

2. Soluble \mathfrak{M}_2-groups

We start with two useful Lemmas:

Lemma 2.1. Let G be an infinite nilpotent \mathfrak{M}_2-group. Then G is a 2-Engel group.

Proof. Let $i \geq 1$ be the greatest integer such that $Z_{i-1}(G)$ is finite while $Z_i(G)$ is infinite. Put $C = Z_i(G)$ and $D = Z_{i-1}(G)$. Let x, y be arbitrary elements of G. Then $[x, c]$ and $[y, c]$ are in D, for every $c \in C$, and the identity $x^c = x[x, c]$ implies that $|x^C| \leq |D|$, i.e., $|x^C|$ is finite. Thus $|C: C_c(x)|$ is finite. Similarly $|C: C_c(y)|$ is finite and so also $|C: C_c(x) \cap C_c(y)|$ is finite. Hence $C_c(x) \cap C_c(y)$ is an infinite nilpotent subgroup of G. Then there exists an infinite abelian subgroup A of $C_c(x) \cap C_c(y)$. Now the two subsets xA and yA are infinite, and, by the hypothesis there exist a_1 and a_2 in A such that: $1 = [xa_1, ya_1, ya_2] = [x, y, y]$.

Therefore G is a 2-Engel group, as required.

Lemma 2.2. Let G be an infinite \mathfrak{M}_2-group. If G has an infinite normal abelian subgroup A, then G is a 2-Engel group.

Proof. First of all we remark that, if N is an infinite normal subgroup of an \mathfrak{M}_2-group, then $G/N \in \mathfrak{M}_2$. For, if x, y are arbitrary elements of G, then xN, yN are infinite, so that there exist $n_1, n_2 \in N$ such that $[xn_1, yn_2, yn_2] = 1$. Thus we have $[xN, yN, yN] = N$, and $G/N \in \mathfrak{M}_2$.

Now let A be an infinite normal abelian subgroup of G. Then A consists of right 2-Engel elements of G. In fact, fix x in G and let B be an infinite subset of A. Then the subsets xB and B of G are infinite and there exist $a, b \in B$ such that: $1 = [a, xb, xb] = [a, x, x]$.

Hence for any infinite subset B of A there is an element a in B such that $[a, x, x] = 1$. Thus the set $B(x) = \{a \in A/[a, x, x] = 1\}$ is an infinite subset of A.

Now if there is an element $b \in A$ such that $[b, x, x] \neq 1$, then the set $\{ab/a \in B(x)\}$ is also infinite, and there exists $b' \in B(x)$ such that $1 = [bb', x, x] = [b, x, x]$ which is a contradiction. Finally we can get the conclusion $G \in \mathfrak{M}_2$. Obviously it is enough to show that for each $x, y \in G$, the subgroup $H = A(x, y)$ is a 2-Engel group. First we remark that $A \leq Z_1(H)$. In fact, let a be in A, then a is a right 2-Engel element of G, so that $[a, x, y] = [a, y, x]^{-1}$. Furthermore $[a, x, y, y] = [a^{-1}, y, y][a, y, y] = [a, x, y, y] = 1$, because a^G consists of 2-Engel elements of G. In the same way $[a, y, x, x] = 1$.

Then $[a, x, y, y]^{-1} \in C_C(x) \cap C_C(y) \cap A$ and $[a, x, y, y] \in Z(H)$. Analogously $[a, y, x] \in Z(H)$, so that $[a, x] \in Z_2(H)$ and $[a, y] \in Z_2(H)$, and $a \in Z_3(H)$. Now we have $H/A \leq G/A$ nilpotent, and $A \leq Z_3(H)$, so that H is nilpotent. By Lemma 2.1, H is a 2-Engel group, as required.

From Lemma 2.2 it follows easily:
Corollary 2.3. Let G be an infinite metabelian group, $G \in \mathfrak{S}_2$. Then G is a 2-Engel group.

Proof. If the derived subgroup G' is infinite, then the result follows from Lemma 2.2. Assume that G' is finite. Then G is a FC-group and $|G: C_G(x)|$ is finite for any $x \in G$. Thus, if x, y are in G, $|G: C_G(x) \cap C_G(y)|$ is also finite, and $C_G(x) \cap C_G(y)$ is infinite. Then there exists an infinite abelian subgroup $A \leq C_G(x) \cap C_G(y)$ and the subsets xA, yA are infinite, and there are $a_1, a_2 \in A$ such that:

$$1 = [xa_1, ya_2, ya_2] = [x, y, y].$$

Hence G is a 2-Engel group as required. □

Now we can prove the following:

Theorem 2.4. Let G be an infinite soluble group in \mathfrak{S}_2. Then G is a 2-Engel group.

Proof. We show that G is metabelian, i.e., $G^{(2)} = \{1\}$. Then the result will follow from Corollary 2.3. Assume that $G^{(2)} \neq \{1\}$. If $G^{(3)}$ is infinite, then $G/G^{(3)}$ is a 2-Engel group, arguing as in Lemma 2.2, and $G/G^{(3)}$ is metabelian, a contradiction. Thus $G^{(3)}$ is finite.

Furthermore G' is infinite, otherwise G is an infinite FC-group in \mathfrak{S}_2, and G is a 2-Engel group arguing as in Corollary 2.3, a contradiction. If $G^{(2)}$ is infinite, then $G/G^{(3)} \leq \mathfrak{S}_2$, by Lemma 2.2, and $G/G^{(3)}$ is metabelian, again a contradiction. Then $G^{(2)}$ is finite, and G' is an infinite FC-group in \mathfrak{S}_2, so that G' is nilpotent. Furthermore $G/G^{(2)}$ is an infinite metabelian group in \mathfrak{S}_2, and so it is nilpotent by Corollary 2.3. Thus, by a result of P. Hall (see [4, vol. I, Th. 2.27, p. 56]), G is nilpotent and G is a 2-Engel group by Lemma 2.1, which is the final contradiction. □

3. **Proofs of Theorems A and B**

Now we can prove our first statement in the introduction:

Proof of Theorem A. Assume that G is an infinite locally soluble group in \mathfrak{S}_2. If there exists in G an element g of infinite order, then for any two elements $x, y \in G$, we can consider the subgroup $N = \langle x, y, g \rangle$. N is an infinite and soluble \mathfrak{S}_2-group, so by Theorem 2.4, it is a 2-Engel group. Thus $[x, y, y] = 1$ for any $x, y \in G$, and $G \in \mathfrak{S}_2$.

Now we can assume that G is a periodic group. If G is a Černikov group, then it has a normal abelian subgroup A of finite index and, by Lemma 2.2, $G \in \mathfrak{S}_2$.

Then it remains to consider the case of a periodic locally soluble group which is not Černikov. In this case $H = \langle x, y \rangle$ is finite, for any $x, y \in G$. Then by a result of D. I. Zaicëv (see [5, Th. 1, p. 342]) this H normalizes some infinite abelian subgroup B of G. Therefore the group HB is an infinite soluble group in \mathfrak{S}_2 and by Theorem 2.4 it is a 2-Engel group, hence $[x, y, y] = 1$ for any $x, y \in G$, i.e., $G \in \mathfrak{S}_2$ as required. □
In order to prove Theorem B in the introduction we need the following useful result:

Lemma 3.1. Let \(G \) be in \(\mathfrak{S}_2 \), \(G \) infinite. Then \(C_G(x) \) is infinite for any \(x \in G \).

Proof. Suppose that there exists \(y \in G \) such that \(C_G(y) \) is finite, and look for a contradiction. There exists an infinite sequence \(x_1, x_2, \ldots, x_n, \ldots \) of elements of \(G \) such that:

i) \(x_i \notin C_G(y) \) for any \(i \in N \),

ii) \(x_i x_j^{-1} \notin C_G(y) \) for any \(i \neq j, i, j \in N \),

iii) \(x_i x_j^{-1} x_b x_k^{-1} \notin C_G(y) \) for any \(i, j, b, k \in N \), pairwise different.

For, suppose that \(x_1, x_2, \ldots, x_n \) satisfy the properties, then there exists an element \(x_{n+1} \) such that:

\[
x_{n+1} \notin \bigcup_{i=1}^{n} C_G(y) x_i \cup C_G(y) \cup \bigcup_{i, b, k = 1}^{n} C_G(y) x_b x_k^{-1} x_i \cup \bigcup_{i, j, k = 1}^{n} x_i x_j^{-1} x_k C_G(y)^{x_b},
\]

since this union is finite. Thus the elements \(x_1, x_2, \ldots, x_n, x_{n+1} \) satisfy the properties.

Now, let \(N = \bigcup_{n \in N} I_n \cup \bigcup_{n \in N} J_n \), where each \(I_n \) and \(J_n \) is infinite and the unions are disjoint unions. The sets \(A_n = \{ y^{x_n}/i \in I_n \} \) and \(B_n = \{ y^{x_n}/j \in J_n \} \) are infinite, so that, for any \(n \in N \), there exist \(i_n \in I_n, j_n \in J_n \) such that:

\[
1 = [y^{x_n}, y^{x_n}, y^{x_n}] = [y^{x_n} x_n^{-1}, y, y], \quad i.e. \quad [y^{x_n} x_n^{-1}, y] \in C_G(y),
\]

that implies

\[
y^{x_n} x_n^{-1} \in C_G(y).
\]

But \(C_G(y) \) is finite, so there exists \(n \in N \) such that, for infinitely many \(m \), we have:

\[
y^{x_n} x_n^{-1} = y^{x_n} x_n^{-1}, \quad i.e. \quad y^{x_n} x_n^{-1} (y^{x_n} x_n^{-1})^{-1} \in C_G(y).
\]

Therefore there are \(i \neq s \) such that:

\[
y^{x_s} x_s^{-1} (y^{x_i} x_i^{-1})^{-1} = y^{x_s} x_s^{-1} (y^{x_i} x_i^{-1})^{-1},
\]

that implies \(y^{x_s} x_s^{-1} = y^{x_i} x_i^{-1} \) and \(x_i x_j^{-1} (x_i x_j^{-1})^{-1} \in C_G(y) \), a contradiction. \(\square \)

From Lemma 3.1 it follows, with straightforward arguments:

Corollary 3.2. Let \(G \in \mathfrak{S}_2 \), \(G \) infinite. Then there exists an infinite abelian subgroup \(A \) of \(G \).

Now we can prove Theorem B.

Proof of Theorem B. We show that \(G \) is metabelian, the result will follow from Theorem 2.4. Assume that \(G \) is not metabelian and let \(N \triangleleft G \) be a maximal normal metabelian subgroup of \(G \). There exists a non-trivial normal abelian subgroup \(M/N \) of
G/N, since G is hyperabelian. Then M is not metabelian. Furthermore, by Corollary 3.2 there exists an infinite abelian subgroup A of G.

Now we consider the group $H = MA$. Then $A \leq H$ so that H is infinite, and H is not metabelian since $M \leq H$. But H is soluble and that contradicts Theorem 2.4. □

4. FINITELY GENERATED \mathfrak{S}_k-GROUPS

Arguing exactly as in Lemma 2.1 and in Corollary 2.3, we can show:

Lemma 4.1. Let G be either a nilpotent or FC infinite \mathfrak{S}_k-group. Then G is a k-Engel group.

If G is a finitely generated soluble group, we have also an analogue of Lemma 2.2:

Lemma 4.2. Let $G \in \mathfrak{S}_k$ be an infinite finitely generated soluble group. If G has an infinite normal abelian subgroup A, then G is a k-Engel group.

Proof. Arguing as in the proof of Lemma 2.2 we can easily show that if N is an infinite normal subgroup of G, then $G/N \in \mathfrak{S}_k$, and also that A consists of right k-Engel elements. But in a finitely generated soluble group the set of the right Engel elements is contained in some $Z_l(G)$, by a theorem of Grunenberg (see [1]). Hence G/A is nilpotent and $A \leq Z_l(G)$, so that G is nilpotent too. The result follows from Lemma 4.1. □

We are now able to prove Theorem C:

Proof of Theorem C. We show that G is nilpotent by induction on the derived length, $l = l(G)$ of G and the Theorem will follow from Lemma 4.2. If $l = 1$, the result is obviously true. Assume that $l > 1$, and let $G^{(l-1)}$ be the last non-trivial term of the derived series of G. If $G^{(l-1)}$ is infinite, then G is nilpotent by Lemma 4.2. Now assume that $G^{(l-1)}$ is finite, then $G/G^{(l-1)}$ is infinite and, by induction $G/G^{(l-1)}$ is nilpotent.

Let $0 \leq i < l - 1$ be maximum such that $G^{(i)}$ is infinite. Then $G^{(i+1)}$ is finite and $G^{(i)}$ is an infinite FC-group in \mathfrak{S}_k. Thus $G^{(i)}$ is a k-Engel group by Lemma 4.1. Furthermore $G^{(i)}$ is finitely generated since $G/G^{(l-1)}$ is polycyclic and $G^{(l-1)} \leq G^{(i)}$. Hence $G^{(i)}$ is nilpotent by a theorem of Grunenberg (see [1]). The group $G/G^{(i+1)}$ is also nilpotent, because $i + 1 \leq l - 1$ and $G^{(i+1)} \geq G^{(l-1)}$. Then G is nilpotent, by a theorem of P. Hall (see [4], vol.I, Th.2.27, p.56), as required. □

Finally we remark that there is an analogue of Lemma 3.1:

Lemma 4.3. Let $G \in \mathfrak{S}_k$, G infinite. Then $C_G(x)$ is infinite, for every $x \in G$.

Proof. Assume, by the way of contradiction, that $C_G(y)$ is finite, for some $y \in G$.

Then by arguing as in Lemma 3.1, there exists an infinite sequence $x_1, x_2, \ldots, x_n, \ldots$ of elements of G such that:

i) $x_i \notin C_G(y)$ for any $i \in \mathbb{N}$,

ii) $x_i x_j^{-1} \notin C_G(y)$ for any $i \neq j, i, j \in \mathbb{N}$,

iii) $x_i x_j^{-1} (x_b x_k^{-1})^{-1} \notin C_G(y)$ for any $i, j, b, k \in \mathbb{N}$, pairwise different.

Again as in Lemma 3.1, we can find, for any $n \in \mathbb{N}$, some integers $i_n, j_n \in \mathbb{N}$, such that:

$$1 = [y_{x_n}, k y_{x_n}] = [y_{x_n}, k y_{x_n}] = 1 \quad (1).$$

Then $[y_{x_n}, k y_{x_n}] \notin C_G(y)$, so that $y_{[y_{x_n}, k y_{x_n}]} \notin C_G(y)$. But $C_G(y)$ is finite, thus, for some $n \in \mathbb{N}$ there exist infinitely many m such that:

$$y_{[y_{x_n}, k y_{x_n}]} = y_{[y_{x_n}, k y_{x_n}]}.$$

Therefore, for infinitely many m,

$$[y_{x_n}, k y_{x_n}] = [y_{x_n}, k y_{x_n}]^{-1} \in C_G(y).$$

But this subgroup is finite, thus, for some s, there exist infinitely many t such that:

$$[y_{x_n}, k y_{x_n}] = [y_{x_n}, k y_{x_n}]^{-1} \in C_G(y).$$

That holds for infinitely many t. Continuing in this way, after $k - 3$ steps, we get:

$$y_{x_n} (y_{x_n} x_b^{-1})^{-1} \in C_G(y), \quad \text{for some } b \in \mathbb{N}, \text{ and infinitely many } k.$$

Therefore:

$$y_{x_n} (y_{x_n} x_b^{-1})^{-1} = y_{x_n} (y_{x_n} x_b^{-1})^{-1}, \quad \text{for some } l \neq r,$$

since $C_G(y)$ is finite and so:

$$y_{x_n} x_b^{-1} = y_{x_n} x_b^{-1}, \quad \text{i.e.,} \quad x_{x_n} x_b^{-1} (x_b x_k^{-1})^{-1} \in C_G(y),$$

contradicting iii). \qed

An easy consequence of Theorem C is:

Corollary 4.4. Let $G \in S_k$ be a non periodic locally soluble group. Then G is a k-Engel group.

(1) Following [4, part II, p. 40], if $n \in \mathbb{N}$, G is a group and $a, b \in G$, we put $[a, b] = [a, b, \ldots, b]$.

INFINITE LOCALLY SOLUBLE k-ENGL GroupS

References

Dipartimento di Matematica ed Applicazioni «R. Caccioppoli»
Università degli Studi di Napoli
Monte S. Angelo - Via Cintia - 80126 Napoli