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Rend. Mat. Ace. Lincei 

s. 9, v. 3:5-13 (1992) 

Algebra. — Cohomology of tensor product of quantum planes. Nota (*) di PAOLO 

PAPI, presentata dal Corrisp. C. Procesi. 

ABSTRACT. — We consider the Lie algebra of inner derivations of the «-fold tensor product of Manin 
quantum planes and compute its second cohomology group with trivial coefficients. 

KEY WORDS: Lie algebra; Cohomology; Non-commutative space. 

RIASSUNTO. — Coomologia del prodotto tensoriale di piani quantistici. Viene considerata l'algebra di Lie 
delle derivazioni interne del prodotto tensoriale di n piani quantistici alla Manin; di quest'algebra viene 
calcolato il secondo gruppo di coomologia a coefficienti banali. 

I N T R O D U C T I O N 

The skew polynomial ring Cq [x, y\ where yx = qxy, qeC — {0} a fixed non-root of 
unity, has been called quantum plane in [3]; this is a primitive ring which can be lo­
calized at the Ore set of powers of x and y to give a ring of Laurent polynomials 
Cq[x,yyx~1,y~1]. This ring was studied in[2], where its derivations and its automor­
phism group were determined; in the same paper it was considered the Lie algebra &q

l) 

of inner derivations of Cq [xyyy x
- 1 , ^ - 1 ] which is an infinite dimensional simple Lie al­

gebra. Its specialization 8^\ obtained taking the limit as q-* 1, can be regarded as a 
generalization of a centerless Virasoro algebra and it can be realized as the algebra of 
periodic function on the torus under usual Poisson bracket. 

In the present paper we consider the tensor product of n quantum planes; we 
show that the corresponding Laurent polynomial ring S^n) is simple and then we exam­
ine the Lie algebra of inner derivations 8>q

n) in order to show that dim H2 {Sq
n\ C{q)) = 

= 2n, where 2n is the number of generators of Sq
n\ 

The idea of the proof is very straightforward: first we show that we can select a 
well determined representative for each cohomology class through suitable normaliza­
tions; so the computation of H2 (8q

n\ C(q)) is reduced to that of normalized cocycles. 
Then we prove through a series of technical Lemmas that a normalized cocycle must 
necessarily be of a very special form; this allows to say that 2n is an upper bound for 
dim H2(8{

q
n\C(q)). Finally we get the result exhibiting 2n linearly independent nor­

malized cocycles. 

1. TENSOR PRODUCT OF QUANTUM PLANES AND INNER DERIVATIONS 

The object of our study will be the Lie algebra of inner derivations of 
the /z-fold tensor product of a quantum plane by itself. Following Manin [3], 

(*) Pervenuta all'Accademia il 2 luglio 1991. 
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we call quantum plane the non-commutative space given by the skew polynomial 
ring Cq[x,y] where yx = qxy and qeC — {0} is a fixed non-root of unity. 

n 

We consider then ® Cq[xhy^], which can be clearly regarded as the quasipolyno­

mial ring R^ := C[xi} ...,x„,yi, ...,y„] with the commutation relations: 

xixj = xjxiy ylyj = yjyi, x;yj = q~SijyjXi> V / , / = l , . . . , « . 

Let's denote by S^n) the Laurent polynomial ring corresponding to R^n\ 

PROPOSITION 1.1. S^n) is a simple ring. 

PROOF. We refer to the following criterion, due to McConnell and Pettit: If S is 
the Laurent polynomial ring corresponding to a quasipolynomial ring R, S is simple if 
and only if its center reduces to the scalars; equivalently, if and only if the following 
condition is verified: 

there does not exist m = (mìy ...ym„) e Z", m=£0, such that for ally, l^j^n 

ft A* = 1 
i = l 

(here, as in[ l ] , (A )̂ is the matrix which expresses the quasi-commutation relations in 
R; for a proof of the criterion, see [4]). 

In our situation, for fixed/, l^j^n, we have 

\q if / = / + n, 

So 

11 11 otherwise. 

In 

n Xf = 1 

iff qm'+» = 1, that is mJ+n = 0, V/, 1 < y < n. 
If instead n + 1 <y<2/z, one has 

-A/>- — 
# 1 if i=j—ny 

1 otherwise 

and the above argument works, so that ntj-n = 0, V/, ^ + l < y < 2 » . 
So mj = 0, Vy, l < y < 2 # : we are in the hypothesis of the criterion, and all 

follows. • 

We now introduce the Lie algebra of inner derivations of S%\ ^f :=adS^n). 
It is clear that a vector space basis for S^} is given by $ = {Ea \<xeZn X Zn, 

a # (0, 0)} where £a = ad(X? ... x* ^ ... )£)(« = (a, b ) e ? X Z\ a = fa,..., ^ ) , 

An easy calculation shows that 

[Ea,£a>]=A(a,a')£a + a, 
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where 

A ( a , a ' ) = ^ b ' â ' - ^ ' b ' ( a = (a,b), a' = (a',b')) 

and • denotes the usual inner product in Rn 

From Prop, 1.1 we can now deduce 

COROLLARY 1.1. S^ is a simple Lie algebra. 

For the proof see [2]. 

2. COHOMOLOGY OF &q
n) 

We will consider the second cohomology group of the Lie algebra 8^ with coef­
ficients in C(q) (field of rational functions in the variable q). 

We denote by Cr (8^, C(q)) the space of /"-linear alternating maps from 
S f x . . . X 8 ^ (r times) to C(q). 

To simplify notation, when/" e Cr(8%\ C(#)) we write f(a1} ...,ar) for/(Eai, ...,Ear) 
where a, = (a,-,b/), a/,b/ 6 Zw. 

So, recalling the usual definitions for the complex and the coboundary operator d, 
we have 

Z2 (g<*\ C(«7)) := {/e C2 (g<*>, C(*)): 9/= 0} = 

= {/€ C2 i$\C{q)): A(a,/3)/(y, a + £) + A(j8, y)/(a,/3 + y) + A(y, a)/(/3, y + a) = 0} , 

B2 (g<"\ C(*)) - {/e C2 (g<*>, C(*)): / = dg, g e C1 (g<*>, C(q))} = 

= {/e C2 (gW, C(?)) |/(a,/3) = A(«,/3)g(a + /3), geO (g<"\ C(*))}. 

The basic remark which allows to calculate H2(8^\ C(q)) is the following: in the 
cocycle condition we may impose without restriction that the sum a + fi + y is fixed -
and equal, say, to u. So we have a natural way to separate variables; for fixed u e 7?" 
we set Z2 = {<pu | <pu (a) =/(a, « - a), / e Z2 (g«, C(q))}. 

Now a cocycle / can be regarded as a collection (<pu) where each <pu verifies 

{A) <pu(a) = -&(«-«) 

(Q A(«,/3)^(y) + A03,y)<//a(a)+A(y,a)^(J8)=O, Va,/3,y: a +/3 + y = u. 

A direct product decomposition 

z2(g<»),c(^))= n z2 

«e22B 

is also induced; similarly 

B2(gw,a*» = n 42 , H2(gw,c(^)) = n H2 . 
aeZ2* «e22K 

We introduce on Zn X Zn the following symplectic form (a, a ' ) : = b - a ' — a-b' 
(a = (a,b), a' = (a ' ,b ')) . 

REMARK 2.1. (a, a' ) = 0 if and only if A(a,a') = 0. 
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Now we want to normalize cocycles, associating to each one a canonical 
coboundary verifying a given property. 

More precisely, for g e C1 (&%\ C(q))> we regard, with respect to the decomposition 
B2 = TlB2

i, the cocycle dg as the collection (gu), where gùM := A (a, u — <x)g{u). 
Since (gu) is a coboundary, it is clear that a cocycle (<pu) is cohomologous to 

Now, we first note that in case u = (0,0), B2 (8$\ C(q)) = {0}, and we have no 
problem; if instead u =£ (0,0), we choose H.u$u such that ~àu + pu = u and A(âM,^) îh 0; 
to see that this is possible, it suffices to show that exists a with (ôê, u — #) =£ Q. But 
(a, & — a) = (â, «) and such an a = aw exists since u =£ (0,0) and the symplectic form is 
non-degenerate. 

Then, given (<pu)} we can always find a cocycle (<pu) cohomologous to (<pu) and such 
that p„(5J = 0, V«#(0 ,0) . 

If in fact we define A e C 1 ^ , C(#)) setting, for each u^ (0,0) 

h(u):=<p(âu)/X(âiu,pu)> M(0,0)) = 0, 
then we can consider <pu

:='Pu~hu obtaining a cocycle (<pu) which verifies the condition 
demanded. 

So we can define normalized cocycles as 

ZWZ\ C{q)) := {(pj e Z2(gf, C(^)): 9u{«u) = 0, V « # (0,0)} 

PROPOSITION 2.1. H2 (8^ , C(#)) =Z2
N{Zf, C(q)). 

PROOF. We have just shown that we can associate to each 2-cocycle a well deter­
mined normalized one in the same cohomology class. So we have only to prove that 
Zl{8%\C{q)) n B 2 (S^, C(q)) = {0}. Clearly, it suffices to show that (with obvious no­
tations) Z2

U)N(^\C(q))nB2
u{^\C(q)) = {0}. Let p e Z 2

N b e such that ? = dg; then 
<p(a9p)=X{<z,p)g(a+p), <x+fi = uy and pfo , u - ocj = 0 = X(âu,u -âu) g{u) implies 
g(u) = 0 (since X(âu, « — ««)=£ 0) and therefore p = 0. • 

Now we fix normalization determining explicitly the elements au for each u; it is 
clear from the previous discussion that such choices are consistent. 

(Nl) fc(h,0) = 0, if » = ( h , k ) , h - k * 0 ; 

(N2) ^ ( k , 0 ) = 0, if » = ( h , k ) , h-k = 0, k ^ 0 ; 

(N3) fc(0,h) = 0, if * = (h,0), h ^ 0 . 

REMARK 2.2. Note that the condition <\>u (k, — h) = 0, if u i=- (0,0) would work in 
any case; however, we prefer to take different normalizations in the three cases since 
this will simplify the subsequent proofs. 

3. DETERMINATION OF H2(8%\C(q)) 

We want to show now that Z2
N(8{f\ C(q)) = 0, V#=£(0,0). Let then 

<pu eZ2
 N (S^ , C(q)) be a normalized cocycle: we want to show tyu = 0 , if u^ (0,0). 

We introduce the following notations: S = 2n X Zn\ S„ = {<x e S : <pu(a) = 0, 
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V&, eZ\ n (8 { *\ C(q))}. Our goal is to prove S°u =S,Vu^ (0,0). 

PROPOSITION 3.1. 

1) a e i j implies u — a e Sl\ 

2') (h,0) e52, if ^ = (h,k), h - k ^ 0 ; 

2") (k,0) e52, if « = ( L k ) , h*k = 0, k * 0 ; 

2'") (0,h) 6 52, if « = ( h , 0 ) , h ^ O ; 

3) a e 52, 0€S2> ( a ^ ) ^ 0 imply u-%-peS°uy a+/3e5£; 

4) a 6 52, (a,u-(x-p) = 0 , (a,/3>^0 imply u-a^peS%, a+peS°; 

5) {p,u-*-p) = 0 , (<x,u-a-@) = 0 , (a,^)=£ 0 imply u-a-p 6 52, 

PROOF. All statements are obvious: 1) follows from (A); the first assertion of 3), 4), 
5) follows from (C) whereas the second follows from the first applying 1); finally 2'), 
2"), 2'") follow from (Nl), (N2), (N3) respectively. • 

Now we begin the work in view of the main Theorem. 
As a notational convention, we refer to the statements of Prop. 3.1 only with their 

number in Prop. 3.1. 
The strategy is slightly different according to whether we consider the case 8^ or 

the case 8%\ n>2; in this last instance we begin showing that 

i) (0,n) e Si Vn; 

it) (m,0)6 52, Vm. 

Having decided to fix different normalizations in the three cases # = ( h , k ) , 
h-k=£0, u= (h,k), h-k = 0, k ^ 0 , u= (h,0), h ^ 0 we will have to give a different 
argument in each case to prove /) and H)\ the details will be given in Lemmas 
3.1-3.3. 

Then, using /) and H), we show that 

Hi) (m,n) e52, Vm,n, m / n ^ O 

and this in turn will serve to prove the remaining case: 

iv) (m,n) e52, Vm,n, m-n = 0. 

The proof of ///) and iv) - which, being independent of normalization, does not 
require distinguishing different cases as before - is given in Prop. 3.2. 

The situation in the case 8^ is not very different, so we can adapt the previous ar­
guments; this will be done in Prop. 3.3. 

LEMMA 3.1. Statements /') and H) hold in 8%\ r>2y for any ^ = ( h , k ) , h * k ^ 0 . 

PROOF. 

i) (0,n)eS°u, Vn. 

Let's consider a = ( 0 , k ) , yS = ( h , - n ) , f = (0,n). a e 5° by 1) and 2'); besides 
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(oc,y) = 0 and (a,fi) = h-k:7é:0. By 4), /) follows; but clearly a symmetric argument 
proves it). • 

LEMMA 3.2. Statements /) and it) hold in 8%\ r > 2 , for any « = (h,k), h-k = 0, 

PROOF. 

i) ( 0 , n ) e & Vn. 

We first suppose n• k = 0, and consider a = (k,0), p = (h —k,k —n), 7 = ( 0 , n ) . 
By 2") a e f t <?li8> = - | k p * 0 , (a, 7} = - k-n = 0. 

Now 4) implies 7 e Si. To solve the remaining case, we may certainly pick an n' 
such that n' • k = Q, n' • h # 0 (it cannot be h = A k, A e Q - {0}, since h • k = 0). Con­
sider a = (0,n'), /?= (h,k — n — n'), 7 = (0,n); we have just shown that a e S j , but 
(a, 7) —0 and (<z,p) ==n'-h which is non-zero by hypothesis, so we can conclude 
using 4) again. 

«) (m,0)eS°u, Vm. 

We consider a = (k,0), 0 = ( h - k - m , k ) , 7= (m,0 ) ; oceSl by 2"), (a,p) = -
— I k |2 =£ 0, (a, 7) == 0, so by 4) we conclude. • 

LEMMA 3.3. Statements /) and //) hold in 8%\ r > 2 for any u = (h, 0), h ¥= 0 and for 
any « = ( 0 , k ) , k ^ O . 

PROOF. We first consider the case u— (h,0), h ^ 0 . 

i) (Q,n)eS°u, Vn. 

Let's consider a = (0, h), p = (h, - n - h), 7 = (0, n). By 2'") a e Si and (a, 7) = 0, 
(<z,p) = I h |2 ^ 0 , so that 4) gives the assertion. 

«) (m,0)eS°, Vm. 

We first prove the assertion when m = p h, p e Q, p h e Zn; note that, by /), we can 
essume /x =£ 0; the proof requires three steps: 

*) (^h ,n)e4° , VpeQGotheZ11), V n ^ 0 : n - h = 0. 

We can pick x and y such that x / n ^ h - y ^ O ; then we consider a = ((1 — (x) h — 
- x , - n - y ) , £=(x,y7, 7=(^h>n) , obtaining (p9a) = x - n + ( l -/x) h-y = ̂ h -y + 
+ (1— ̂ ) h , y = h-y :5^0;(a, 7) = iuh ,( — H~ y) — n*[(l — â) h — x] = — i^h-n — 
" " ^ h ' y - ( 1 — ^ ) h * H + H , x : = = ~ h - n = 0; (7,^) = —iah-y + x-n = 0 so that we can 
use 5) to get the assertion. 

b) ((*h,n)eS°u, tye QOxheZ*), V n : n - h ^ 0 . 

Let n ' ^ 0 be such that h-n ' = 0 . We consider a = (h, — n —n'), / 3 = ( - ^ h , n ' ) , 
r= ( f xh>n); /3e^° by à) whereas a e Si by virtue of 1) and /). Finally (/3,a) = 
= h-n /— iah-n / —1ah*n= —iah-n^O. Now all follows from 3). 

c) 0*h,0)e$, V/xeQOxheZ"). 
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We choosey such that y -h =£0 and set a = ( ( l - p ) h , -y) , /3 = (Q,y), 7 = 0*LQ)-
We note that we can assume [x + 1, so that (a,/3) =.(/x- 1) y - h ^ 0 ; b u t a and/3 belong 
to Si respectively by part b) and /), so we can conclude using 3). 

Now we can deal with the general case; we consider a = (h, — n), /3 = (— m, 0), 7 — 
= (m,n), (a,/3) = m-n, (r>«) = (m + h)-n. So 7 e 5° if (m + h)-n = 0 and m-n=£0 
(since a 6 52 by i) and 1) we can apply 4)). 

Given m, we look for n which verifies the above conditions. Such an n certainly 
exists if m + \x h {(x e Q) and if we work in dimension > 2 - i.e. if we consider 8^} with 
r>2 as we are doing - but the case m = /xh has been previously examined, whereas 
we shall deal with 8̂ 1} in next Prop. 3.3. 

Now we set a = (m, n), ft = (0, — n), 7 = (h — m, 0), and obtain that a and /3 belong 
to Si respectively by the above argument and i); since (a,p) = m*n¥=Q, 3) implies 
a + p e Si, so we get the assertion and the proof of the Lemma in the case u = (h, 0), 
h=£0 is completed. 

On the other side, if u = (0, k), k =£ 0, we can use a similar argument, since normal­
ization (N2) is analogous to normalization (N3) used in the previous case. • 

PROPOSITION 3.2. Z\N(8%\ C(q)) = 0, Vz/ =£ (0,0), V/?>2. 

PROOF. 

Hi) (m,n) e5^, Vm,n, m-n=£0. 

We set a = (m, 0), /3 = (0, n), 7 = (h — m, k — n). By parts /) and it) we know that a 
and $ belong to Si; on the other side (a,/3) = — r r r n ^ O so by 3) the statement is 
proven. 

^) (OLll) e$l> Vm,n, m-n = 0. 

If (m,n) =£ju(h,k), ^ e Q, we pick x and y such that x*y=£0, x - k ^ y h , m-y = 
= n-x. Now we consider, in the previous hypothesis a = (x,y), /3= (h — m'— x,k — 
- n - y ) , 7=(m>n)-

It results: (a, 7) = m'y — n-x = 0; (a,/3) = — (k — n — y) -x +(h — m — x) -y = — 
- x - k + y - h ^ 0 . 

Since a e Si - see ///) - , 4) applies and therefore 7 € 5f. We have only to deal with 
the case (m, n) = ^(h, k), [x e Q; we may also assume (x ¥= 1, and choose again x and y so 
that x - y ^ 0 , x - k ^ y - h , {fx - l ) 2 h - k + ( ^ - 1) (x-k + y-h) + x - y ^ 0 . 

Then, if we set a = ((1 — (x) h —x, (1 — (x) k — y), /3= (x,y), 7 = ( ^ h ^ k ) , we ob­
tain (<x,p) =(l-(x) ( x , k - y - h ) ^ 0 , and, by virtue of Hi), a € 5°, p e 5j . Hence 7 e Si 
in this last case too. • 

PROPOSITION 3.3. Z\ N(8^1}, C{q)) = 0, V«=*=(0,0). 

PROOF. We first consider the case u = (h, k), hk ¥^ 0, and note that we have nothing 
to prove since steps /), ii) in Lemma 3.1 and step Hi) in Prop. 3.2 work without 
changes. 
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So we have only to examine the case u = (h, 0), h^O (the case u = (0yk)y 

k=£0 is treated analogously). 
Proceeding exactly as in the proof of Lemma 3.3 /), we show that 

a) {0,n)eSl VneZ. 

Then we prove: 

b) {mh, n) e Si, Vm eZ,Vn^ 0. 

We use the cocycle condition (C) with a = u, fi = — y = (?> s)9 obtaining at once, if 

(*) <pu{-ry-s) = -q-hs^u{r,s). 

Now, using (A), (*) and induction on meN - whose first step is given by part 
a) - we get the statement for any m>0: <pu (mh, n) = <pu ((h, 0) — ((1 — m) h, — n)) = 
= -^u(-(m-l)h,-n)=q-hn^u((m-l)h,n) = Q. 

If m < 0 we can use (*) and conclude. 

c) (mh,0)eSl, VmeZ. 

By a), we can assume m=£0; let's consider a = (h, —h), ft = {—mh, h), y = (mh, 0), 
a and fi belong to Si respectively by normalization (and antisimmetry) and the previ­
ous part; furthermore (a,/3) = h2 (m — 1) =£ Oom + 1. 

Now, if m =£ 1, we conclude using 3). If instead m = 1, applying 1) to part a) with 
n = 0 we get the assertion in this case too. Until now we have proven that 

(**) (m,n)eSl,Vn,Vm = Omodh. 

d) (t,n)eSl, V/2^0, V/. 

Let's consider a=(—th,—hn), fi= (h + th — t,hn — n), y=(t,n); a e ^ ° by (**), 
(a, 7) = 0 , (a,/3) = —h2n¥=0 so we conclude by 4). 

e) (rh + t,0)eSl, MreZ, V/= 1, . . . , £ - 1 . 

For « Té 0 we set a = (-/ , - « ) , fi = ((-r + 1) h, n), y=(rh + t, 0). Again fi e Si by 
(**), a e52 by part d) and ( f t a ) ^ 0 < ^ > / ^ i ( l - r ) which is always true. Now we are 
in the hypothesis of 3). o 

THEOREM 3.1. dimH2 (8^ , C(q)) = In, Moreover a basis for H2 (&fy C(#)) is given 
by the cocycles/-(a,a') = 80L,-a'aiq~~--,fi+n (a, a' ) =4 , -a ' kq~à'h where a, oc' e Zn X 
xZn, a = (a,b), *' = (a',b')> i = l , . . . , « . 

PROOF. By Propositions 3.2, 3.3 we know that tyu = 0 if u =£ (0,0). So we consider 
^ = 0(o,o); we set: a = (h,k), /3 = ( - h,0), r = ( Q , - k ) , and define *(h) :=<£((-h,0)), 
Mk):=>((0,~k)). 

A routine calculation, which uses only the cocycle condition (C), gives, if h - k ^ O 
H(h,k)) = -q-^(a(h) + b(k)). 

Now we choose r such that r*k=^0, r - h ^ O , h - r ^ — r-k, and consider a = (h, r ), 
P= (k>0)> 7 = ("""h~k> ~ l ) (we assume h=£ — k). 

We have A(a,/3) = # r k - 1, A(/3,r) = 1 - q~v\ Mr,*) = 4~-ld ~<?~vk), and the 
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co cycle condition gives 

- ( ^ • k - l ) ^ - ( b + k)'I(4h + k) + Mr)) + 

+ (1 - q~vk)q-h'1 (a(h) + b{t)) + q'^'1 (1 - q~vk) a(k) = 0 

that is 

(***) a(h + k) = a{h) + a(k). 

Note that (***) holds even if u= (h, — h) - direct verification - . 
With a symmetric argument, we obtain an analogous relation for b. But for a func­

tion c which verifies (***) it holds c(h) = c{(hu0, ...,0) + (0,Z>2,0, ...,0) + ... + 
+ (0,0, . . . ,AJ)=A1^l ,0, . . . ,0)+A2c(0, l ,0, . . . ,0) + ... + Awc(0,0,...,l). 

If now a = ( h , k ) with h-k = 0, we consider a = (h,k), /3=(r,s) , y = (— h — r, 
— s —k) where r, s, are such that r - s^O, h - s ^ k - r , h-s + k-r + r - s ^ O . 

Applying the cocycle condition, we can express <p(oc) by means of <£(/3), ^(7); but /3 
and y are included in the previous case. What we have seen until now shows that 
dimZ^(Sf, C(q)) = dimH2 (8<f>, C{q))<2n. 

Finally, we note that the cocycles/, / = 1, ...,2«, are linearly independent and nor­
malized, so that dimH2(£^}, C(q)) =2n as asserted. • 
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